Ecological model
We start with an ecological model of resident host-pathogen dynamics that assumes these populations are, respectively, genetically homogeneous. The ecological model underlies the evolutionary model we develop later. A complete description of the model, and the methods of analysis that follow, can be found in theSupplementary Information.
We consider a population of hosts classified according to their sex and disease status. At time t, there are Si=Si(t) sex-i individuals not infected by the pathogen, but susceptible to future infection (i=f for females, i=m for males). At time t there are also Ii=Ii(t) sex-i individuals who are not only infected with the pathogen but also able to transmit their infection to others. Our specific goal in this section is to develop a mathematical description of how the numbers of hosts in the various classes change over time.
The number of hosts in the population changes as a result of birth events. Following previous work44,45, we model the host mating rate using the harmonic mean of the population sizes of females and males. Assuming a one-to-one birth sex ratio, then newly born hosts of either sex join the population at rate (frac{b({S}_{f}+{I}_{f})({S}_{m}+{I}_{m})}{N}) where b>0, and N=N(t) denotes the total population size at time t. We assume that newborns produced by susceptible mothers are, themselves, susceptible. By contrast, we suppose that newborns produced by infected mothers acquire their mothers infection with probability v, where v is what we have called the vertical transmission rate31. Host number also changes because of death events. Hosts in every class experience natural mortality at per-capita rate N, where is a positive constant. Hosts infected by the pathogen also experience disease-related mortality at per-capita rate i (a measure of pathogen virulence) (Fig.7).
This model incorporates two sexes (females in red and males in blue) and vertical transmission (dashed line). The flow between compartments is represented by arrows and expressions next to each arrow represent the flow rate. Evolving phenotypes and drivers of their evolution are indicated in green and purple, respectively. Source data are provided as a Source Data file.
Numbers of hosts in any particular class changes as their disease-status changes. For example, we allow infected individuals to recover at per-capita rate i (a measure of host immunocompetence). We assume that, upon recovery, hosts move immediately into the appropriate susceptible group. In this way, we ignore the possibility that recovery implies immunity to subsequent infection. The disease status of hosts can also change because of horizontal disease-transmission events. We approach horizontal transmission in a standard way and assume that susceptible sex-i hosts acquire the pathogen horizontally from their infected sex-j counterparts at a total rate of SiijIj. Here, ij is a constant that reflects the transmissibility of the pathogen. We assume that when a host acquires an infection horizontally, it immediately becomes infectious (Fig.7).
The model described above is summarised mathematically using the following system of differential equations:
$$frac{d{S}_{f}}{dt}=frac{b({S}_{f}+(1-v){I}_{f})({S}_{m}+{I}_{m})}{N}+{gamma }_{f}{I}_{f}-{S}_{f}{beta }_{ff}{I}_{f}-{S}_{f}{beta }_{fm}{I}_{m}-mu N{S}_{f}$$
(1a)
$$frac{d{S}_{m}}{dt}=frac{b({S}_{f}+(1-v){I}_{f})({S}_{m}+{I}_{m})}{N}+{gamma }_{m}{I}_{m}-{S}_{m}{beta }_{mf}{I}_{f}-{S}_{m}{beta }_{mm}{I}_{m}-mu N{S}_{m}$$
(1b)
$$frac{d{I}_{f}}{dt}=frac{bv{I}_{f}({S}_{m}+{I}_{m})}{N}+{S}_{f}{beta }_{ff}{I}_{f}+{S}_{f}{beta }_{fm}{I}_{m}-({gamma }_{f}+{alpha }_{f}+mu N){I}_{f}$$
(1c)
$$frac{d{I}_{m}}{dt}=frac{bv{I}_{f}({S}_{m}+{I}_{m})}{N}+{S}_{m}{beta }_{mf}{I}_{f}+{S}_{m}{beta }_{mm}{I}_{m}-({gamma }_{m}+{alpha }_{m}+mu N){I}_{m}.$$
(1d)
Under a reasonable set of conditions, the previous system tends, over time, to an equilibrium state in which infections are endemic.
To study how pathogens disease-induced mortality and the hosts immune system respond to selection, we assume that each faces a life-history trade-off.
