On January 30, Arkansas senator Tom Cotton tweeted that although he didnt know where the novel coronavirus, SARS-CoV-2, originated, he wanted to point out that "Wuhan has Chinas only biosafety level-four super laboratory that works with the worlds most deadly pathogens to include, yes, coronavirus.
He was implying, as other conspiracy theorists have continued to do, that the new virus was intentionally made and released (ignoring the fact there are many "level-four super laboratories" around the world). Politicians, including Donald Trump, continue to call SARS-CoV-2 the Chinese virus or Wuhan Virus.
But the origins of viruses, and how they come to infect humans, are almost always more complicated than a couple of evil geniuses secretly creating infectious killers. Viruses mutate constantly, playing the equivalent of a genetic slot machine until they chance upon the winning genetic sequences to allow them to jump from animals into humans, and be infectious enough to spread their genetic information far and wide.
While theres still so much uncertainty about the COVID-19 pandemichow long it will last, what treatment options might work, when a vaccine will arrive, there are actually a lot of things that we do know about the virus, through genetics and structural biologyincluding where it came from.
In a new paper in Nature Medicine, scientists from the U.S., Australia, and the U.K. analyzed the virus closelyoutlining its likely origins and exactly how and why it seems to be more infectious than previous coronaviruses, like SARS or MERS. Their research also provides a resolution to the made-in-a-lab speculation. Kristian Andersen, an associate professor of immunology and microbiology at Scripps Research, said in a press release: We can firmly determine that SARS-CoV-2 originated through natural processes."
You can tell a lot about a virus from its genomewhat kind of virus it is, and how closely related it is to viruses you already know about. The genetic sequence to SARS-CoV-2 was made available very quickly by Chinese scientists, allowing researchers all over the world to see what made the new virus tick.
Coronaviruses get their name from spikes that cover their surface that look a bit like the suns corona. Those spikes are key to how the virus infects a human cell and two integral parts of the new viruss spikes are slightly different from those of previous coronaviruses. These differences could help us understand how its spreading farther and infecting more people.
The first change is in the receptor-binding domain. This is part of the spike that binds to a human cellfor this virus it attaches to ACE-2, a cell membrane enzyme that regulates blood pressure.
We already knew that the 2003 SARS binding could bind pretty tightly to ACE-2. But in a Science paper this month, researchers using cryo-electron microscopy revealed that the new viruss spike was better. It binds to the ACE-2 receptor 10 times more tightly than a SARS virus does. This difference is made possible by small variations in structure to the receptor binding domain.
The second adaptation in the new coronavirus is a part of the spike called the cleavage site. The spike is a folded up-bundle, and it has to be cleaved, or cut, in a specific place to pop open, like releasing a spring. After being cleaved, the spike is used to grab onto a human cell.
The cleavage site is made up of small amino acid sequences that are recognized by cellular enzymes called proteases, enlisted to do the cutting. These molecular scissors are different for each coronavirus. SARS-CoV-2's cleavage site is made of amino acids that attract an enzyme called furin. Our bodies make furin in a lot of different tissues, but in particular, in the upper respiratory and lower respiratory tract.
When a virus has a cleavage site that attracts furin to do the cutting, it becomes more dangerous. To compare, influenza viruses are often cleaved and activated by enzymes called trypsin, "which are typically restricted to certain tissues and organs," said Jean Millet, a microbiologist at the Molecular Virology and Immunology unit of INRAE, located in France, who wasn't involved in the paper.
Experiments with avian influenza virus have shown that if they evolve a furin cleavage site, they become much more infectious. Having a furin cleavage site means that the virus is able to replicate more, and in different tissues. It can easily go into the lower respiratory tract. It may be one of the reasons that people develop pneumoniathough this hasnt been proven for certain.
Seeing that in the new SARS-CoV-2 when those sequences came out for the first time actually kept me up all night, said Bob Garry, an assistant professor of microbiology and immunology at Tulane University School of Medicine and co-author of the Nature paper.
