BCM is a rare genetic disease of the retina caused by genetics mutations on genes OPN1LW, OPN1MW and LCR. These genes encoded proteins called photopigments, needed in the red and green cones to capture the light and are located on the X chromosome.
On this page we will see what are the genes responsible for color vision, what are the genetic mutations that lead to disease and the history of these scientific discoveries of molecular genetics.
The BCM Families Foundation supports the research of Molecular Genetics on BCM and the creation of a BCM Patients Registry, in order to deepen the knowledge about the genes and the genetic mutations that cause disease.
Molecular genetics of human color vision
BCM is inherited from the X chromosome. As any other chromosome, X contains a long molecule of DNA, the chemical of which genes are made.
The X chromosome is composed of two arms, the upper is called p, the lower q.The genes involved in the BCM are in position Xq28, at the end of the q arm.In the figure below we see the X chromosome:
In the position Xq28 there are in order, the genes named LCR, OPN1LW and OPN1MW.
LCR is the Locus Control Region, and acts as a promoter of the expression of the two opsin genes thereafter. In the absence of this gene, none of the following two genes are expressed in the human retina. In addition, it ensures that only one of the two opsin genes (red or green) is expressed exclusively in each cone.
OPN1LW and OPN1MW are respectively the genes that contain the genetic code for protein opsin. These proteins constitute the photopigments for the capture of light, red (Long Wave) and green (Medium Wave).
Many people have several replicas of the gene for the green photopigment, OPN1MW. Only the first two genes, immediately after the LCR, (the red and the first green ones), are expressed in the retina. Approximately 25% of male Caucasians have a single OPN1MW gene, while 50% have two genes and the remainder have 3 or more genes.
In the following figure we see a representation of the opsin gene array in a normal case:
To learn more about these genes, please refer to the web site of the National Center for Biotechnology Information, NCBI, particularly to:
OPSIN1-LW, red cone photopigment;
OPSIN1-MW, green cone photopigment;
LCR, Locus Control Region.
The gene responsible for the formation of the blue photopigment is in a position far away, on chromosome 7 and the gene responsible for the formation of rhodopsin (the rod photopigment) is located on chromosome 3:
OPSIN1-SW blue cones photopigment;
RODOPSIN rods photopigment.
In the following figure we see the opsin proteins, the blue S (short), the green M (medium) and the red L (Long) one.
OPSIN Genes Picture is taken from handprint.com
They take the form of a chain passing 7 times through a disk of the outer segment of a cone. The three proteins are very similar between them and, in particular, the M and L differ only in some elements that compose them. The two photopigments, red and green are in fact equal to 96%, while they have only a 46% similarity with the blue photopigment.
The genes OPN1LW and OPN1MW, like all genes, are formed by exons and introns. In particular both of these genes have six exons, referred to as 1 to 6.
(Picture is taken from Jessica C. Gardner, Michel Michaelides, Graham E. Holder, Naheed Kanuga, Tom R. Webb, John D. Mollon, Anthony T. Moore, Alison J. Hardcastle Blue cone monochromacy: Causative mutations and associated phenotypesMolecular Vision 2009; 15:876-884).
Like all proteins, the opsin proteins are three-dimensional structures that need to perform a folding to assume their final three-dimensional shape. Some specific amino acids within the protein are responsible for the folding of the same.
The Genetic Mutations
There are many genetic mutations that can affect this group of genes, LCR, OPN1LW and OPN1MW.
Some mutations lead to conditions commonly called color blindness, having as its only effect the inability to distinguish certain colors.
Mutations that lead to the BCM to date identified are the following:
Large deletions
1.Deletion of the LCR, or deletion of the LCR and some or all of the exons of the gene OPN1LW.
This mutation is an absence of a large part of the genetic material. Since there isnt the genetic code for LCR the two opsin proteins will not express and the cones will havent the red and green photopigments.
2.Intragenic deletion. This is a deletion of exons within the genes OPN1LW and OPN1MW or deletion of genetic material of the first and of the second gene.
Even this mutation is an absence of a large part of the genetic material.
Mechanism in 2 steps with homologous recombination and punctual inactivation.
In this case, due to the similarity between the two genes OPN1LW and OPN1MW, during a process of homologous recombination one of the two genes is lost with the creation of an hybrid gene. Subsequently, a point mutation inactivates the remained gene.
