Methylation clocks are far and away the most accurate markers of a persons age, and so are a promising tool for evaluating anti-aging interventions, but they are a bit of a black box. We know from statistics that certain places on chromosomes become steadily methylated (or demethylated) with age, but we often dont know what effect that has on expression of particular genes.
For the first time, a clock has been devised based on proteins in the blood that is comparable in accuracy to the best methylation clocks. This has the advantage of being downstream of epigenetics, so it is less of a black box. What can we learn from the proteins that are increased (and decreased) with age?
Ive written often and enthusiastically about the utility of methylation clocks for evaluation of anti-aging interventions [blog, blog, blog, journal article]. This technology offers a way to promptly identify small age-reversal successes (perhaps not in individuals, but averaged over a cohort of ~50 to 100 subjects). Before these tests were available, we had no choice but to wait usually 10 years or more for enough experimental subjects to die that we could be sure the intervention we were evaluating affected life expectancy. (This is the plan of the worthy but ridiculously expensive TAME trial promoted by Nir Barzilai.)
Can we rely on methylation clocks to evaluate anti-aging interventions? If we succeed in setting back the methylation clocks, are we actually making the body younger? The answer depends critically on the relationship of methylation to aging.
The majority view derives from the belief that aging is a passive process, while methylation (epigenetics) is a process under tight evolutionary control. The majority holds that methylation changes with age are a response to the damage that accrues unavoidably, and the changes in gene expression that result are actually the bodys best effort to fight back against this damage.
My view is with the minority. Aging is a programmed process (evolved, I believe, for the purpose of demographic stability). Changes in methylation and epigenetic changes generally are the primary cause of aging. Far from being a response to damage, epigenetic changes with age invoke the very signals that cause damage (e.g. inflammation) and simultaneously cut back our repair processes (e.g., detoxification and autophagy).
If you hold with the majority, then setting back the methylation clock (with drugs or gene therapies or ) could actually shorten our lifespans. Setting back the methylation clock means thwarting the bodys efforts to rescue itself. We should not use methylation clocks as a measure of whether a particular technology has achieved rejuvenation.
If you hold with the minority, then setting back the methylation clock is an indication that whatever we have done has struck at the root cause of aging, reversing the epigenetic changes that are the primary driver of senescence.
(In the scientific community of aging, there are a few of us speaking directly about the primary importance of epigenetics [Horvath, Barja, Johnson, Rando, Mitteldorf ], and many more who are tacitly accepting the idea that setting back the methylation clock is a good thing. Most scientists remain skeptical and are not embracing the methylation clocks as a reliable gauge for anti-aging technologies [Han, West].)
The battle lines are not clearly drawn, and the basic conflict in beliefs is not yet out in the open. But resolution of this issue is a major next step for geriatric research. I say this because it is likely there is some truth on each side. Most of the epigenetic changes with age are drivers of senescence (Type 1), but some are the bodys attempts to rescue itself from damage (Type 2). Each of the methylation clocks that are now available averages hundreds of methylation sites, and it is likely that they are a mixture of sites that play these two opposing roles. [background in my October blog]
So the urgent need is for a clock that is constructed exclusively of drivers of aging (Type 1), so that we can use it with confidence as a measure of whether an intervention that we are testing will extend lifespan.
Can we design experiments with the methylation clock that would tell us which of the age-related methylation sites are Type 1 and which are Type 2? Its hard to know how to begin, because we dont yet have a way to do controlled experiments. What we want is a molecular tool that will methylate a selected target CpG site while leaving everything else untouched, and we dont have that yet. (It may become feasible as CRISPR technology improves.) Based on present technology, the only way to tell for sure is to compare how different interventions affect the methylation clocks in thousands of experimental subjects, and then wait and wait and wait and see how long these subjects live. LEF is undertaking this ambitious plan, but it will be decades before it bears fruit.
Clocks based on the proteome
This month, a new clock came out of the Stanford lab of Tony Wyss-Coray that is based on measuring levels of proteins in blood plasma, rather than patterns of methylation on chromosomes. It is not the first proteomic clock, but it is the most accurate. For some of the proteins that feature prominently in the clock, we have a good understanding of their metabolic function, and for the most part they vindicate my belief that epigenetic changes are predominantly drivers of senescence rather than protective responses to damage.
