Humans, the latest tally suggests, have approximately 21,000 genes in our genome, the set of genetic information in an organism. But do we really need every gene we have? What if we lost three or four? What if we lost 3,000 or 4,000? Could we still function? Humans have variation in their genomes, but the overall size does not vary dramatically among individuals, with the exception of certain genetic disorders like Downs syndrome, which is caused by an extra copy of chromosome 21 and all the genes that it carries.
Each gene in a genome provides the code for a protein which affects our lives, from the growth of our hair to allowing us to digest certain foods. Most of the genes found in the human genome are probably safe for now, but there are some organisms which, over time, have cut down their genome to live in various habitats.
Scientists previously thought that every gene in an organisms genome was essential for survival because humans have little variation in our genome sizes from person to person. However, studies using animals with smaller, streamlined genomes have proven this untrue.
What does it take to streamline a genome? Does the organism just cut genes over time and hope for the best, or are there a series of processes that compensate for the loss of these genes? If researchers can understand how some of these small genomes work so efficiently, we can better understand how human genomes function as well. We, Amey Redkar, Alison Gerken and Jessica Velez, are a team of biologists with diverse backgrounds, all associated with the Genetics Society of America. We are interested in understanding how diverse genetic processes work in a variety of organisms and strive to communicate these exciting facts about genetics to a broad audience.
Genomes can change in a variety of ways. Changes can be slight, involving just a single DNA building block, or large-scale, such as the duplication or loss of a large chunk of DNA. It is even possible to lose entire gene pathways groups of genes acting together. Large losses in DNA over time are known as genome streamlining.
Every organism is adapted to their environment, and some have achieved this through the process of genome streamlining. During this process the genome is rearranged as the species adapt to their environment. Genome streamlining enables organisms to thrive in challenging environments, such as low-nutrient ocean sites, or adapt to unique evolutionary challenges, such as those posed by flight.
Researchers explore these adaptations by studying the streamlined genomes of specific species, known as model species, to uncover what genetic material is excessive and if there is an optimum number of genes needed for an organism to survive.
A striking example of genome streamlining is seen in hummingbirds, in which the main drivers of genome size adaptations are thought to be flight and metabolic demands. These birds developed the ability to fly as well as a high-energy lifestyle, which are both reflected in their genetic code. Hummingbirds possess the smallest and least variable genome within bird species at around 900,000,000 units of DNA. The genes that encode proteins are, on average, between 27% and 50% shorter than those in mammalian genomes. These adaptations arose through the process of genome streamlining. DNA and genes which did not actively contribute to hummingbirds living at higher altitudes and having an extremely active, high-energy lifestyle were lost through adaptive mutations.
Fast-moving birds are only one of the more energetically complex species which have undergone genome streamlining. In the plant kingdom, the tiny, rootless aquatic bladderwort plant, Utricularia gibba, captures insect prey in miniature traps using vacuum suction. This plant is adapted to a predatory lifestyle through evolutionary selection of genes that allow the bladderwort to break down complex molecules using special enzymes and retain the plants structural integrity in water environments. Redundant, less important and unnecessary genes were lost.
The previous examples of reduced genome sizes raise a fundamental question: Just how streamlined can a genome be? As the genome of a species shrinks, scientists can explore how many genes a species can lose before an organism can no longer survive.
One such organism used in these studies, Prochlorococcus marinus, is a single-celled cyanobacterium living in the open ocean. At 1,800,000 units of DNA, P. marinus is known for having the smallest genome of any known photosynthetic organism.
These cyanobacteria can no longer create many essential molecules needed for survival. They have lost entire gene pathways used for the creation of amino acids, which are necessary to build proteins. As a result, P. marinus is no longer able to survive in its natural environment without the assistance of symbiotic or beneficial species which provide the amino acids P. marinus needs. In a laboratory, researchers cannot grow P. marinus without the presence of these helper species, or by directly adding the necessary amino acids P. marinus needs.
Similar symbiotic relationships exist inside of insects. Some species of the bacterial pathogen Nardonella have undergone genome streamlining to a genome size as small as 230,000 units of DNA, shedding all genes except those necessary for DNA synthesis and the gene pathway for manufacturing tyrosine, an amino acid for building proteins.
These bacteria derive almost all of their metabolic requirements from the weevil in which they live. The bacteria, in turn, provide the final building block for the pathway in order for the weevil to generate the amino acid tyrosine that builds a darker, harder exoskeleton for the weevil which protects the insect from predators and from drying out. As a result, Nardonella both relies on and provides a benefit to the host weevil in exchange for this reliance.
Like humans, these species all have structured genetic information, but studies in these animals, plants, and bacteria have revealed that not every gene was essential to survive in their environments. As researchers continue to explore genome streamlining, we move closer to understanding how genetic adaptations arise, how the loss of genetic information affects the genomes of species, and just how few genes a species must have in order to survive in unique, challenging environments.