First, the pathogens ability to transmit horizontally trades off against the duration of any given infection it establishes. Following the previous authors30,46,47, we capture this trade-off by assuming
$${beta }_{ij}=beta ({alpha }_{j})=frac{{beta }_{max }{alpha }_{j}}{{alpha }_{j}+d}quad ,{{mbox{for}}},,j=f,;m,$$
(2)
where ({beta }_{max },,d , > , 0) are constants. Equation (2) implies that the nature of the trade-off faced by a pathogen is the same in both female and male hosts. Specifically, a pathogen can only increase its rate of horizontal transmission by increasing the disease-induced mortality rate experienced by its host (which, in turn, reduces the duration of infection). Equation (2) also says the horizontal transmission rate saturates at ({beta }_{max }) (independent of host sex), and does so more quickly as the parameter d is reduced (again, independent of host sex). Note also that Equation (2) does not depend on i: the sex of the susceptible host to whom the pathogen is transmitted.
For their part, hosts face a trade-off between investing resources in their immune system and their reproductive success. Increased immune investment is reflected in an increased recovery rate. To capture the hosts trade-off, then, we treat birth rate b as a decreasing function of the recovery rate. Moreover, we assume that the decrease in b is experienced by the host regardless of its disease status. In other words, we assume that cost associated with the immune system is an ongoing one, incurred mainly because of maintenance27 (this assumption model innate immunocompetence best) rather than being due to the activation that follows an infection48 (this assumption would model adaptive immunocompetence best). As noted in the Discussion, we relax this assumption in theSupplemental Material and compare the results for maintenance and activation costs. As an example, here, we point to evidence that shows female sex hormones enhance the immune system but simultaneously reduce the likelihood of conception and increase the chances of spontaneous abortion49,50,51. In mathematical terms, we capture the hosts trade-off using
$$b=b({gamma }_{f},{gamma }_{m})={b}_{max },{e}^{-{c}_{f}{gamma }_{f}^{2}},{e}^{-{c}_{m}{gamma }_{m}^{2}}$$
(3)
where ci reflects the rate at which fertility is reduced as sex-i immune function is increased (cost of recovery above). Equation (3) generalises the birth rate functions used previously27,48 to our sex-specific setting. The fact that b in this equation depends on both f and m reflects the fact that the reduced fertility of one mate affects the fertility of its partner16.
Our approach to modelling the co-evolution of host and pathogen is rooted in the adaptive-dynamics methodology52,53,54. For the pathogen population, we build a fitness expression that measures the success of a rare mutant strain in a population close to the endemic equilibrium established by the system (1) (indicated as ({bar{S}}_{i}), ({bar{I}}_{i}), and (bar{N})). Assuming that the mutant strain of pathogen is associated with a disease-induced mortality rate equal to ({tilde{alpha }}_{i}) in sex-i hosts, the number of mutant infections, ({tilde{I}}_{i}={tilde{I}}_{i}(t)) changes according to
$$frac{d{tilde{I}}_{f}}{dt}=frac{bv{tilde{I}}_{f}({bar{S}}_{m}+{bar{I}}_{m})}{bar{N}}+{bar{S}}_{f}beta ({tilde{alpha }}_{f}){tilde{I}}_{f}+{bar{S}}_{f}beta ({tilde{alpha }}_{m}){tilde{I}}_{m}-({gamma }_{f}+{tilde{alpha }}_{f}+mu bar{N}){tilde{I}}_{f}$$
(4a)
$$frac{d{tilde{I}}_{m}}{dt}=frac{bv{tilde{I}}_{f}({bar{S}}_{m}+{bar{I}}_{m})}{bar{N}}+{bar{S}}_{m}beta ({tilde{alpha }}_{f}){tilde{I}}_{f}+{bar{S}}_{m}beta ({tilde{alpha }}_{m}){tilde{I}}_{m}-({gamma }_{m}+{tilde{alpha }}_{m}+mu bar{N}){tilde{I}}_{m}.$$
(4b)
The system in (4) is linear and its long-term behaviour is determined by a dominant Lyapunov exponent of the mapping. We capture the information provided by the dominant Lyapunov exponent with the pathogen-fitness function, ({W}_{alpha }({tilde{alpha }}_{f},{tilde{alpha }}_{m},{alpha }_{f},{alpha }_{m})) using techniques laid out by the ref. 55 (see alsoSupplemental Information). When this function is greater than 1 the mutant invades and eventually displaces56 the resident strain associated with the i phenotype. When the function ({W}_{alpha }({tilde{alpha }}_{f},{tilde{alpha }}_{m},{alpha }_{f},{alpha }_{m})) is less than 1 the mutant does not invade and is eliminated from the population. With these facts in mind, we say that selection acts to move i in the direction given by the sign of (frac{partial {W}_{alpha }}{partial {tilde{alpha }}_{i}}{left|right.}_{tilde{alpha }=alpha }) where (tilde{alpha }=alpha) is shorthand for ({tilde{alpha }}_{i}={alpha }_{i}) for all i. Specifically, when this partial derivative is positive i is increasing, and when it is negative i is decreasing.