Wyss-Coray was one of the people at Stanford responsible for the modern wave of research in hetrochronic parabiosis. In a series of experiments, they surgically joined a young mouse to an old mouse, such that they shared a blood supply. The old mouse got younger and the young mouse got older, though both suffered early death from their cruel and macabre condition (excuse my editorial license). Later, it was found that chemical constituents of the blood plasma (proteins and RNAs but not whole cells) were responsible for moderating the effective ages of the animals. As part of the current study, Wyss-Coray compared the proteins in the new (human) proteome clock with the proteins that were altered in the (mouse) parabiosis experiments, and found a large overlap. This may be the best evidence we have that the proteome changes are predominantly Type 1, causal factors of senescence. (Here is a very recent BioRxiv preprint of a UCSD study relating epigenetic clocks in people to mice and dogs.)
Different proteins change at different ages
The Stanford group notes that some of the proteins in their clock increase in the blood with age and some decrease. Typically, the changes do not occur uniformly over the lifespan. Though none of the curves is U-shaped (on-off-on, or off-on-off), some proteins do most of their changing early in life, and some later.
The group identifies three life periods and three groups of proteins: mid-30s, ~60yo, and late 70s.
At young age (34 years), we observed a downregulation of proteins involved instructural pathways, such as the extracellular matrix. These changes were reversed in middle and old age (60 and 78 years, respectively). At age 60 years, we found a prominent role of hormonal activity, binding functions and blood pathways. At age 78 years, key processes still included blood pathways but also bone morphogenetic protein signaling, which is involved in numerous cellular functions. Pathways changing with age by linear modeling overlapped most strongly with the crests at age 34 and 60 years (Fig below), indicating that dramatic changes occurring in the elderly might be masked in linear modeling by more subtle changes at earlier ages. Altogether, these results showed that aging is a dynamic, non-linear process characterized by waves of changes in plasma proteins that reflect complex shifts in biological processes.
This paragraph doesnt tell all we need to know to decide which changes are Type 1 and which Type 2. There is more information in their Supplementary Tables 5 and 14. I dont have the expertise in biochemistry or metabolics to extract the information, but if you do and you are reading this, I hope you will contact me.
Intriguingly, the three age-related crests were largely composed of different proteins
For example, the top four proteins changing at age 78 are
With Google searches, what I could find about all of these was that they have been previously identified as CV risk factors, and they all are increasing rapidly at age 78. The third one (SMOC) is described as binding calcium, which presumably affects blood clotting. All are clearly Type 1 an important bottom line but it would be nice to know more about their metabolic roles. Caveat: the technology used to measure these proteins comes from SomaLogic, and their mission was to look for proteins that could signal CV risk.
I could find nothing about numbers 5 through 8
It is interesting to me that almost all the proteins identified as changing rapidly at age 78 are increasing. The few I have identified seem to be increasing in a way that makes us more vulnerable to CV disease. It is natural to interpret this phenomenon as programmed aging.
In contrast, a few of the fastest-changing proteins at age 60 are decreasing (though most are increasing). The one decreasing most significantly is identified as SERP a2-Antiplasmin, which seems to me to be involved in autophagy, but Im out of my depth here. At age 60, the proteins increasing most rapidly is PTN.3045.72.2, another CV risk factor, and GDF15.
GDF15 deserves a story of its own. The authors identify it as the single most useful protein for their clock, increasing monotonically across the age span. It is described sketchily in Wikipedia as having a role in both inflammation and apoptosis, and it has been identified as a powerful indicator of heart disease. My guess is that it is mostly Type 1, but that it also plays a role in repair. GDF15 is too central a player to be purely an agent of self-destruction.
Why not make use of different proteins at different ages in constructing the clock?
