Nanomedicine, branch of medicine that seeks to apply nanotechnologythat is, the manipulation and manufacture of materials and devices that are smaller than 1 nanometre [0.0000001 cm] in sizeto the prevention of disease and to imaging, diagnosis, monitoring, treatment, repair, and regeneration of biological systems.
Although nanomedicine remains in its early stages, a number of nanomedical applications have been developed. Research thus far has focused on the development of biosensors to aid in diagnostics and vehicles to administer vaccines, medications, and genetic therapy, including the development of nanocapsules to aid in cancer treatment.
An offshoot of nanotechnology, nanomedicine is an emerging field and had garnered interest as a site for global research and development, which gives the field academic and commercial legitimacy. Funding for nanomedicine research comes both from public and private sources, and the leading investors are the United States, the United Kingdom, Germany, and Japan. In terms of the volume of nanomedicine research, these countries are joined by China, France, India, Brazil, Russia, and India.
Working at the molecular-size scale, nanomedicine is animated with promises of the seamless integration of biology and technology, the eradication of disease through personalized medicine, targeted drug delivery, regenerative medicine, as well as nanomachinery that can substitute portions of cells. Although many of these visions may not come to fruition, some nanomedicine applications have become reality, with the potential to radically transform the practice of medicine, as well as current understandings of the health, disease, and biologyissues that are of vital importance for contemporary societies. The fields global market share totalled some $78 billion dollars in 2012, driven by technological advancements. By the end of the decade, the market is expected to grow to nearly $200 billion.
Nanomedicine derives much of its rhetorical, technological, and scientific strength from the scale on which it operates (1 to 100 nanometers), the size of molecules and biochemical functions. The term nanomedicine emerged in 1999, the year when American scientist Robert A. Freitas Jr. published Nanomedicine: Basic Capabilities, the first of two volumes he dedicated to the subject.
Extending American scientist K. Eric Drexlers vision of molecular assemblers with respect to nanotechnology, nanomedicine was depicted as facilitating the creation of nanobot devices (nanoscale-sized automatons) that would navigate the human body searching for and clearing disease. Although much of this compelling imagery still remains unrealized, it underscores the underlying vision of doctors being able to search and destroy diseased cells, or of nanomachines that substitute biological parts, which still drives portrayals of the field. Such illustrations remain integral to the field, being used by scientists, funding agencies, and the media alike.
Attesting to the fields actuality are numerous dedicated scientific and industry-oriented conferences, peer-reviewed scientific journals, professional societies, and a growing number of companies. However, nanomedicines identity, scope, and goals are a matter of controversy. In 2006, for instance, the prestigious journal Nature Materials discussed the ongoing struggle of policy makers to understand if nanomedicine is a rhetorical issue or a solution to a real problem. This ambivalence is reflected in the numerous definitions of nanomedicine that can be found in scientific literature, that range from complicated drugs to the above mentioned nanobots. Despite the lack of a shared definition, there is a general agreement that nanomedicine entails the application of nanotechnology in medicine and that it will profoundly impact medical practice.
A further topic of debate is nanomedicines genealogy, in particular its connections to molecular medicine and nanotechnology. The case of nanotechnology is exemplary: on one hand, its potentialin terms of science but also in regard to funding and recognitionis often mobilized by nanomedicine proponents; on the other, there is an attempt to distance nanomedicine from nanotechnology, for fear of being damaged by the perceived hype that surrounds it. The push is then for nanomedicine to emerge not as a subdiscipline of nanotechnology but as a parallel field.
Although nanomedicine research and development is actively pursued in numerous countries, the United States, the EU (particularly Germany), and Japan have made significant contributions from the fields outset. This is reflected both in the number of articles published and in that of patents filed, both of which have grown exponentially since 2004. By 2012, however, nanomedicine research in China grew with respect to publications in the field, and the country ranked second only to the United States in the number of research articles published.
In 2004, two U.S. funding agenciesthe National Institutes of Health and the National Cancer Instituteidentified nanomedicine as a priority research area allocating $144 million and $80 million, respectively, to its study. In the EU meanwhile, public granting institutions did not formally recognize nanomedicine as a field, providing instead funding for research that falls under the headers of nanotechnology and health. Such lack of coordination had been the target of critiques by the European Science Foundation (ESF), warning that it would result in lost medical benefits. In spite of this, the EU ranked first in number of nanomedicine articles published and in 2007 the Seventh Framework Programme (FP7) allocated 250 million to nanomedicine research. Such work has also been heavily funded by the private sector. A study led by the European Science and Technology Observatory found that over 200 European companies were researching and developing nanomedicine applications, many of which were coordinating their efforts.