These changes may be alarming, but they're also how we know this virus wasn't designed in the lab. Simply put, the adaptationsspecifically the binding to ACE2are just too good for a human to have come up with it.
Computer programs that scientists use to model the interactions between a virus's spike and ACE-2 dont predict that the receptor SARS-CoV-2 has would work very well. And yet, it doesas Wrapp found, 10 times better. Its an indication that the alterations in the binding were selected for through natural selection, not genetic engineering.
You couldn't predict that with any computer program, Garry said. Nature usually is better at doing things than we can figure out with a computer these days. That's pretty good evidence that this virus did evolve to bind to human ACE-2 on its own. Nobody helped it. If somebody had designed it, they would have used a different solution.
I asked if there was any possibility some evil-genius person out there, with a different computer algorithm, could have come up with it. Like in the comic books? It doesnt seem likely, Garry said.
"This is a convincing argument," Millet confirmed. "SARS-CoV and SARS-CoV-2 do bind the same receptor but they do so in different ways that is most likely through an evolutionary process whereby each virus has 'figured out' different ways to do so...This goes against the notion that someone or a group would have intentionally used the SARS-CoV sequence to generate a new virus."
Additionally, if someone wanted to make a coronavirus, they would use another virus as a building block, Garry said. But the virus that is closest to SARS-CoV-2 is a bat virus that wasnt discovered until after the outbreak. There's no evidence from the SARS-CoV-2 genome that any other virus was used as a backbone to make something new.
Viruses mutate at a steady rate, and so as they spread, researchers can look at how many adaptations they've acquired and count back in time to figure out when it appeared. Co-author Andrew Rambaut, professor of Molecular Evolution at University of Edinburgh, did this, and found that SARS-CoV-2 sprung up in humans in either late November or early Decemberwhich makes sense given it was December 31 that Chinese authorities told the World Health Organization about the outbreak.
That's the "when," but it doesnt tell us where exactly it came from. In the SARS epidemic from the early 2000s, the virus transferred directly from a civet cat to humans. It didnt have to adapt, Garry said. It was already good to go. With MERS, it was a similar storythe same virus that infected camels got passed to humans.
SARS and MERS didnt transmit between people as well as the new coronavirus does. That could be because SARS-CoV-2 has adapted more to humansmeaning it didnt just jump from an animal, but first adapted to infect us better. I could be proven wrong tomorrow," Garry said. "Somebody could find an animal out there that has a virus that's identical to SARS-CoV-2. I don't think that's going to happen."
The closest virus to the new coronavirus is a bat virus, RaTG13, which is 96 percent similar. Yet its missing one crucial thing: its spike has a different receptor binding domain, not the defining one that SARS-CoV-2 has. Intriguingly, another recently discovered virus, from the pangolin, a scaly anteater, is less like SARS-CoV-2 overall, but does have a strongly similar receptor binding domain.
Garry said that because of this, he and his co-authors think its possible that SARS-CoV-2 is a recombinant virus, meaning its a combination of two different viruses that shared their genetic information. This is like a couple moving in together and combining their kitchen appliances. Suddenly they have access to tools they didnt beforea Vitamix and a food processor. A coronavirus might have been able to gain the enhanced receptor binding and then mutated further until genetic luck brought it the furin cleavage site.
What we dont know is the specifics of where or when this recombination and other mutation occurred. It could have happened while the virus was still in an animalthen, after the furin cleavage adaptation, it was able to jump into humans and spread rapidly afterwards. Another possibility is that a previous non-pathogenic version of the virus was circulating in people for some time before the mutation at the cleavage site occurred and it started spreading rapidly. What we can say is that it's more complicated than just a "Chinese" or "Wuhan" disease. It's a virus that has changed and mutated many times, possibly from different animal sources, or within our own bodies, and with genetic good fortune, happened upon the right adaptations to take hold.