The implication is that a more accurate clock can be constructed if it incorporates different information at different life stages. Age calculation should be based on different sets of proteins, depending on how old the subject is. (You might object that you have to know how old the subject is in order to know which proteins to emphasize, but this problem is easy to overcome in practice, by calculating age in two stages, a rough cut using all proteins, and then a fine tuning based on proteins that change most rapidly around that age.) In my reading of the paper, the Stanford team prominently notes that patterns of change roll along in waves through the lifetime, but then they fail to incorporate this information into their clock algorithm, which is independent of age. This seems to be a lost opportunity. The methylation clocks, too, might gain accuracy by this approach. (All the Horvath clocks use the same collection of CpG sites for young and old alike.)
Maybe I am misreading the text about how the clock was constructed, and maybe the authors have already optimized their algorithm with different proteins at different ages. The text in question is
To determine whether the plasma proteome could predict biological age, we used glmnet and fitted a LASSO model (alpha= 1; 100 lambda tested; lamda.min as the shrinkage variable was estimated after tenfold cross-validation). Input variables consisted of z-scaled logtransformed RFUs and sex information. [ref]
In any case, I know that none of the Horvath clocks have been derived based on different CpG sites at different ages, and this suggests an opportunity for a potential improvement in accuracy.
Comparison to Predecessor
Last year, this paper was published by a group at NIH, describing their own study of how the human proteome changes with age. Their sample was smaller, but they also found that aging is characterized more by increasing plasma proteins than by proteins lost with age. They also singled out GDF15 as their most prominent finding. They didnt look for different proteins at different ages, as the Stanford group did. The functional pathways enriched in the 217 ageassociated proteins included blood coagulation, chemokine and inflammatory pathways, axon guidance, peptidase activity, and apoptosis. The clock they constructed showed correlation with age r=0.94, compared to r=0.97 for the new Stanford clock. (The difference between 0.94 and 0.97 implies that the Stanford clock is twice as accurate (half the uncertainty)).
The bottom line
If proteome clocks eventually replace methylome clocks, the process will take several years. Proteome lab procedures are more complicated and more expensive than technology for measuring methylation. More to the point, the Stanford results must be replicated by independent labs, and must be stress-tested and cross-checked against other markers of aging. For the next few years, we have more confidence in the methylation clocks, which have been through this process and found to be solid.
But starting immediately, we can use the specifics of the proteome clock to engineer anti-aging remedies. The plasma proteome is directly related to the metabolism, and it can be altered with intravenous transfusions. (We cannot yet directly directly modify the methylome.) So lets apply the results of the proteome clock. Most of the significant changes with age involve increases in certain proteins, so we will have to either remove these from the blood or infuse antibodies designed to bind to them and neutralize them. The infusions will probably have to be carefully titrated so as not to overdo it.
The large and crucial question hanging over the clock technologies (methylome and proteome) is which of these changes are drivers of senescence and which are protective responses to damage. The new proteome data provides reassurance that the predominance are of Type 1 (drivers of aging), and we can safely use them to gauge the effectiveness of our anti-aging interventions. But this issue is central, and deserves explicit attention. Every methylation site and every plasma protein that we use to evaluate new technologies should be individually validated as Type 1.
Visit link:
New Aging Clock based on Proteins in the Blood - ScienceBlog.com
- Diet or genetics: Which has a greater impact on lifespan? - India Today - October 22nd, 2024
- Dietary restriction or good genes: new study tries to unpick which has a greater impact on lifespan - The Conversation - October 22nd, 2024