Much of nanomedicine research is application oriented, emphasizing methods to transfer it from the laboratory to the bedside. In 2005 the ESF pointed to four main subfields in nanomedicine research: analytical tools and nanoimaging, nanomaterials and nanodevices, novel therapeutics and drug delivery systems, and clinical, regulatory, and toxicological issues. Research in analytical tools and nanoimaging seeks to develop noninvasive, reliable, cheap, and highly sensitive tools for in vivo diagnosis and visualization. The ultimate goal is to create fully functional mobile sensors that can be remotely controlled to conduct in vivo, real-time analysis. Research on nanomaterials and nanodevices aims to improve the biocompatibility and mechanical properties of biomaterials used in medicine, so as to create safer implants, substitute damaged cell parts, or stimulate cell growth for tissue engineering and regeneration, to name a few. Work in novel therapeutics and drug delivery systems strives to develop and design nanoparticles and nanostructures that are noninvasive and can target specific diseases, as well as cross biological barriers. Allied with very precise means for diagnosis, these drug delivery systems would enable equally precise site-specific therapeutics and fewer side effects. The area of drug delivery accounts for a large portion of nanomedicines scientific publications.
Finally, the subfield of clinical, regulatory, and toxicological issues lumps together research that examines the field as a whole. Questions of safety and toxicology are prevalent, an issue that is all the more important given that nanomedicine entails introducing newly engineered nanoscale particles, materials, and devices into the human body. Regulatory issues revolve around the management of this newness, with some defending the need for new regulation, and others the ability of systems to deal with it. This subfield should also include other research by social scientists and humanists, namely on the ethics of nanomedicine.
Combined, these subfields build a case for preventive medicine and personalized medicine. Building upon genomics, personalized medicine envisions the possibility of individually tailored diagnostics and therapeutics. Preventive medicine takes this notion further, conjuring the possibility of treating a disease before it manifests itself. If realized, such shifts would have radical impacts on understandings of health, embodiment, and personhood. Questions remain concerning the cost and accessibility of nanomedicine and also about the consequences of diagnostics based on risk propensity or that lack a cure.
More:
Nanomedicine | medicine | Britannica.com
- what is nanomedicine The British Society for Nanomedicine - November 16th, 2024
- Nanomedicine: Principles, Properties, and Regulatory Issues - October 6th, 2024
- Center for Nanomedicine - Johns Hopkins Medicine - October 6th, 2024
- Delivering the power of nanomedicine to patients today - October 6th, 2024
- Emerging Applications of Nanotechnology in Healthcare and Medicine - October 6th, 2024
- Tiny skin-stabbing stars designed to get meds through the epidermis - October 6th, 2024
- Inhibition of HIV-1 infection with curcumin conjugated PEG-citrate ... - October 6th, 2024
- Montgomery County, Kansas - Kansas Historical Society - October 6th, 2024
- The Nanomedicine Revolution - PMC - National Center for Biotechnology ... - October 6th, 2024
- Fawn Creek township, Montgomery County, Kansas (KS) detailed profile - October 6th, 2024
- Fawn Creek, Montgomery County, Kansas Population and Demographics - October 6th, 2024
- An Introduction to Nanomedicine - AZoNano - October 6th, 2024
- Nanomedicine Market is expected to show growth from 2024 to 2030, reported by Maximize Market Research - openPR - October 6th, 2024
- Oro Rx Healthcare LLP Unveils Oroceuticals: The Next-Gen Nutrition Delivery Tech - Hindustan Times - October 27th, 2023
- Leapfrogging as pharma leader of the worldNational Policy on Research and Development and Innovation in Pharma-MedTech Sector in India - The Sangai... - October 27th, 2023