We follow a similar procedure for the host population by introducing, into the equilibrium population, a rare mutant-type host genotype that results in a recovery rate of ({hat{gamma }}_{i}) when expressed by sex-i hosts. We denote the numbers of susceptible and infected sex-i mutant-type hosts as ({hat{S}}_{i}) and ({hat{I}}_{i}), respectively. We assume that hosts are diploid, and so, strictly speaking, the hosts who contribute to ({hat{S}}_{i}) and ({hat{I}}_{i}) categories are heterozygotes (the numbers of homozygote mutants are negligible). While it remains rare, the dynamics of the mutant-host lineage can be described using
$$frac{d{hat{S}}_{f}}{dt}= frac{frac{b({hat{gamma }}_{f},{gamma }_{m})}{2}({hat{S}}_{f}+(1-v){hat{I}}_{f})({bar{S}}_{m}+{bar{I}}_{m})+frac{b({gamma }_{f},{hat{gamma }}_{m})}{2}({bar{S}}_{f}+(1-v){bar{I}}_{f})({hat{S}}_{m}+{hat{I}}_{m})}{bar{N}}\ +{hat{gamma }}_{f}{hat{I}}_{f}-{hat{S}}_{f}{beta }_{ff}{bar{I}}_{f}-{hat{S}}_{f}{beta }_{fm}{bar{I}}_{m}-mu bar{N}{hat{S}}_{f}$$
(5a)
$$frac{d{hat{I}}_{f}}{dt}= frac{frac{b({hat{gamma }}_{f},{gamma }_{m})}{2}v{hat{I}}_{f}({bar{S}}_{m}+{bar{I}}_{m})+frac{b({gamma }_{f},{hat{gamma }}_{m})}{2}v{bar{I}}_{f}({hat{S}}_{m}+{hat{I}}_{m})}{bar{N}}\ +{hat{S}}_{f}{beta }_{ff}{bar{I}}_{f}+{hat{S}}_{f}{beta }_{fm}{bar{I}}_{m}-({hat{gamma }}_{f}+{alpha }_{f}+mu bar{N}){hat{I}}_{f}$$
(5b)
$$frac{d{hat{S}}_{m}}{dt}= frac{frac{b({hat{gamma }}_{f},{gamma }_{m})}{2}({hat{S}}_{f}+(1-v){hat{I}}_{f})({bar{S}}_{m}+{bar{I}}_{m})+frac{b({gamma }_{f},{hat{gamma }}_{m})}{2}({bar{S}}_{f}+(1-v){bar{I}}_{f})({hat{S}}_{m}+{hat{I}}_{m})}{bar{N}}\ +{hat{gamma }}_{m}{hat{I}}_{m}-{hat{S}}_{m}{beta }_{mf}{bar{I}}_{f}-{hat{S}}_{m}{beta }_{mm}{bar{I}}_{m}-mu bar{N}{hat{S}}_{m}$$
(5c)
$$frac{d{hat{I}}_{m}}{dt}= frac{frac{b({hat{gamma }}_{f},{gamma }_{m})}{2}v{hat{I}}_{f}({bar{S}}_{m}+{bar{I}}_{m})+frac{b({gamma }_{f},{hat{gamma }}_{m})}{2}v{bar{I}}_{f}({hat{S}}_{m}+{hat{I}}_{m})}{bar{N}}\ +{hat{S}}_{m}{beta }_{mf}{bar{I}}_{f}+{hat{S}}_{m}{beta }_{mm}{bar{I}}_{m}-({hat{gamma }}_{m}+{alpha }_{m}+mu bar{N}){hat{I}}_{m}.$$
(5d)
The birth terms in the preceding system of equations reflect (a) the fact that the mutant host, while it is rare, mates only homozygous resident hosts and (b) only half of the matings between heterozygous mutants and homozygous residents result in mutant offspring. Since the dynamics described by (5) are linear, we can again measure fitness (this time for the host) using the dominant Lyapunov exponent. We summarise the relevant information contained in this exponent with the host fitness function ({W}_{gamma }({hat{gamma }}_{f},{hat{gamma }}_{m},{gamma }_{f},{gamma }_{m})), again using techniques outlined by ref. 55. In keeping with the description of pathogen evolution, we assert that the hosts i is increasing when (frac{partial {W}_{gamma }}{partial {gamma }_{i}}{left|right.}_{hat{gamma=gamma }}) is positive, and decreasing when this partial derivative is negative, where (hat{gamma }=gamma) is shorthand for ({hat{gamma }}_{i}={gamma }_{i}) for all i.