We wont know the virus's origins for sure until we have more data, but the answer could be a predictor of whats to come. If SARS-CoV-2 achieved its adaptations in animals, there's more of a risk for future similar outbreaks. If it adapted while already in humans, it's less likely those same mutations will happen againjust based on probability. Either way, we learn more about the many ways viruses make it into our lives.
The significance is that now we know that there's a new way you can get a pathogenic coronavirus through recombination," Garry said. "Spread or passage doesn't have to be a direct jump from an animal."
Figuring out the origins of SARS-CoV-2 and how it works will be important the next time another new coronavirus emerges.
If we can understand what types of coronaviruseswith what types of featuresare in animals now, it would make it easier to look at a virus's genome sequence and determine where it got its features from, or how its spike might bind to our cells. One way to do this would be to start gathering information about the coronaviruses that are in many kinds of animals now. Bat coronaviruses, for example, are incredibly under-sampled, Garry said. We know that the diversity of coronaviruses in bats is a lot more than what we know about right now. Just figuring that out would be important.
Sign up for our newsletter to get the best of VICE delivered to your inbox daily.
Follow Shayla Love on Twitter.
Go here to read the rest:
Once and for All, the New Coronavirus Was Not Made in a Lab - VICE
- Clemson professor Trudy Mackay elected to the National Academy of Medicine - Clemson News - October 22nd, 2024
- Research sheds new light on the behavior of KRAS gene in pancreatic and colorectal cancer - News-Medical.Net - October 22nd, 2024
- Pushing the boundaries of rare disease diagnostics with the help of the first Undiagnosed Hackathon - Nature.com - October 22nd, 2024
- Tailored Genetic Medicine: AAV Gene Therapy and mRNA Vaccines Redefine Healthcare's Future - Intelligent Living - October 22nd, 2024
- The Genetic Link to Parkinson's Disease - Hopkins Medicine - August 27th, 2022
- Epic Bio makes gene therapies by editing the epigenome - Labiotech.eu - August 27th, 2022
- Ovid turns to gene therapy startup to restock drug pipeline - BioPharma Dive - August 27th, 2022
- Whole-exome analysis of 177 pediatric patients with undiagnosed diseases | Scientific Reports - Nature.com - August 27th, 2022
- First Gene Therapy for Adults with Severe Hemophilia A, BioMarin's ROCTAVIAN (valoctocogene roxaparvovec), Approved by European Commission (EC) -... - August 27th, 2022
- Arbor Biotechnologies Enters into Agreement with Acuitas Therapeutics for Lipid Nanoparticle Delivery System for Use in Rare Liver Diseases - BioSpace - August 27th, 2022
- ElevateBio Partners with the California Institute for Regenerative Medicine to Accelerate the Development of Regenerative Medicines - Business Wire - August 27th, 2022
- ElevateBio and the University of Pittsburgh Announce Creation of Pitt BioForge BioManufacturing Center at Hazelwood Green to Accelerate Cell and Gene... - August 27th, 2022
- Genetic variants cause different reactions to psychedelic therapy - The Well : The Well - The Well - August 27th, 2022
- Personalized Medicine for Prostate Cancer: What It Is and How It Works - Healthline - August 27th, 2022
- Four radical new fertility treatments just a few years away from clinics - The Guardian - August 27th, 2022
- Why are Rats Used in Medical Research? - MedicalResearch.com - August 27th, 2022
- The Columns Stepping Stones in STEM Washington and Lee University - The Columns - August 27th, 2022
- Study points to new approach to clearing toxic waste from brain Washington University School of Medicine in St. Louis - Washington University School... - August 27th, 2022