The point mutation best known is the so-called C203R. The name of the point mutations indicates the position at which mutation has occurred, in this case the amino acid position 203 and which has been replaced, in this case a C = Cysteine with an R = Arginine. At the level of codons this substitution is timely because it corresponds to replace thymine with cytosine in position 648, as we see from the following table:
The C203R mutation causes the opsin protein once formed does not carry the folding, that is it doesnt take the proper three-dimensional form.
Diagram representing BCM genotypes of 3 British families. The wild type L-M opsin gene array is shown at the top of the figure. Gray boxes represent L opsin exons and white boxes represent M opsin exons.Subscript n represents one or more M opsin genes. The black box represents the Locus Control Region, LCR. The LCR was present without mutation in all three families. The C203R point mutations detected in Family 1 and Family 3 are shown above the corresponding exons. Family 1 has an inactive hybrid gene followed by a second gene in the array. Three possible structures of this second inactive gene are shown in the bracket.Family 2 has a single nonfunctional hybrid gene lacking exon 2. Family 3 has a single inactivehybrid gene.(Picture is taken from Jessica C. Gardner, Michel Michaelides, Graham E. Holder, Naheed Kanuga, Tom R. Webb, John D. Mollon, Anthony T. Moore, Alison J. Hardcastle Blue cone monochromacy: Causative mutations and associated phenotypesMolecular Vision 2009; 15:876-884).
Other point mutations are the P307L, and R247X. The last one replaces arginine with the Stop codon, prematurely stopping at position 247 the formation of the protein (nonsense mutation).
Model of the red and 5 red 2 green hybrid pigments in the photoreceptor membrane showing the locations of point mutations identified in blue-cone monochromats. Each circle represent an amino acid. N = amino-terminus and C = car-body-terminus. The amino-terminus faces the extracellular space.The picture is taken from J. Nathans et al. Am. J. Hum. Genet. 53: 987-1000, 1993.
Other mutations
Other mutations on genes OPN1LW and OPN1MW that lead to the BCM are constituted by a set of point mutations called for example LIAVA. The BCM will be caused by the production of new hybrid gene, like in the previous case, from the homologous recombination of OPN1LW and OPN1MW. In this case exon 3 contains the following amino acids in the positions indicated: 153 Leucine, 171 Isoleucine, 174 Alanine, 178 Valine and 180 Alanine. This genotype has the abbreviated name LIAVA.
Location of amino acid alterations reported thus far in the L and M cone opsin genes. Shaded areas: the transmembrane domains. Circles: amino acid differences and known polymorphism with the more common amino acid (in a one-letter code); arrow: the amino acid change. The codon number is depicted for each change. Missense changes associated with a cone-opsin-related disease that are likely to cause protein dysfunction are on a gray background. The LIAVA haplotype is highlighted in black.La Figura tratta da Mizrahi-Meissonnier L., Merin S., Banin E., Sharon D., 2010.
Other diseases with genetic mutations on genes and OPN1LW OPN1MW
Another disease of the retina that is associated with the position Xq28 is the Bornholm Eye Disease (BED), with symptoms similar to those of the BCM. It is a very rare disease and it is stationary. For further information you can consult OMIM and the web site of University of Arizona.
Finally note there is also a particular mutation of the two genes OPN1LW and OPN1MW which causes a different disease from the BCM. This type of mutation is W177R and is a misfolding mutation that, if present on both opsin genes cause cone dystrophy with evidence of degeneration and cell death of the cones.
The History of the discovery of the genes of the BCM
Many researchers have contributed to discoveries about the genes involved in the BCM.