We want to identify where the action of selection takes the resident pathogen and host traits (i and i, respectively) in the long term. As mentioned above, the model is too complicated to support exact mathematical predictions. Consequently, our methods rely on numerical simulation implemented in Matlab57. All Matlab code is publicly available (see Code Availability).
The numerical simulation takes as its input a set of parameters and an initial estimate of the long-term result of selection on co-evolution of pathogen and host ({alpha }_{i}^{*}), and ({gamma }_{i}^{*}) for i=f, m. The estimate is updated by (i) finding the corresponding equilibrium solution to Equation (1) in a manner that verifies its asymptotic stability, (ii) using that equilibrium solution to estimate partial derivatives (frac{partial {W}_{alpha }}{partial {tilde{alpha }}_{i}}{left|right.}_{tilde{alpha=alpha }}) and (frac{partial {W}_{gamma }}{partial {hat{gamma }}_{i}}{left|right.}_{hat{gamma=gamma }}) for i=f, m, and finally (iii) incrementing or decrementing elements of the estimate following the sign of the appropriate partial derivative. Steps (i)(iii) are repeated until the absolute value of all partial derivatives is within a tolerance of zero. The result of the simulation is an estimate of the convergence stable58,59 co-evolutionary outcome, assuming f and m, and f and m can be adjusted independently. Importantly, this predicted co-evolutionary outcome also corresponds to a system in which the pathogen is established in a stable equilibrium population of hosts.
Finally, we verified numerically that the convergence-stable estimate corresponded to a two-dimensional evolutionarily stable result60 for pathogen and host, respectively. For this reason, we can also refer to predictions generated by our numerical simulation as a continuously stable state, in analogy to the definition established by ref. 61.
Further information on research design is available in theNature Research Reporting Summary linked to this article.