[ Expertise in your inbox. Sign up for The Conversations newsletter and get a digest of academic takes on todays news, every day. ]
Read more here:
Not all genes are necessary for survival these species dropped extra genetic baggage - The Conversation US
- Genetics - National Geographic Society - March 28th, 2025
- Genetics: Introduction, law of inheritance and Sex Determination - BYJU'S - March 28th, 2025
- Genetics, ecology and evolution of phage satellites - Nature.com - March 28th, 2025
- As a geneticist, I will not mourn 23andMe and its jumble of useless health information | Adam Rutherford - The Guardian - March 28th, 2025
- Rare loss-of-function variants in HECTD2 and AKAP11 confer risk of bipolar disorder - Nature.com - March 28th, 2025
- With 23andMe filing for bankruptcy, what happens to consumers genetic data? - The Conversation Indonesia - March 28th, 2025
- A genetic tree as a movie: Moving beyond the still portrait of ancestry - Phys.org - March 28th, 2025
- Genetic mutations linked to Marek's disease in chickens identified - Phys.org - March 28th, 2025
- 23andMe is looking to sell customers genetic data. Heres how to delete it - CNN - March 28th, 2025
- Horses Pulled Off a Genetic Trick Only Viruses Were Thought to Use - SciTechDaily - March 28th, 2025
- CONSUMER ALERT: Warning 23AndMe Customers That Their Private Genetic Data May Be at Risk - Office of the Attorney General for the District of Columbia - March 28th, 2025
- A new study reveals the genetic change that made horses so athletic - KUOW News and Information - March 28th, 2025
- "Mystery ancestors" gave humans 20% of our current DNA, but who were they? - Earth.com - March 28th, 2025
- Correcting the Mutation Behind a Genetic Eye Disease - The Scientist - March 28th, 2025
- Your DNA is safe here: The AncestryDNA Genetic Test Kit is only $39 now - New York Post - March 28th, 2025
- 23andMe Is Bankrupt. Heres What You Need to Know About Your Genetic Data. - The Wall Street Journal - March 28th, 2025
- Commentary: 23andMe files for bankruptcy, putting its hoard of personal health information at risk - Los Angeles Times - March 28th, 2025
- DNA Microscopy Creates 3D Maps of Life From the Inside Out - SciTechDaily - March 28th, 2025
- Eugenics Must Be Included in Genetics Curriculum: Prof - Mirage News - March 28th, 2025
- 11-minute video on human genetics can make people more accepting of others, reveals new study - Hindustan Times - February 24th, 2025
- Advancing Cancer Genetic Testing to Improve Prevention and Patient Treatment - The Scientist - February 24th, 2025
- Environmental factors, lifestyle choices have greater impact on health than genes, study finds - ABC News - February 24th, 2025
- Study finds lifestyle, environment have greater impact on lifespan than genetics - CBS Boston - February 24th, 2025
- Safeguard repressor locks hepatocyte identity and blocks liver cancer - Nature.com - February 24th, 2025
- Mass spectrometry-based mapping of plasma protein QTLs in children and adolescents - Nature.com - February 24th, 2025
- The Avestagenome Project and TIGS Sign Strategic Alliance to Advance Research in Rare Genetic Disorders - The Tribune India - February 24th, 2025
- Researchers make breakthrough discovery after studying genetics of trees: 'There is a need for proactive conservation' - MSN - February 24th, 2025
- iPSCs and iPSC-derived cells as a model of human genetic and epigenetic variation - Nature.com - February 24th, 2025
- Beyond genetics: The biggest factors that influence health and aging - Earth.com - February 24th, 2025
- Genetic diversity and dietary adaptations of the Central Plains Han Chinese population in East Asia - Nature.com - February 24th, 2025
- How a uniquely human genetic tweak changed the voices of mice - NPR - February 24th, 2025
- Genetic evidence identifies a causal relationship between EBV infection and multiple myeloma risk - Nature.com - February 24th, 2025
- Genetic markers of early response to lurasidone in acute schizophrenia - Nature.com - February 24th, 2025
- Bupa to offer first genetic test for disease prediction in UK - The Times - February 24th, 2025
- Advancing Therapeutic Knowledge of Genetic Influence in ALS: Matthew B. Harms, MD - Neurology Live - February 24th, 2025
- Association of dietary carbohydrate ratio, caloric restriction, and genetic factors with breast cancer risk in a cohort study - Nature.com - February 24th, 2025
- Evaluation of polygenic scores for hypertrophic cardiomyopathy in the general population and across clinical settings - Nature.com - February 24th, 2025
- Familiar autism-linked genes emerge from first analysis of Latin American cohort - The Transmitter: Neuroscience News and Perspectives - February 24th, 2025
- Almost 90% of people would agree to genetic testing to tailor medication use, survey finds - Medical Xpress - February 24th, 2025