We recall the fundamental discoveries of Jeremy Nathans on the genes responsible for color vision:
Nathans, J., Thomas, D., Hogness, D. S. Molecular genetics of human color vision: the genes encoding blue, green, and red pigments. Science 232: 193-202, 1986. [PubMed: 2937147, related citations] [Full Text: HighWire Press]
Nathans, J., Piantanida, T. P., Eddy, R. L., Shows, T. B., Hogness, D. S. Molecular genetics of inherited variation in human color vision. Science 232: 203-210, 1986. [PubMed: 3485310, related citations] [Full Text: HighWire Press]
Nathans, J. Molecular biology of visual pigments. Annu. Rev. Neurosci. 10: 163-194, 1987. [PubMed: 3551758, related citations] [Full Text: Atypon]
Nathans, J. The evolution and physiology of human color vision: insights from molecular genetic studies of visual pigments. Neuron. 24: 299-312, 1999. [PubMed: 10571225, related citations] [Full Text: Elsevier Science]
Deeb, S. S. The molecular basis of variation in human color vision. Clin. Genet. 67: 369-377, 2005. [PubMed: 15811001, related citations] [Full Text: Blackwell Publishing]
In particular, the work that led us to understand the main causes of BCM and in particular the 2-step process with point mutation C2013R:
Nathans, J., Davenport, C. M., Maumenee, I. H., Lewis, R. A., Hejtmancik, J. F., Litt, M., Lovrien, E., Weleber, R., Bachynski, B., Zwas, F., Klingaman, R., Fishman, G. Molecular genetics of human blue cone monochromacy. Science 245: 831-838, 1989. [PubMed: 2788922, related citations] [Full Text: HighWire Press]
Nathans, J., Maumenee, I. H., Zrenner, E., Sadowski, B., Sharpe, L. T., Lewis, R. A., Hansen, E., Rosenberg, T., Schwartz, M., Heckenlively, J. R., Traboulsi, E., Klingaman, R., Bech-Hansen, N. T., LaRoche, G. R., Pagon, R. A., Murphey, W. H., Weleber, R. G. Genetic heterogeneity among blue-cone monochromats. Am. J. Hum. Genet. 53: 987-1000, 1993. [PubMed: 8213841, related citations]
Reyniers, E., Van Thienen, M.-N., Meire, F., De Boulle, K., Devries, K., Kestelijn, P., Willems, P. J. Gene conversion between red and defective green opsin gene in blue cone monochromacy. Genomics 29: 323-328, 1995. [PubMed: 8666378, related citations] [Full Text: Elsevier Science, Pubget]
An important work for the type of mutations Deletion of the LCR or LCR and the gene OPN1LW is:
Ayyagari, R., Kakuk, L. E., Bingham, E. L., Szczesny, J. J., Kemp, J., Toda, Y., Felius, J., Sieving, P. A. Spectrum of color gene deletions and phenotype in patients with blue cone monochromacy. Hum. Genet. 107: 75-82, 2000. Hum Genet. 2000 Jul;107(1):75-82.
For the Deletion intragenic the following works identified a case of BCM with the presence of only the gene OPN1LW (red) without the exon 4:
Ladekjaer-Mikkelsen, A.-S., Rosenberg, T., Jorgensen, A. L. A new mechanism in blue cone monochromatism. Hum. Genet. 98: 403-408, 1996.
Reitner, A., Sharpe, L. T., Zrenner, E. Is colour vision possible with only rods and blue-sensitive cones? Nature 352: 798-800, 1991.
The Locus Control Region, and its role in the expression of opsin genes, was the result of the following works:
Lewis, R. A., Holcomb, J. D., Bromley, W. C., Wilson, M. C., Roderick, T. H., Hejtmancik, J. F. Mapping X-linked ophthalmic diseases: III. Provisional assignment of the locus for blue cone monochromacy to Xq28. Arch. Ophthal. 105: 1055-1059, 1987.
Lewis, R. A., Nathans, J., Holcomb, J. D., Bromley, W. C., Roderick, T. H., Wilson, M. C., Hejtmancik, J. F. Blue cone monochromacy: assignment of the locus to Xq28 and evidence for its molecular rearrangement. Am. J. Hum. Genet. 41: A102 only, 1987.
Wang, Y., Macke, J. P., Merbs, S. L., Zack, D. J., Klaunberg, B., Bennett, J., Gearhart, J., Nathans, J. A locus control region adjacent to the human red and green visual pigment genes. Neuron 9: 429-440, 1992.
In particular, the role of LCR that allows the exclusice expression of a unique opsin (red or green) in each cone, was discovered in the last publication.
