Science and Technology
January 11, 2021 Atlanta, GA
Click image to enlarge
Image shows a mass spectrometer and scanning electronic microscope that provide the foundation for the BeamMap system, which can simultaneously determine surface topology and chemical makeup of a biological sample.
A new imaging instrument able to simultaneously study both the surface of a biological sample and its chemical composition is the goal of a three-year, $1.2 million National Institutes of Health (NIH) research award. Combining information from analysis of the chemical composition and physical structure of the surface of cells, tissues and even individual biomolecules inside the cells could provide a new way to study tumor growth, disease progression, cell function, and other key issues.
The technology being developed, termed Beam Enabled Accurate Mapping & Molecular Analyte Profiling (BeamMap), combines data from scanning electron microscopy and a new mode of desorption electrospray ionization mass spectrometry (DESI-MS) to simultaneously determine surface topology and chemical makeup. BeamMap uses an electron beam and a focused nanospray of electrified liquid to gather the two types of information, which is correlated with help of image processing software. The research is funded by the National Institute of Healths National Institute of General Medical Sciences (NIGMS).
To make this breakthrough tool, we need to be able to provide both topological and chemical information at resolutions on the scale of micrometers and sub-micrometers to be able to discover molecular makeup and biological function at a sub-cellular level, said Andrei Fedorov, Professor and Rae S. and Frank H. Neely Chair in the George W. Woodruff School of Mechanical Engineering at the Georgia Institute of Technology. This will require simultaneous advances, and we will be pushing the limits of both imaging tools and what mass spectrometers can do.
Because of the use of mass spectrometry for molecular sensing, BeamMap will be able to characterize proteins, metabolites, and lipid chemistry without requiring an a priori knowledge of what chemical species are present. With its ability to correlate chemical information with topological information acquired with focused electron and ion-spray beams in vacuum, the new instrument is expected to provide an order of magnitude improvement in the resolution of electrospray-based techniques, with chemical imaging resolution of approximately 250 nanometers and electron microscopy topological resolution of about 50 nanometers. BeamMap should be useful in fundamental and clinical biology, medicine, analytical chemistry, and bioengineering.
Processes that are currently invisible to us could actually be seen using BeamMap, so we will have evidence for things we can only speculate about now, Fedorov said. Being able to see what is happening at the subcellular level will allow us to get a better understanding of how biological systems behave. That will allow us to create hypotheses for how cells and tissues interact with the environment, potentially leading to a whole host of new therapeutic applications.
Among the major challenges that require an innovative research approach are the creation of soft ionization and highly local sample extraction necessary for keeping the biomolecules intact and the ability to effectively deliver the charged molecules to the vacuum environment of the mass spectrometer, he said.
We will need to fine-tune the energy of the beam that sprays on the substrate to provide the resolution we need, Fedorov said. We need to extract live biomolecules and ionize them without disrupting their structure. To do this, we will have to use the softest possible ionization.
The instrument will use the electrospray technique to create charged molecules of solvent focused in a beam about 100 nanometers in diameter. As the beam of charged solvent molecules hits the surface of the biological sample, it will ablate molecules from samples surface and move them into the surrounding vacuum environment of the SEM imaging chamber. The molecules will be charged and volatilized by the impinging nano-electrospray at a precisely tuned energy input, and then be extracted for immediate analysis in the mass spectrometer.
In parallel, an electron beam that can be focused down to 10 nanometers will be scanning and profiling the structures and features of the surfaces from which the molecules are being extracted by the electrospray. Correlating data from the two beams will provide information about the chemical makeup of the cell surface, the organelles and intracellular structures being imaged topologically.
Using multiple passes of the two beams will allow removal of layers from the samples, allowing internal structures to be mapped. Fedorov said producing each image will require several minutes, the timing limited by the speed at which the samples can be moved into the mass spectrometer and analyzed.