- ALS Gene Therapy SynCav1 Found to Extend Survival in Mouse Model |... - ALS News Today - August 27th, 2022
- A New Kind of Chemo | The UCSB Current - The UCSB Current - August 27th, 2022
- Unraveling the mystery of who gets lung cancer and why - Genetic Literacy Project - June 16th, 2022
- How diet and the microbiome affect colorectal cancer - EurekAlert - June 16th, 2022
- Akouos Presents Nonclinical Data Supporting the Planned Clinical Development of AK-OTOF and Strategies for Regulated Gene Expression in the Inner Ear... - May 20th, 2022
- Money on the Move: SwanBio, Remix, Locus, Mirvie and More - BioSpace - May 20th, 2022
- DiNAQOR Opens DiNAMIQS Subsidiary to Partner with Gene Therapy Companies Bringing New Treatments to Patients - PR Newswire - May 20th, 2022
- Brain tumor growth may be halted with breast cancer drug - Medical News Today - May 20th, 2022
- LogicBio Therapeutics to Present at HC Wainwright Global Investment Conference - PR Newswire - May 20th, 2022
- Genascence Announces Data From Phase 1 Clinical Trial on GNSC-001, Company's Lead Program in Osteoarthritis, Presented at American Society of Gene... - May 20th, 2022
- Encoded Therapeutics Presents Nonclinical Data Showing Genomic Medicine Platform Yields Selective Expression to Optimize Gene Therapy Performance at... - May 20th, 2022
- California, Other States to Cover Rapid WGS of Newborns Under Medicaid, but Questions of Access Loom - GenomeWeb - May 20th, 2022
- Researchers Identify Role of 'Sonic the Hedgehog' Gene in Bone Repair - BioSpace - May 20th, 2022
- Targeting the Uneven Burden of Kidney Disease on Black Americans - The New York Times - May 20th, 2022
- ASC Therapeutics, U Mass Medical School, and the Clinic for Special Children Announce Podium Presentation of Safety and Efficacy in Murine and Bovine... - May 20th, 2022
- UC Davis Looks to Expand Genetic Breast Cancer Risk Education, Outreach for Hispanic Women - Precision Oncology News - May 20th, 2022
- Fly Researchers Find Another Layer to the Code of Life - Duke Today - May 20th, 2022
- CANbridge-UMass Chan Medical School Gene Therapy Research Presented at the American Society of Gene and Cell Therapy (ASGCT) Annual Meeting - Business... - May 20th, 2022
- Omicron BA.4 and BA.5: What to know about the new variants - Medical News Today - May 20th, 2022
- Krystal Biotech to Present Additional Data on B-VEC from the GEM-3 Phase 3 Study at the Society for Investigative Dermatology Annual Meeting -... - May 20th, 2022
- FDA approves Lilly's Mounjaro (tirzepatide) injection, the first and only GIP and GLP-1 receptor agonist for the treatment of adults with type 2... - May 20th, 2022
- Elucidating the developmental origin of life-sustaining adrenal glands | Penn Today - Penn Today - May 20th, 2022
- 5 questions facing gene therapy in 2022 - BioPharma Dive - January 17th, 2022
- In a First, Man Receives a Heart From a Genetically Altered Pig - The New York Times - January 17th, 2022
- Antibodies, Easy Single-Cell, Genomics for All: Notes from the JP Morgan Healthcare Conference - Bio-IT World - January 17th, 2022
- Using genetics to conserve wildlife - Pursuit - January 17th, 2022
- Genetics of sudden unexplained death in children - National Institutes of Health - January 17th, 2022
- Amicus Therapeutics Reports Preliminary 2021 Revenue and Provides 2022 Strategic Outlook and Revenue Guidance - Yahoo Finance - January 17th, 2022
- Maze Therapeutics Announces $190 Million Financing to Support the Advancement of Nine Precision Medicine Programs and Compass Platform for Genetically... - January 17th, 2022
- How The mRNA Vaccines Were Made: Halting Progress and Happy Accidents - The New York Times - January 17th, 2022