For the study dela C203R mutation there are the following research publication:
Kazmi MA, Sakmar TP, Ostrer H. Mutation of a conserved cysteine in the X-linked cone opsins causes color vision deficiencies by disrupting protein folding and stablilty. Investigative Ophthalmology and Visual Science. 1997;38(6):10741081. [PubMed]
who understood the negative effects of this mutation on the folding of the opsin protein and:
Winderickx J, Sanocki E, Lindsey DT, Teller DY, Motulsky AG, Deeb SS. Defective colour vision associated with a missense mutation in the human green visual pigment gene. Nature Genetics. 1992;1:251256. [PubMed]
who studied this mutation and its frequency of about 2% in people of Caucasian origin.
On rare mutations of the type LIAVA you can consult:
Carroll J1, Neitz M, Hofer H, Neitz J, Williams DR., Functional photoreceptor loss revealed with adaptive optics: an alternate cause of color blindness. Proc Natl Acad Sci U S A. 2004 Jun.
Mizrahi-Meissonnier L., Merin S., Banin E., Sharon D., 2010.
Neitz M, Carroll J, Renner A, et al. Variety of genotypes in males diagnosed as dichromatic on a conventional clinical anomaloscope. Vis Neurosci. 2004;21:205216.
Crognale MA, Fry M, Highsmith J, et al. Characterization of a novel form of X-linked incomplete achromatopsia. Vis Neurosci. 2004; 21:197203.
Some historical research about BCM were:
Huddart, J. An account of persons who could not distinguish colours. Phil. Trans. Roy. Soc. 67: 260 only, 1777.
Sloan, L. L. Congenital achromatopsia: a report of 19 cases. J. Ophthal. Soc. Am. 44: 117-128, 1954.
Alpern, M., Falls, H. F., Lee, G. B. The enigma of typical total monochromacy. Am. J. Ophthal. 50: 996-1012, 1960. [PubMed: 13682677, related citations
Blackwell, H. R., Blackwell, O. M. Rod and cone receptor mechanisms in typical and atypical congenital achromatopsia. Vision Res. 1: 62-107, 1961.
Fleischman, J. A., ODonnell, F. E. Jr. Congenital X-linked incomplete achromatopsia. Evidence for slow progression, carrier fundus findings, and possible genetic linkage with glucose-6-phosphate dehydrogenase locus. Arch Ophthalmol 1981;99:468-472.
Lewis, R. A., Holcomb, J. D., Bromley, W. C., Wilson, M. C., Roderick, T. H., Hejtmancik, J. F. Mapping X-linked ophthalmic diseases: III. Provisional assignment of the locus for blue cone monochromacy to Xq28. Arch. Ophthal. 105: 1055-1059, 1987.
For the study of cone dystrophy, a degenerative disease caused by a point mutation on both genes OPN1LW and OPN1MW:
Gardner JC, Webb TR, Kanuga N, Robson AG, Holder GE, Stockman A, Ripamonti C, Ebenezer ND, Ogun O, Devery S, Wright GA, Maher ER, Cheetham ME, Moore AT, Michaelides M and Hardcastle AJ,X-Linked Cone Dystrophy Caused by Mutation of the Red and Green Cone Opsins.The American Journal of Human Genetics 87, 2639, July 9, 2010.
Here there are some review publications that illustrate the topic:
Neitz J., Neitz M. The genetics of normal and defective color vision. 2011 Review. Vision Research.
Deeb, S.S. Molecular Genetics of colour vision deficiencies. Clinical and Experimental Optometry 87.4 5 July 2004.