The characterization will be done in an electron microscope vacuum chamber, with the samples on a stage that can be moved in three dimensions. The stage will also provide cooling and hydration for the living samples during the imaging process.
The idea for the instrument came from a discussion with Andrs Garca, Regents' Professor in the George Woodruff School of Mechanical Engineering and executive director of Georgia Techs Institute for Bioengineering and Bioscience. Garca studies pancreatic cells as part of research into diabetes, and plans to use information from the new technique to develop a better understanding of the disease.
BeamMap is an exciting technological advance that will provide unparalleled biological and chemical information with high spatial resolution to analyze complex biological processes, Garca said. We are very much looking forward to applying it to understand diabetes disease progression.
This research was supported by Award 1R01GM138802-01 from the National Institute of General Medical Sciences (NIGMS) of the National Institutes of Health. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the NIH.
Research NewsGeorgia Institute of Technology177 North AvenueAtlanta, Georgia 30332-0181 USA
Media Relations Contact: John Toon (404-894-6986) (jtoon@gatech.edu)
Writer: John Toon
See the original post here:
New Instrument Will Uncover Structure and Chemical Composition on Sub-Cell Scale - Georgia Tech News Center
- Nanomedicine: Principles, Properties, and Regulatory Issues - October 6th, 2024
- Center for Nanomedicine - Johns Hopkins Medicine - October 6th, 2024
- Delivering the power of nanomedicine to patients today - October 6th, 2024
- Emerging Applications of Nanotechnology in Healthcare and Medicine - October 6th, 2024
- Tiny skin-stabbing stars designed to get meds through the epidermis - October 6th, 2024
- Inhibition of HIV-1 infection with curcumin conjugated PEG-citrate ... - October 6th, 2024
- Montgomery County, Kansas - Kansas Historical Society - October 6th, 2024
- The Nanomedicine Revolution - PMC - National Center for Biotechnology ... - October 6th, 2024
- Fawn Creek township, Montgomery County, Kansas (KS) detailed profile - October 6th, 2024
- Fawn Creek, Montgomery County, Kansas Population and Demographics - October 6th, 2024
- An Introduction to Nanomedicine - AZoNano - October 6th, 2024
- Nanomedicine Market is expected to show growth from 2024 to 2030, reported by Maximize Market Research - openPR - October 6th, 2024
- Oro Rx Healthcare LLP Unveils Oroceuticals: The Next-Gen Nutrition Delivery Tech - Hindustan Times - October 27th, 2023
- Leapfrogging as pharma leader of the worldNational Policy on Research and Development and Innovation in Pharma-MedTech Sector in India - The Sangai... - October 27th, 2023
- What will Indian healthcare look like in 2047? Robotics, AI, biotech will shape the future - The Economic Times - February 16th, 2023
- Going Beyond Target Or Mechanism Of Disease: Disruptive Innovation In Drug Delivery Systems - Forbes - September 12th, 2022
- Nanomedicine Market Size, Share, Types, Products, Trends, Growth, Applications and Forecast 2022 to 2028 - Digital Journal - September 12th, 2022
- Nano-preterm infants may not benefit from noninvasive versus invasive ventilation at birth - University of Alabama at Birmingham - September 12th, 2022
- Juan De Borbon - Introducing Cutting-Edge Techniques To The Healthcare Industry - CEOWORLD magazine - September 12th, 2022
- Organic thin-film sensors for light-source analysis and anti-counterfeiting applications - Nanowerk - September 12th, 2022
- Whole Exome Sequencing Market Projected to Reach CAGR of 19.0% Forecast by 2029, Global Trends, Size, Share, Growth, Future Scope and Key Player... - September 12th, 2022