- Press Registration Is Now Open for the 2022 ACMG Annual Clinical Genetics Meeting - PRNewswire - January 17th, 2022
- A Novel Mutation in the TRPM4 Gene | RRCC - Dove Medical Press - January 17th, 2022
- Biomarkers and Candidate Therapeutic Drugs in Heart Failure | IJGM - Dove Medical Press - January 17th, 2022
- Genetic counseling program helps patients take control of their health - Medical University of South Carolina - June 24th, 2021
- One-year-old baby in UAE receives imported genetic medicine to treat rare disease - Gulf News - June 24th, 2021
- Black and non-Hispanic White Women Found to Have No Differences in Genetic Risk for Breast Cancer - Cancer Network - June 24th, 2021
- What's in your genes | The Crusader Newspaper Group - The Chicago Cusader - June 24th, 2021
- Immusoft Announces Formation of Scientific Advisory Board - Business Wire - June 24th, 2021
- Arrowhead Presents Positive Interim Clinical Data on ARO-HSD Treatment in Patients with Suspected NASH at EASL International Liver Congress - Business... - June 24th, 2021
- Pacific Biosciences and Rady Children's Institute for Genomic Medicine Announce its First Research Collaboration for Whole - GlobeNewswire - June 24th, 2021
- Despite the challenges of COVID-19, Yale-PCCSM section members continued their work on scientific papers - Yale School of Medicine - June 24th, 2021
- Veritas Intercontinental: Genetics makes it possible to identify cardiovascular genetic risk and prevent cardiac accidents such as those that have... - June 24th, 2021
- New Research Uncovers How Cancers with Common Gene Mutation Develop Resistance to Targeted Drugs - Newswise - June 24th, 2021
- Celebrate the Third Annual Medical Genetics Awareness Week April 13-16, 2021 - PRNewswire - February 14th, 2021
- How will WNY fare in the race between vaccines and coronavirus variants? - Buffalo News - February 14th, 2021
- Myriad Genetics to Participate in Multiple Upcoming Health and Technology Conferences - GlobeNewswire - February 14th, 2021
- ASCO GU 2021: The Landscape of Genetic Alterations Using ctDNA-based Comprehensive Genomic Profiling in Pat... - UroToday - February 14th, 2021
- The Human Genome and the Making of a Skeptical Biologist - Scientific American - February 14th, 2021
- Breast Cancer Gene Mutations Found in 30% of All Women - Medscape - February 1st, 2021
- Mysterious untreatable fevers once devastated whole families. This doctor discovered what caused them - CNN - February 1st, 2021
- CCMB team identifies variants of genes that metabolise drugs - BusinessLine - February 1st, 2021
- NeuBase Therapeutics Announces Acquisition of Gene Modulating Technology from Vera Therapeutics - GlobeNewswire - February 1st, 2021
- Copy number variations linked to autism have diverse but overlapping effects - Spectrum - February 1st, 2021
- Genomes, Maps, And How They Affect You - IFLScience - February 1st, 2021
- SMART Study Finds 22q11.2 Microdeletion Prevalence Much Higher than Expected - PRNewswire - February 1st, 2021
- Are Phages Overlooked Mediators of Health and Disease? - The Scientist - February 1st, 2021
- When Your Chance for a Covid Shot Comes, Dont Worry About the Numbers - Kaiser Health News - February 1st, 2021
- Global CRISPR Gene Editing Market: Focus on Products, Applications, End Users, Country Data (16 Countries), and Competitive Landscape - Analysis and... - February 1st, 2021
- The First Targeted Therapy For Lung Cancer Patients With The KRAS Gene MutationExtraordinary Results With Sotorasib - SurvivorNet - February 1st, 2021
- Genetic Testing: MedlinePlus - January 29th, 2021
- 21 Common Genetic Disorders: Types, Symptoms, Causes ... - January 29th, 2021
- Genetic Counseling Online Course - School of Medicine ... - January 29th, 2021