- Comparison of blood parameters in two genetically different groups of horses for functional longevity in show jumping - Frontiers - October 22nd, 2024
- Dietary restriction impacts health and lifespan of genetically diverse mice - Nature.com - October 14th, 2024
- Study: Eating Less Could Significantly Improve LifespanIf You Have Good Genes - NTD - October 14th, 2024
- New Research Reveals Genetic Tweaks to Boost Oat Nutrition and Longevity - India Education Diary - October 14th, 2024
- imaware acquires binx health’s consumer testing business, becoming a leader in STI health screening - December 5th, 2023
- Catalyst Pharmaceuticals Announces Appointment of Michael W. Kalb as Chief Financial Officer and Other Executive Promotions - December 5th, 2023
- CorMedix Inc. Announces Partnership With The Leapfrog Group - December 5th, 2023
- Sunshine Biopharma Moves Principal Office to New York City - December 5th, 2023
- Viracta Therapeutics Announces Interim Data from Phase 1b/2 Clinical Trial of Nana-val in Patients with Epstein-Barr Virus-Positive Solid Tumors that... - December 5th, 2023
- SELLAS Life Sciences Announces Positive Recommendation from REGAL Independent Data Monitoring Committee of Galinpepimut-S in Acute Myeloid Leukemia - December 5th, 2023
- Inhibikase Therapeutics Granted Pre-NDA Meeting with the FDA for IkT-001Pro - December 5th, 2023
- NeuroStar TMS Receives Expanded Regulatory Approval in Japan - December 5th, 2023
- Harvard Apparatus Regenerative Technology and Renowned Professor/Physician Establish a Collaboration to Repair and Regenerate the Uterus - December 5th, 2023
- Scilex Holding Company announces the addition of ZTlido® (lidocaine topical system) as a preferred agent to the Medicaid Preferred Drug List (PDL) of... - December 5th, 2023
- GT Biopharma Announces IND Submission for GTB-3650 for Treatment of CD33+ Leukemia - December 5th, 2023
- Taking years off your age? This Israeli expert says its all up to you - Haaretz - November 7th, 2022
- Joris Deelen to present at the 9th Aging Research & Drug Discovery Meeting 2022 - EurekAlert - April 2nd, 2022
- LeBron James Can Become The GOAT: He Surpassed Michael Jordan In Almost Every Category Except Championships, MVP Awards And Finals MVPs - Fadeaway... - April 2nd, 2022
- Herd genetics begins with the bull | Agriculture | victoriaadvocate.com - Victoria Advocate - April 2nd, 2022
- InsideTracker x Apple Watch, Better Paired Together to Deliver Personalized Health Insights, Science-Backed Guidance for Human Optimization - PR... - April 2nd, 2022
- 10 Foods That Are Awesome When It Comes To Breast Health - The List - April 2nd, 2022
- The secret to making your brain work better - Financial Times - April 2nd, 2022
- Irish study finds eight novel ways to live longer (it's not all diet and genes) - The Irish Times - January 17th, 2022
- Independent Seed Companies Aspire for Longevity and Differentiation - Seed World - January 17th, 2022
- The benefits of intermittent fasting the right way - BBC News - January 17th, 2022
- Lifeist Subsidiary Mikra Cellular Sciences to Launch First Product CELLF to Combat Brain Fog and Unlock Healthy Aging, Announces U.S. Patent... - December 8th, 2021
- Longevity and anti-aging research: Prime time for an ... - November 21st, 2021
- North American South Devon Association - November 21st, 2021
- Can drinking red wine ever be good for us? - BBC Future - November 21st, 2021
- Gero scientists found a way to break the limi | EurekAlert! - November 21st, 2021
- Embark sponsors The National Dog Show, in commitment to improving life and longevity of all dogs - PRNewswire - November 21st, 2021
- In most ways, women age better than men and live longer. Scientists are trying to figure out why. - The Philadelphia Inquirer - November 21st, 2021
- Inherited Metabolic Disorders Market Study | Know the prominent factors that will help in reshaping the market growth - BioSpace - November 21st, 2021
- Why Hangovers Get Worse as You Age, and What to Do About It - Livestrong - November 21st, 2021
- Addicted to coffee? Heres how it can be harmful to your health - Khaleej Times - November 21st, 2021
- Animal Expert Shares 5 Things That Will Help Your Dog Live a Longer, Healthier Life - ScienceAlert - August 30th, 2021
- The Bat Elixir: Geneticists Suspect that the Flying Mammal Holds the Key to Extended Healthy Life | The Weather Channel - Articles from The Weather... - August 30th, 2021