- Another 'Dr. Copper' - MINING.COM - MINING.com - September 12th, 2022
- Artemisinin Combination Therapy Market Insights and Emerging Trends by 2027 - BioSpace - August 19th, 2022
- NASEM Recommends That EPA Conduct Ecological Risk Assessment of UV Filters Found in Sunscreen, Including Titanium Oxide and Zinc Oxide - JD Supra - August 19th, 2022
- Fast and noninvasive electronic nose for sniffing out COVID-19 based on exhaled breath-print recognition | npj Digital Medicine - Nature.com - August 19th, 2022
- Applications in Chronic Wound Healing | IJN - Dove Medical Press - July 25th, 2022
- Fundamental Knowledge on Nanobots - Bio-IT World - July 25th, 2022
- How different cancer cells respond to drug-delivering nanoparticles - MIT News - July 25th, 2022
- Nanorobots Market to close to USD 19576.43 million with CAGR of 12.23% during the forecast period to 2029 - Digital Journal - July 25th, 2022
- Microscopic Robots Made from White Blood Cells Could Treat and Prevent Life-Threatening Illnesses - Good News Network - July 25th, 2022
- Nano Therapy Market 2022 Growth Is Expected To See Development Trends and Challenges to 2030 This Is Ardee - This Is Ardee - July 25th, 2022
- Artificial Intelligence (AI), Cloud Computing, 5G, And Nanotech In Healthcare: How Organizations Are Preparing Best For The Future - Inventiva - July 25th, 2022
- Potassium Channels as a Target for Cancer Therapy & Research | OTT - Dove Medical Press - July 25th, 2022
- How can Nanotechnology be Used to Reverse Skin Aging? - AZoNano - May 20th, 2022
- Should Nanomaterial Synthesis Rely on Automation? - AZoNano - May 20th, 2022
- Fabrication Methods of Ceramic Nanoparticles - AZoNano - May 20th, 2022
- Explained: What are nanobots and how they can be used to help clean teeth? - Firstpost - May 20th, 2022
- Understanding the Health Risks of Graphene - AZoNano - May 20th, 2022
- Prevalence and predictors of SARS-CoV-2 | IDR - Dove Medical Press - May 20th, 2022
- Patches and robotic pills may one day replace injections - Science News for Students - May 20th, 2022
- Nanotechnology in the Nutricosmetics Industry - AZoNano - May 20th, 2022
- Nanomedicine: Nanotechnology, Biology and Medicine ... - December 22nd, 2021
- Frontiers | Nanomedicine: Principles, Properties, and ... - December 22nd, 2021
- Nanotechnology In Medicine: Huge Potential, But What Are ... - December 22nd, 2021
- Verseon Praised for Disruptive Approach to Physics- and AI-Based Drug Discovery - Digital Journal - December 22nd, 2021
- Nanotech opens up job options in variety of industries - BL on Campus - August 17th, 2021
- Homeopathic remedies that cattle farmers can use - Thats Farming - August 17th, 2021
- Healthcare Nanotechnology (Nanomedicine) Market Trend, Technology Innovations and Growth Prediction 2021-2027 The Manomet Current - The Manomet... - August 17th, 2021
- Regenerative Medicine Market Size Worth $57.08 Billion By 2027: Grand View Research, Inc. - PRNewswire - August 17th, 2021
- Nanotechnology Market Share, Industry Size, Leading Companies Outlook, Upcoming Challenges and Opportunities till 2028 - The Market Writeuo - The... - August 17th, 2021
- Global Nanomedicine Market is Expected to Grow at an Impressive CAGR by 2028 The Manomet Current - The Manomet Current - August 17th, 2021
- Complementary Protection May Be at Hand With a COVID-19-Preventing Nasal Spray - Newsweek - August 17th, 2021
- Nanorobotics Market By Player, Region, Type, Application And Sales Channel, Regions, Type and Application, Revenue Market Forecast to 2028 - Digital... - August 17th, 2021
- MagForce AG announces results of 2021 Annual General Meeting and changes to the Supervisory Board - Yahoo Eurosport UK - August 17th, 2021