- What will Indian healthcare look like in 2047? Robotics, AI, biotech will shape the future - The Economic Times - February 16th, 2023
- Going Beyond Target Or Mechanism Of Disease: Disruptive Innovation In Drug Delivery Systems - Forbes - September 12th, 2022
- Nanomedicine Market Size, Share, Types, Products, Trends, Growth, Applications and Forecast 2022 to 2028 - Digital Journal - September 12th, 2022
- Nano-preterm infants may not benefit from noninvasive versus invasive ventilation at birth - University of Alabama at Birmingham - September 12th, 2022
- Juan De Borbon - Introducing Cutting-Edge Techniques To The Healthcare Industry - CEOWORLD magazine - September 12th, 2022
- Organic thin-film sensors for light-source analysis and anti-counterfeiting applications - Nanowerk - September 12th, 2022
- Whole Exome Sequencing Market Projected to Reach CAGR of 19.0% Forecast by 2029, Global Trends, Size, Share, Growth, Future Scope and Key Player... - September 12th, 2022
- Another 'Dr. Copper' - MINING.COM - MINING.com - September 12th, 2022
- Artemisinin Combination Therapy Market Insights and Emerging Trends by 2027 - BioSpace - August 19th, 2022
- NASEM Recommends That EPA Conduct Ecological Risk Assessment of UV Filters Found in Sunscreen, Including Titanium Oxide and Zinc Oxide - JD Supra - August 19th, 2022
- Fast and noninvasive electronic nose for sniffing out COVID-19 based on exhaled breath-print recognition | npj Digital Medicine - Nature.com - August 19th, 2022
- Applications in Chronic Wound Healing | IJN - Dove Medical Press - July 25th, 2022
- Fundamental Knowledge on Nanobots - Bio-IT World - July 25th, 2022
- How different cancer cells respond to drug-delivering nanoparticles - MIT News - July 25th, 2022
- Nanorobots Market to close to USD 19576.43 million with CAGR of 12.23% during the forecast period to 2029 - Digital Journal - July 25th, 2022
- Microscopic Robots Made from White Blood Cells Could Treat and Prevent Life-Threatening Illnesses - Good News Network - July 25th, 2022
- Nano Therapy Market 2022 Growth Is Expected To See Development Trends and Challenges to 2030 This Is Ardee - This Is Ardee - July 25th, 2022
- Artificial Intelligence (AI), Cloud Computing, 5G, And Nanotech In Healthcare: How Organizations Are Preparing Best For The Future - Inventiva - July 25th, 2022
- Potassium Channels as a Target for Cancer Therapy & Research | OTT - Dove Medical Press - July 25th, 2022
- How can Nanotechnology be Used to Reverse Skin Aging? - AZoNano - May 20th, 2022
- Should Nanomaterial Synthesis Rely on Automation? - AZoNano - May 20th, 2022
- Fabrication Methods of Ceramic Nanoparticles - AZoNano - May 20th, 2022
- Explained: What are nanobots and how they can be used to help clean teeth? - Firstpost - May 20th, 2022
- Understanding the Health Risks of Graphene - AZoNano - May 20th, 2022
- Prevalence and predictors of SARS-CoV-2 | IDR - Dove Medical Press - May 20th, 2022
- Patches and robotic pills may one day replace injections - Science News for Students - May 20th, 2022
- Nanotechnology in the Nutricosmetics Industry - AZoNano - May 20th, 2022
- Nanomedicine: Nanotechnology, Biology and Medicine ... - December 22nd, 2021
- Frontiers | Nanomedicine: Principles, Properties, and ... - December 22nd, 2021
- Nanotechnology In Medicine: Huge Potential, But What Are ... - December 22nd, 2021
- Verseon Praised for Disruptive Approach to Physics- and AI-Based Drug Discovery - Digital Journal - December 22nd, 2021
- Nanotech opens up job options in variety of industries - BL on Campus - August 17th, 2021
- Homeopathic remedies that cattle farmers can use - Thats Farming - August 17th, 2021
- Healthcare Nanotechnology (Nanomedicine) Market Trend, Technology Innovations and Growth Prediction 2021-2027 The Manomet Current - The Manomet... - August 17th, 2021
- Regenerative Medicine Market Size Worth $57.08 Billion By 2027: Grand View Research, Inc. - PRNewswire - August 17th, 2021
- Nanotechnology Market Share, Industry Size, Leading Companies Outlook, Upcoming Challenges and Opportunities till 2028 - The Market Writeuo - The... - August 17th, 2021