Continued here:
On maternity and the stronger immune response in women - Nature.com
- Neutrophil diversity and function in health and disease - Nature.com - December 6th, 2024
- Harnessing the Power of the Immune System for Breast Cancer Treatment - Breast Cancer Research Foundation - December 6th, 2024
- Study Examines Neoantigen Landscapes and Their Role in Immunotherapy Efficacy - Consult QD - December 6th, 2024
- The 5 Best Teas to Support Your Immune System This Cold & Flu Season - EatingWell - December 6th, 2024
- Engineered immune cells may be able to tame inflammation - Medical Xpress - December 6th, 2024
- Hybrid model of tumor growth, angiogenesis and immune response yields strategies to improve antiangiogenic therapy - Nature.com - December 6th, 2024
- Opioids interfere with cancer immunotherapy, but another type of drug could help - Medical Xpress - December 6th, 2024
- RANKL cytokine restores thymus cells in old mice, reducing tumor growth and improving T cell immune response - Fierce Biotech - December 6th, 2024
- Predictive role of neutrophil percentage-to-albumin ratio, neutrophil-to-lymphocyte ratio, and systemic immune-inflammation index for mortality in... - December 6th, 2024
- Immuno-Oncology Strategic Industry Research Report 2023-2024 & 2030: Approval of Pembrolizumab (Keytruda) and Nivolumab (Opdivo), which Target... - December 6th, 2024
- Study cracks the cold case of immunotherapy resistance - News-Medical.Net - December 6th, 2024
- New immune therapy improves survival and reduces tumor burden in glioblastoma - News-Medical.Net - December 6th, 2024
- Identification of immune-related hub genes and potential molecular mechanisms involved in COVID-19 via integrated bioinformatics analysis - Nature.com - December 6th, 2024
- Immune Cell Breakthrough: Scientists Discover a Hidden Ally in the Fight Against Cancer - SciTechDaily - December 6th, 2024
- Rising temperatures impact the immune system of wild monkeys - Earth.com - December 6th, 2024
- Study declaring Alzheimer's to be a "brain disease" proven to be fabricated - Earth.com - December 6th, 2024
- Warming temperatures impact immune performance of wild monkeys, U-M study shows - University of Michigan News - December 6th, 2024
- New study explores heart risks of cancer immunotherapy - News-Medical.Net - December 6th, 2024
- 'Incredible' way to boost your immune system naturally and ward of colds and flu this winter - The Mirror - December 6th, 2024
- Tis the Season to Boost Your Immune System - Mix93.3 - December 6th, 2024
- A mathematical model simulating the adaptive immune response in various vaccines and vaccination strategies - Nature.com - October 14th, 2024
- Fox Chase Cancer Center Researchers Find Gene That Triggers Immune Response in Treatment-Resistant Small-Cell Lung Cancer - Fox Chase Cancer Center - October 14th, 2024
- What Does It Mean to Be Immunocompromised? - The New York Times - October 14th, 2024
- Scientist hopes to cure Type 1 diabetes by disguising stem cells - The University of Arizona - October 14th, 2024
- Watching an infection unfold with a sphingolipid probe - Drug Discovery News - October 14th, 2024
- The cells that protect your brain against infection could also be behind some chronic diseases - BBC.com - October 14th, 2024
- On Nutrition: Foods that help strengthen the immune system - LimaOhio.com - October 14th, 2024
- An integral T cell pathway has implications for understanding sex-based immune response - Medical Xpress - October 14th, 2024
- Immune Response Linked to Lewy Body Formation - Neuroscience News - October 14th, 2024
- Are vaccines the future of cancer prevention? - Genetic Literacy Project - October 14th, 2024
- The Gut Microbiome and Autoimmunity - Inside Precision Medicine - October 14th, 2024
- Researchers discover how oral cancer cells may block the body's immune response - News-Medical.Net - September 21st, 2024
- Are Vaccines More Effective When You Believe in Them? - Greater Good Science Center at UC Berkeley - September 21st, 2024
- Researchers discover immune response to dengue can predict risk of severe reinfections - Medical Xpress - September 21st, 2024
- Texas Researchers Find Acid Walls That Shield Cancer Tumors from Bodys Immune System Response - DARKDaily.com - Laboratory News - September 21st, 2024
- Lysosomes in the immunometabolic reprogramming of immune cells in atherosclerosis - Nature.com - September 21st, 2024
- A new way to reprogram immune cells and direct them toward anti-tumor immunity - MIT News - September 21st, 2024
- Unravelling the many mysteries of the immune system - Cosmos - September 21st, 2024
- Long COVID patients maintain robust immune memory two years after infection - News-Medical.Net - September 21st, 2024