- Largest Genetic Study of Bipolar Disorder Identifies 298 Regions of the Genome That Increase Risk for the Condition - Mount Sinai - January 27th, 2025
- Study Sheds Light On The Origin Of Earth Lifes Genetic Code - Astrobiology News - January 27th, 2025
- Largest study on the genetics of bipolar disorder to date gives new insights into the underlying biology - Medical Xpress - January 27th, 2025
- Genetic Swiss Army Knife: New Tool For Gene Editing And Therapy - Forbes - January 27th, 2025
- Uhm Ji-won says the power of genetics is undeniable with Hyun Bin and Son Ye-jin's son - - January 27th, 2025
- Integrative proteogenomic analysis identifies COL6A3-derived endotrophin as a mediator of the effect of obesity on coronary artery disease -... - January 27th, 2025
- Genetic analysis reveals the genetic diversity and zoonotic potential of Streptococcus dysgalactiae isolates from sheep - Nature.com - January 27th, 2025
- Eight psychiatric disorders share the same genetic causes, study says - Medical Xpress - January 27th, 2025
- Exploring genetic associations and drug targets for mitochondrial proteins and schizophrenia risk - Nature.com - January 27th, 2025
- Predictive Genetic Testing and Consumer Genomics Market - GlobeNewswire - January 27th, 2025
- Evolution without sex: How mites have survived for millions of years - EurekAlert - January 27th, 2025
- Our Understanding of Rules that Produce Lifes Genetic Code May Require a Revision - DISCOVER Magazine - January 27th, 2025
- Personalized therapy for rare genetic diseases: Patient-derived organoids offer new hope - Medical Xpress - January 27th, 2025
- The One Thing That's More Important for Longevity Than Your Genes - Parade Magazine - January 27th, 2025
- Complete recombination map of the human genome created - Medical Xpress - January 27th, 2025
- Evidence of genetic determination of annual movement strategies in medium-sized raptors - Nature.com - January 27th, 2025
- Genetic study of Alaska red king crabs suggests species is more diverse and resilient to climate change - Global Seafood Alliance - January 27th, 2025
- Smartwatches reveal insights into psychiatric illnesses and genetic links - Medical Xpress - January 27th, 2025
- Unlocking the Blueprint of Human Life With a Revolutionary DNA Map - SciTechDaily - January 27th, 2025
- Largest Genetic Study of Bipolar Disorder Identifies Nearly 300 Risk-Associated Genome Regions - Inside Precision Medicine - January 27th, 2025
- Genetic Discrimination Is Coming for Us All - The Atlantic - November 16th, 2024
- Family connection: Genetics of suicide - WNEM - November 16th, 2024
- Study links heart shape to genetic risk of cardiovascular diseases - News-Medical.Net - November 16th, 2024
- Genetic architecture of cerebrospinal fluid and brain metabolite levels and the genetic colocalization of metabolites with human traits - Nature.com - November 16th, 2024
- Genetic connectivity of wolverines in western North America - Nature.com - November 16th, 2024
- Toward GDPR compliance with the Helmholtz Munich genotype imputation server - Nature.com - November 16th, 2024
- Leveraging genetic variations for more effective cancer therapies - News-Medical.Net - November 16th, 2024
- Bringing precision to the murky debate on fish oil - University of Arizona News - November 16th, 2024
- International experts gathered in Tashkent to tackle rare disease for Uzbekistan - EurekAlert - November 16th, 2024
- Mercys Story: Living life with 22q, a genetic condition - WECT - November 16th, 2024
- Cold case with ties to Houghton County solved through genetic genealogy after 65 years - WLUC - November 16th, 2024
- 23andMe customer? Here's what to know about the privacy of your genetic data. - CBS News - November 16th, 2024
- Single-cell RNA analysis finds possible genetic drivers of bone cancer - Illumina - November 16th, 2024
- Multi-trait association analysis reveals shared genetic loci between Alzheimers disease and cardiovascular traits - Nature.com - November 16th, 2024
- With 23andMe Struck by Layoffs, Can You Delete Genetic Data? Here's What We Know - CNET - November 16th, 2024
- Genetic testing firm 23andMe cuts 40% of its workforce amid financial struggles - The Guardian - November 16th, 2024
- Genetic study solves the mystery of 'selfish' B chromosomes in rye - Phys.org - November 16th, 2024
- Genetic changes linked to testicular cancer offer fresh insights into the disease - Medical Xpress - November 16th, 2024
- Eating less and genetics help you to live longer, but which factor carries the most weight? - Surinenglish.com - November 16th, 2024
- We must use genetic technologies now to avert the coming food crisis - New Scientist - November 16th, 2024
- NHS England to screen 100,000 babies for more than 200 genetic conditions - The Guardian - October 6th, 2024