Read more from the original source:
Molecular Genetics Blue Cone Monochromacy
- Comparing Genetics and Molecular Genetics: What's the Difference? - December 19th, 2024
- Standards and guidelines for the interpretation of sequence ... - PubMed - December 19th, 2024
- Chapter 12: Techniques of Molecular Genetics - Biology LibreTexts - December 19th, 2024
- 8.S: Techniques of Molecular Genetics (Summary) - December 19th, 2024
- Master of Science Computational Biology and Quantitative Genetics - December 19th, 2024
- Pitt Researchers Lead Group that Calls for Global Discussion About Possible Risks from Mirror Bacteria - Pitt Health Sciences - December 19th, 2024
- Molecular Genetics Testing - StatPearls - NCBI Bookshelf - November 16th, 2024
- Working with Molecular Genetics (Hardison) - Biology LibreTexts - November 16th, 2024
- Molecular Underpinnings of Genetic and Rare Diseases: From ... - Frontiers - November 16th, 2024
- The molecular genetics of schizophrenia: New findings promise new insights. - November 16th, 2024
- 8: Techniques of Molecular Genetics - Biology LibreTexts - September 4th, 2024
- 1.5: Molecular Genetics - Biology LibreTexts - September 4th, 2024
- Molecular genetics made simple - PMC - National Center for ... - September 4th, 2024
- 4 Introduction to Molecular Genetics - University of Minnesota Twin Cities - September 4th, 2024
- Molecular genetics - Definition and Examples - Biology Online - September 4th, 2024
- A Detailed Look at the Science of Molecular Genetics - KnowYourDNA - September 4th, 2024
- Molecular Genetics | NHLBI, NIH - September 4th, 2024
- Molecular biology - Wikipedia - September 4th, 2024
- Genetics, Molecular & Cellular Biology Admissions - September 4th, 2024
- Researchers map 50,000 of DNAs mysterious knots in the human genome - EurekAlert - September 4th, 2024
- Artificial selection of mutations in two nearby genes gave rise to shattering resistance in soybean - Nature.com - September 4th, 2024
- Mainz Biomed Expands Corporate Health Program for ColoAlert with the Addition of Three New Companies in Germany - Marketscreener.com - April 7th, 2023
- Molecular Genetics and Metabolism | Journal - ScienceDirect - December 11th, 2022
- People don't mate randomly but the flawed assumption that they do is an essential part of many studies linking genes to diseases and traits - The... - November 25th, 2022
- Molecular and Cell Biology and Genetics - Master of Science / PhD ... - October 7th, 2022
- NIPD Genetics: Leading Genetic Testing Company - October 7th, 2022
- Skeletal Biology and Regeneration Students Recognized For Research Excellence - UConn Today - University of Connecticut - October 7th, 2022
- Mary Munson elected fellow of the American Society for Cell Biology - UMass Medical School - October 7th, 2022
- Every Body's Talking at Them: an Interview with Jon Lieff - CounterPunch - October 7th, 2022
- TriBeta invites students to explore opportunities to work with faculty at research fair on Oct. 11 - Ohio University - October 7th, 2022
- Genetics: the Vatican Does Not Intend to Be Behind the Times - FSSPX.News - October 7th, 2022
- Yield10 Bioscience Appoints Willie Loh, Ph.D., to the Board of Directors - citybiz - October 7th, 2022
- Molecular pathways of major depressive disorder converge on the synapse | Molecular Psychiatry - Nature.com - October 7th, 2022
- Sigyn Therapeutics Strengthens Board of Directors With the Appointments of Richa Nand, Jim Dorst and Christopher Wetzel - Yahoo Finance - October 7th, 2022
- UTHSC Researcher Co-Leads Study of Genes that Modulate Aging, Lifespan - UTHSC News - UTHSC News - October 7th, 2022
- GATC Health Investor Conference to Feature First Public Demonstration of Its AI Platform's Drug Discovery Capabilities - PR Newswire - October 7th, 2022
- Three Professors Conferred Tenure and Eleven Promoted - Wesleyan Argus - October 7th, 2022
- Who will get the call from Stockholm? It's time for STAT's 2022 Nobel Prize predictions - STAT - October 7th, 2022
- Dalhousie to present exhibition celebrating Gerhard Herzberg and his legacy - Dal News - October 7th, 2022
- Why Some People Should Rethink Their Morning Cup Of Coffee - Health Digest - October 7th, 2022
- Cell and Gene Therapy: Rewriting the Future of Medicine - Technology Networks - October 7th, 2022
- UofL researchers lead the call to increase genetic diversity in immunogenomics - uoflnews.com - July 6th, 2021
- In Brief This Week: Foundation Medicine, Myriad Genetics, Genetron Health, and More - GenomeWeb - July 6th, 2021