- Greenland Sharks Live Hundreds of Years; Can These Sharks Teach Humans How to Live Long? - Science Times - August 30th, 2021
- 9 Healthy Eating Habits to Live Over A Century, Say Dietitians | Eat This Not That - Eat This, Not That - August 30th, 2021
- 95 and Counting - Arlington Connection - June 24th, 2021
- What Lifestyle Decisions Will Help You Become a "Cognitive Super-Ager"? - InsideHook - June 24th, 2021
- Wentworth weight gains steal the Wagyu show - Queensland Country Life - June 24th, 2021
- People on the Move: Appointments, retirements, achievements - Beef Central - June 24th, 2021
- Pandemic Lessons in Improving the Medical System - The New York Times - February 14th, 2021
- The Role of Hormones in Immunocompetence - Anti Aging News - February 14th, 2021
- Do Short People Live Longer? What We Know - Healthline - February 1st, 2021
- Hereford Thrives In Uncertain Year - Drovers Magazine - February 1st, 2021
- Women's Menstrual Cycles Tied to Moon's Phases - HealthDay News - February 1st, 2021
- Is The Full Moon Affecting Your Sleep and Flow? - Longevity LIVE - Longevity LIVE - February 1st, 2021
- Calico Purring Right Along With Life Extension Research - Nanalyze - February 1st, 2021
- Dr. William Kelley inducted into IAOTPs Hall of Fame - PRUnderground - February 1st, 2021
- Baptist Health of Northeast Florida Joins Forces with Blue Zones to Begin Building a Plan for Well-Being Transformation in Jacksonville - PR Web - February 1st, 2021
- Is longevity determined by genetics?: MedlinePlus Genetics - January 25th, 2021
- Optogenetics Shows How the Microbiome Affects Longevity - January 25th, 2021
- 9 Factors That Affect Longevity | ThinkAdvisor - January 25th, 2021
- Hereford thrives in an uncertain year | Farm Forum | aberdeennews.com - AberdeenNews.com - January 25th, 2021
- Njonjo, Moody Awori: Why these wazee are still up and running - The Standard - January 25th, 2021
- Son reported father to FBI weeks before he reportedly stormed the Capitol - Yahoo News - January 25th, 2021
- Study of More Than 1 Million People Finds Intriguing Link Between Iron Levels And Lifespan - ScienceAlert - January 5th, 2021
- Hereford Thrives in an Uncertain Year - AG INFORMATION NETWORK OF THE WEST - AGInfo Ag Information Network Of The West - January 5th, 2021
- Covid-19 Update Precision Medicine Software market: Poised to Garner Maximum Revenues by 2027 with major key players in the market Syapse, Allscripts,... - January 5th, 2021
- The New Anti-Ageing: How the pandemic unlocked new ways to lower your biological age - Telegraph.co.uk - January 5th, 2021
- A Good Age: Auld lang syne to the eldest who inspired and entertained us - The Patriot Ledger - January 5th, 2021
- Survival Of The Kindest: A New Mantra To Rebuild The Global Economy - Forbes - January 5th, 2021
- The Nashville bombing suspect sent packages to people across the country containing typed conspiracy theories about September 11 and lizard people,... - January 5th, 2021
- How does the human body react to being in space? - Sciworthy - December 24th, 2020
- A century and counting: Ardmore woman turned 100 on Friday - Daily Ardmoreite - December 24th, 2020
- The Adrenomyeloneuropathy Treatment Market to grow on an emphatic note from 2019 to 2029 - PharmiWeb.com - December 24th, 2020
- Getting to the root of why hair goes gray - messenger-inquirer - December 24th, 2020
- Which countries have the highest life expectancy in Europe? - World Economic Forum - December 17th, 2020
- New Research Aims To Increase Longevity Of Bumblebee Hives For NZ Growers - Scoop.co.nz - December 17th, 2020
- The 'Wondrous Map': Charting of the Human Genome, 20 Years Later - Medscape - December 17th, 2020
- Size Matters, And Other Lessons From Medical Genetics - Genomes Unzipped - December 17th, 2020
- Intermittent Fasting Not Working? Here's What Could Be Going Wrong, By an RD - The Beet - December 17th, 2020
- Hair loss treatment: Sandalwood and sandalore are both effective in increasing hair growth - Express - December 17th, 2020
- These are the signs and symptoms of dementia - and the stages explained - Yorkshire Post - December 17th, 2020
- Manahawkin Woman 'Scales' 100 Years With Service, Strength and Determination - The SandPaper - December 17th, 2020
- 15 Things To Stop Doing If You Want To Live To 100 - Longevity LIVE - Longevity LIVE - December 4th, 2020