- Nutraceuticals and pharmacological to balance the transitional microbiome to extend immunity during COVID-19 and other viral infections - Journal of... - September 21st, 2024
- Which adults benefit from the pneumococcal vaccine? - Mayo Clinic Press - September 21st, 2024
- UAMS receives $2.2 million grant to study immune response to eye disease - talkbusiness.net - September 21st, 2024
- Low oxygen levels in tumors could enhance some of the body's immune responses against cancer - Medical Xpress - September 21st, 2024
- Overview of the Immune System - The Merck Manuals - March 18th, 2024
- What are the organs of the immune system? - InformedHealth.org - NCBI ... - January 17th, 2024
- Mom who homeschools her children reveals she lets her one-year-old play in and EAT mud - but insists it is goo - Daily Mail - November 26th, 2023
- The limits of nutritional supplements: they dont cure or prevent ailments, nor are they harmless - EL PAS USA - November 26th, 2023
- Here's how your gut affects your mental health, immune function and even cardiovascular health - indulgexpress - November 18th, 2023
- From fear to freedom: Anchor Paul LaGrone shares his story of sudden hair loss & the disease that caused it - ABC Action News Tampa Bay - May 9th, 2023
- Strengthen Your Immune System With 4 Simple Strategies - May 1st, 2023
- Immunodeficiency Awareness Month: What Is The Science Behind These Diseases? Know Warning Signs - ABP Live - May 1st, 2023
- Nearly 90% of patients with rare skin cancer respond to therapy that prevents tumors from evading the immune - cleveland.com - April 23rd, 2023
- University of Cincinnati researchers helping develop 'vaccine' to fight aggressive cancer - WKRC TV Cincinnati - April 23rd, 2023
- Sana Biotechnology Highlights Preclinical Hypoimmune Data for its Allogeneic CAR T Platform and Advancements with its In Vivo Fusogen Platform with... - April 23rd, 2023
- Immune System: Parts & Common Problems - Cleveland Clinic - March 21st, 2023
- Disorders of the Immune System | Johns Hopkins Medicine - March 21st, 2023
- Sometimes 15 Minutes Are More Than Enough To Improve Immune System, Sleep Quality And Depression - Revyuh - March 13th, 2023
- People produce endocannabinoids similar to compounds found in marijuana that are critical to many bodily functions - The Conversation Indonesia - February 24th, 2023
- Spending more time with your kids, grandkidsand their germsmay lower risk of a severe outcome from Covid-19, recent studies show - CNBC - December 20th, 2022
- Published in Journal for Immunotherapy of Cancer: Using Single-Cell Analysis to Assess the Effects of an Anti-OX40 Monoclonal Antibody in Its... - November 17th, 2022
- Man who had COVID-19 for 400 days finally cured after getting treated with antibodies, study says - msnNOW - November 17th, 2022
- Social Distancing: The Impact on Your Health and Immune System - Healthline - October 7th, 2022
- Unraveling the Mysteries of the Immune System - Duke University School of Medicine - October 7th, 2022
- When Will ISR Immune System Regulation Holding AB (publ) (STO:ISR) Become Profitable? - Simply Wall St - October 7th, 2022
- VitaGaming Introduces Immune Support and Collagen to help Gamers boost immunity and fight stress - PR Web - October 7th, 2022
- Ohio reports third U.S. death of person with monkeypox who had underlying health conditions - CNBC - October 7th, 2022
- How a select few people have been cured of HIV - PBS - October 7th, 2022
- BeniCaros Wins Nutrition Industry Executive 2022 Immune Health Award - GlobeNewswire - October 7th, 2022
- Seasonal superfoods to give your immune system a boost this autumn - Yahoo Entertainment - October 7th, 2022
- Whats Going Around: Flu cases confirmed locally - ABC27 - October 7th, 2022
- Contributor: How to Fight the Cold and the Flu This Season - AJMC.com Managed Markets Network - October 7th, 2022
- Updated COVID-19 Bivalent Booster Released in Time for Fall and Winter Omicron Wave - Cornell University The Cornell Daily Sun - October 7th, 2022
- Oralair pill that retrains the immune system to reduce risk of thunderstorm asthma - 7NEWS - October 7th, 2022
- COVID immune reaction could affect brain mechanisms and induce neurological symptoms - Sky News - October 7th, 2022
- 7 Surprising Health Benefits of Pumpkins - AARP - October 7th, 2022
- Why Do Some Allergies Go Away While Others Dont? - The Atlantic - October 7th, 2022
- 15 foods to boost the immune system - Medical News Today - September 4th, 2022
- The powerful supplement that could enhance your immune response to bacteria and viruses - Express - September 4th, 2022
- New research: Cancer-fighting viruses can boost body's immune response - The Indian Express - September 4th, 2022
- Long COVID: How researchers are zeroing in on the self-targeted immune attacks that may lurk behind it - The Conversation Indonesia - September 4th, 2022