- More filling? Tastes great? How flies, and maybe people, choose their food - Yale News - July 6th, 2021
- Genetic mapping of subsets of patients with fragile X syndro | TACG - Dove Medical Press - July 6th, 2021
- What is The Babydust Method? Danielle Lloyd swears method helped her conceive girl - The Mirror - July 6th, 2021
- Datar Cancer Genetics joins hands with US based Iylon Precision Oncology to offer personalized Precision Oncology cancer treatment solutions - PR Web - July 6th, 2021
- Mapping a pathway to competitive production - hortidaily.com - hortidaily.com - July 6th, 2021
- Associations between pancreatic expression quantitative traits and risk of pancreatic ductal adenocarcinoma. - Physician's Weekly - July 6th, 2021
- Global Genomics Market | Rising Incidence of Chronic and Genetic Diseases are Key Factors to Grow Market During 2021-2029 | 23andMe, Agilent... - July 6th, 2021
- The Babydust Method Danielle Lloyd used to conceive a girl after four sons and how it works - RSVP Live - July 6th, 2021
- In the beginning science and faith - The Irish Times - June 24th, 2021
- Ancient Maya Maintained Native Tropical Forest Plants around Their Water Reservoirs | Archaeology - Sci-News.com - June 24th, 2021
- Local foundation awards $1.25 million to MIND Institute to study rare genetic condition - UC Davis Health - June 24th, 2021
- Xlife Sciences AG: Collaboration with the University of Marburg - Yahoo Finance - June 24th, 2021
- Genetics diagnostics in India is on the verge of transformation: Neeraj Gupta, Founder and CEO of Genes2me - The Financial Express - June 24th, 2021
- Precision Medicine: Improving Health With Personalized Solutions - BioSpace - June 24th, 2021
- Half of Portland areas 22 top National Merit winners hail from just 2 schools - OregonLive - June 24th, 2021
- Investing in stem cells, the building blocks of the body - MoneyWeek - June 24th, 2021
- New study finds low levels of a sugar metabolite associates with disability and neurodegeneration in multiple sclerosis - Newswise - May 14th, 2021
- Cernadas-Martn Is a Champion for Marine and Human Diversity | | SBU News - Stony Brook News - May 14th, 2021
- Four Penn Faculty: Election to the National Academy of Sciences - UPENN Almanac - May 14th, 2021
- Is there a difference between a gene-edited organism and a 'GMO'? The question has important implications for regulation - Genetic Literacy Project - May 14th, 2021
- 5 Students Inducted Into American Society for Biochemistry and Molecular Biology Honor Society - Wesleyan Connection - May 14th, 2021
- The Science of Aliens, Part 2: What Kind of Genetic Code Would Extraterrestrials Have? - Air & Space Magazine - May 14th, 2021
- UT Austin Faculty Member Receives 2021 Piper Professor Award - Office of the Executive Vice President and Provost - UT News | The University of Texas... - May 14th, 2021
- Distinguished University of Birmingham plant scientist elected to the Royal Society - University of Birmingham - May 14th, 2021
- Double Hoo Research: Undergrads and Grads Team Up to Create Knowledge - University of Virginia - May 14th, 2021
- Global Genetic Testing Market Top Countries Analysis and Manufacturers With Impact of COVID-19 | 2021-2028 Detail Analysis focusing on Application,... - May 14th, 2021
- Morag Park named to the Order of Quebec - McGill Reporter - McGill Reporter - May 14th, 2021
- Third Rock Ventures Launches Flare Therapeutics With $82 Million Series A - BioSpace - May 14th, 2021
- The Royal Society announces election of new Fellows 2021 - Cambridge Network - May 14th, 2021
- Researchers Decode the "Language" of Immune Cells - Technology Networks - May 14th, 2021
- RepliCel Launches the Next Stage of a Research Project with the University of British Columbia to Build World-Class Hair Follicle Cell Data Map -... - May 14th, 2021
- Mice Sperm Sabotage Other Swimmers With Poison | Smart News - Smithsonian Magazine - February 14th, 2021
- Study Identifies Never-Before-Seen Dual Function in Enzyme Critical for Cancer Growth - Newswise - February 14th, 2021
- Devious sperm 'poison' their rivals, forcing them to swim in circles until they die - Livescience.com - February 14th, 2021
- More needs to be done to find and fight COVID-19 variants, says Colorado researcher - FOX 31 Denver - February 14th, 2021
- Selfish sperm genes 'poison' the competition for the win - Big Think - February 14th, 2021
- Some sperm cells swim faster and even poison their competition to climb to the top - ZME Science - February 14th, 2021