- Global Nanomedicine Market is Expected to Grow at an Impressive CAGR by 2028 The Manomet Current - The Manomet Current - August 17th, 2021
- Complementary Protection May Be at Hand With a COVID-19-Preventing Nasal Spray - Newsweek - August 17th, 2021
- Nanorobotics Market By Player, Region, Type, Application And Sales Channel, Regions, Type and Application, Revenue Market Forecast to 2028 - Digital... - August 17th, 2021
- MagForce AG announces results of 2021 Annual General Meeting and changes to the Supervisory Board - Yahoo Eurosport UK - August 17th, 2021
- McMaster University researchers awarded more than $3M in Federal funds for projects - insauga.com - August 17th, 2021
- Global NANOTECHNOLOGY IN MEDICAL APPLICATIONS Statistics, CAGR, Outlook, and Covid-19 Impact 2016 The Bisouv Network - The Bisouv Network - February 14th, 2021
- Nanotechnology in Medical Market Demand Analysis To 2026 Lead By-Smith and Nephew, Novartis, Merck, Mitsui Chemicals, Amgen, Cytimmune KSU | The... - February 14th, 2021
- NanoViricides's Broad-Spectrum Antiviral Drug Candidate for the Treatment of COVID-19 Infections was Well Tolerated in GLP and non-GLP Animal Safety... - February 9th, 2021
- Nanorobots In Blood Market Top-Vendor And Industry Analysis By End-User Segments Till 2028 | Aries Chemical, GE Water & Process Technologies KSU... - February 9th, 2021
- Precision NanoSystems Receives Contribution from the Government of Canada to Build RNA Medicine Biomanufacturing Centre - PRNewswire - February 3rd, 2021
- Vaccine Production in BC's Future - AM 1150 (iHeartRadio) - February 3rd, 2021
- New facility to be built in Vancouver will produce 240 million vaccine doses annually | Urbanized - Daily Hive - February 3rd, 2021
- Faster tracking of treatment responses - MIT News - February 3rd, 2021
- NANOBIOTIX Announces First Patient Injected With NBTXR3 in Esophageal Cancer - Business Wire - February 3rd, 2021
- New Instrument Will Uncover Structure and Chemical Composition on Sub-Cell Scale - Georgia Tech News Center - January 12th, 2021
- Johns Hopkins Department of Otolaryngology-Head and Neck Surgery receives $15M contribution - The Hub at Johns Hopkins - January 9th, 2021
- COVID-19 Impact on Nanomedicine Market Size, Latest Trends, Growth and Share 2020 to 2026| Clinical Cardiology, Urology, Genetics, Orthopedics -... - January 9th, 2021
- Nanomedicine Market: Industry Analysis and forecast 2026: By Modality, Diseases, Application and Region - LionLowdown - January 9th, 2021
- Clene Nanomedicine Presents Blinded Interim Results from RESCUE-ALS Phase 2 Study at the 31st International Symposium on ALS/MNDResults provide... - December 16th, 2020
- Global Nanomedicine market 2020- Industry Overview, Global Trends, Market Analysis, CAGR Values and Country Level Demand To Forecast by 2027 -... - December 16th, 2020
- NHMRC awards Griffith University $4.5 million in research funding - Griffith News - December 16th, 2020
- Global Nanomedicine Market Analysis and Forecast to 2025 by Cancer Detection, Monitoring Therapy & Disease Detection - ResearchAndMarkets.com -... - December 10th, 2020
- Medical Physics Market: Growing Incidence of Chronic Diseases in Developing Regions to Drive the Market - BioSpace - December 10th, 2020
- Joseph DeSimone wins Harvey Prize in Science and Technology | The Dish - Stanford University News - December 10th, 2020
- Cancer Nanomedicine Market to Build Excessive Revenue at Healthy Growth rate at 12.50% up to 2027 - PharmiWeb.com - December 4th, 2020
- Sensing the body at all scales - MIT News - December 4th, 2020
- Healthcare Nanotechnology (Nanomedicine) Market Research Report with Revenue, Gross Margin, Market Share and Future Prospects till 2026 - The Market... - December 4th, 2020
- Technion Harvey prize in science awarded to Israeli, American professors - The Jerusalem Post - December 4th, 2020
- Cancer Nanomedicine Market Size, Comprehensive Analysis, Development Strategy, Future Plans and Industry Growth with High CAGR by Forecast 2026 |... - December 4th, 2020