- McMaster University researchers awarded more than $3M in Federal funds for projects - insauga.com - August 17th, 2021
- Global NANOTECHNOLOGY IN MEDICAL APPLICATIONS Statistics, CAGR, Outlook, and Covid-19 Impact 2016 The Bisouv Network - The Bisouv Network - February 14th, 2021
- Nanotechnology in Medical Market Demand Analysis To 2026 Lead By-Smith and Nephew, Novartis, Merck, Mitsui Chemicals, Amgen, Cytimmune KSU | The... - February 14th, 2021
- NanoViricides's Broad-Spectrum Antiviral Drug Candidate for the Treatment of COVID-19 Infections was Well Tolerated in GLP and non-GLP Animal Safety... - February 9th, 2021
- Nanorobots In Blood Market Top-Vendor And Industry Analysis By End-User Segments Till 2028 | Aries Chemical, GE Water & Process Technologies KSU... - February 9th, 2021
- Precision NanoSystems Receives Contribution from the Government of Canada to Build RNA Medicine Biomanufacturing Centre - PRNewswire - February 3rd, 2021
- Vaccine Production in BC's Future - AM 1150 (iHeartRadio) - February 3rd, 2021
- New facility to be built in Vancouver will produce 240 million vaccine doses annually | Urbanized - Daily Hive - February 3rd, 2021
- Faster tracking of treatment responses - MIT News - February 3rd, 2021
- NANOBIOTIX Announces First Patient Injected With NBTXR3 in Esophageal Cancer - Business Wire - February 3rd, 2021
- Johns Hopkins Department of Otolaryngology-Head and Neck Surgery receives $15M contribution - The Hub at Johns Hopkins - January 9th, 2021
- COVID-19 Impact on Nanomedicine Market Size, Latest Trends, Growth and Share 2020 to 2026| Clinical Cardiology, Urology, Genetics, Orthopedics -... - January 9th, 2021
- Nanomedicine Market: Industry Analysis and forecast 2026: By Modality, Diseases, Application and Region - LionLowdown - January 9th, 2021
- Clene Nanomedicine Presents Blinded Interim Results from RESCUE-ALS Phase 2 Study at the 31st International Symposium on ALS/MNDResults provide... - December 16th, 2020
- Global Nanomedicine market 2020- Industry Overview, Global Trends, Market Analysis, CAGR Values and Country Level Demand To Forecast by 2027 -... - December 16th, 2020
- NHMRC awards Griffith University $4.5 million in research funding - Griffith News - December 16th, 2020
- Global Nanomedicine Market Analysis and Forecast to 2025 by Cancer Detection, Monitoring Therapy & Disease Detection - ResearchAndMarkets.com -... - December 10th, 2020
- Medical Physics Market: Growing Incidence of Chronic Diseases in Developing Regions to Drive the Market - BioSpace - December 10th, 2020
- Joseph DeSimone wins Harvey Prize in Science and Technology | The Dish - Stanford University News - December 10th, 2020
- Cancer Nanomedicine Market to Build Excessive Revenue at Healthy Growth rate at 12.50% up to 2027 - PharmiWeb.com - December 4th, 2020
- Sensing the body at all scales - MIT News - December 4th, 2020
- Healthcare Nanotechnology (Nanomedicine) Market Research Report with Revenue, Gross Margin, Market Share and Future Prospects till 2026 - The Market... - December 4th, 2020
- Technion Harvey prize in science awarded to Israeli, American professors - The Jerusalem Post - December 4th, 2020
- Cancer Nanomedicine Market Size, Comprehensive Analysis, Development Strategy, Future Plans and Industry Growth with High CAGR by Forecast 2026 |... - December 4th, 2020
- Visualization nanozyme based on tumor microenvironment unlocking for intensive combination therapy of breast cancer - Science Advances - December 4th, 2020
- Nanomedicine Market 2019 Global Outlook, Research, Trends and Forecast to 2025 - The Haitian-Caribbean News Network - December 4th, 2020