Share this Article
You are free to share this article under the Attribution 4.0 International license.
Researchers have found a way, in mice and human tissue, to regenerate the cartilage that eases movement between bones.
Loss of this slippery and shock-absorbing tissue layer, called articular cartilage, is responsible for many cases of joint pain and arthritis, which afflicts more than 55 million Americans.
The researchers can envision a time when people are able to avoid getting arthritis in the first place by rejuvenating their cartilage before it is badly degraded.
Nearly 1 in 4 adult Americans suffer from arthritis, and far more are burdened by joint pain and inflammation generally.
The researchers figured out how to regrow articular cartilage by first causing slight injury to the joint tissue, then using chemical signals to steer the growth of skeletal stem cells as the injuries heal.
Cartilage has practically zero regenerative potential in adulthood, so once its injured or gone, what we can do for patients has been very limited, says co-senior author Charles K.F. Chan, assistant professor of surgery at Stanford Universitys School of Medicine.
Its extremely gratifying to find a way to help the body regrow this important tissue, Chan says.
The work builds on previous research that resulted in isolation of the skeletal stem cell, a self-renewing cell that is also responsible for the production of bone, cartilage and a special type of cell that helps blood cells develop in bone marrow.
Articular cartilage is a complex and specialized tissue that provides a slick and bouncy cushion between bones at the joints. When this cartilage is damaged by trauma, disease, or simply thins with age, bones can rub directly against each other, causing pain and inflammation, which can eventually result in arthritis.
Damaged cartilage can be treated through a technique called microfracture, in which tiny holes are drilled in the surface of a joint. The microfracture technique prompts the body to create new tissue in the joint, but the new tissue is not much like cartilage.
I realized the only way to understand the process was to look at what stem cells are doing after microfracture.
Microfracture results in what is called fibrocartilage, which is really more like scar tissue than natural cartilage, says Chan. It covers the bone and is better than nothing, but it doesnt have the bounce and elasticity of natural cartilage, and it tends to degrade relatively quickly.
The most recent research arose, in part, through the work of surgeon and lead author Matthew Murphy, a visiting researcher at Stanford who is now at the University of Manchester.
I never felt anyone really understood how microfracture really worked, Murphy says. I realized the only way to understand the process was to look at what stem cells are doing after microfracture.
For a long time, Chan says, people assumed that adult cartilage did not regenerate after injury because the tissue did not have many skeletal stem cells that could be activated. Working in a mouse model, the team documented that microfracture did activate skeletal stem cells. Left to their own devices, however, those activated skeletal stem cells regenerated fibrocartilage in the joint.
But what if the healing process after microfracture could be steered toward development of cartilage and away from fibrocartilage?
The researchers knew that as bone develops, cells must first go through a cartilage stage before turning into bone. They had the idea that they might encourage the skeletal stem cells in the joint to start along a path toward becoming bone, but stop the process at the cartilage stage.
The researchers used a powerful molecule called bone morphogenetic protein 2 (BMP2) to initiate bone formation after microfracture, but then stopped the process midway with a molecule that blocked another signaling molecule important in bone formation, called vascular endothelial growth factor (VEGF).
What we ended up with was cartilage that is made of the same sort of cells as natural cartilage with comparable mechanical properties, unlike the fibrocartilage that we usually get, Chan says. It also restored mobility to osteoarthritic mice and significantly reduced their pain.
As a proof of principle that this might also work in humans, the researchers transferred human tissue into mice that were bred to not reject the tissue, and were able to show that human skeletal stem cells could be steered toward bone development but stopped at the cartilage stage.
The next stage of research is to conduct similar experiments in larger animals before starting human clinical trials. Murphy points out that because of the difficulty in working with very small mouse joints, there might be some improvements to the system they could make as they move into relatively larger joints.
The first human clinical trials might be for people who have arthritis in their fingers and toes. We might start with small joints, and if that works we would move up to larger joints like knees, Murphy says.
Right now, one of the most common surgeries for arthritis in the fingers is to have the bone at the base of the thumb taken out. In such cases we might try this to save the joint, and if it doesnt work we just take out the bone as we would have anyway. Theres a big potential for improvement, and the downside is that we would be back to where we were before.
One advantage of their discovery is that the main components of a potential therapy are approved as safe and effective by the FDA, says co-senior author Michael Longaker, professor of surgery.
BMP2 has already been approved for helping bone heal, and VEGF inhibitors are already used as anti-cancer therapies, he says. This would help speed the approval of any therapy we develop.
Joint replacement surgery has revolutionized how doctors treat arthritis and is very common: By age 80, 1 in 10 people will have a hip replacement and 1 in 20 will have a knee replaced. But such joint replacement is extremely invasive, has a limited lifespan and is performed only after arthritis hits and patients endure lasting pain.
The researchers say they can envision a time when people are able to avoid getting arthritis in the first place by rejuvenating their cartilage in their joints before it is badly degraded.
One idea is to follow a Jiffy Lube model of cartilage replenishment, Longaker says. You dont wait for damage to accumulateyou go in periodically and use this technique to boost your articular cartilage before you have a problem.
The work appears in the journal Nature Medicine.
Support for the research came from the National Institutes of Health, the California Institute for Regenerative Medicine, the Oak Foundation, the Pitch Johnson Fund, the Gunn/Olivier Research Fund, the Stinehart/Reed Foundation, The Siebel Foundation, the Howard Hughes Medical Institute, the German Research Foundation, the PSRF National Endowment, National Center for Research Resources, the Prostate Cancer Research Foundation, the American Federation of Aging Research, and the Arthritis National Research Foundation.
Source: Stanford University
Read the rest here:
Method regrows cartilage to cushion bones - Futurity: Research News
- Regenerative Medicine: The Future of Healthcare - April 14th, 2025
- Regenerative medicine: Current therapies and future ... - April 14th, 2025
- Space Doctors and Stem Cell Production in Microgravity - Cedars-Sinai - April 14th, 2025
- Tracking Tissue Development to Inspire Regenerative Therapies - the-scientist.com - April 14th, 2025
- Study aims to stop Alzheimers with stem cell infusions - Drug Target Review - April 14th, 2025
- RheeGen's Topical Stem Cell Therapy Pioneers Future of Regenerative Medicine - Yahoo Finance - April 14th, 2025
- Lab-grown meat: you may find it icky, but it could drive forward medical research - ET HealthWorld - April 14th, 2025
- Advances in regenerative medicine-based approaches for skin ... - March 9th, 2025
- Regenerative Medicine: Case Study for Understanding and Anticipating ... - March 9th, 2025
- Top 3 Grants in Regenerative Medicine: February 2025 - RegMedNet - March 9th, 2025
- Editorial: Tissue Engineering and Regenerative Medicine: Advances, Controversies, and Future Directions by Frontiers in Bioengineering and... - March 9th, 2025
- Malaysia To Host 7th World Conference On Exercise And Regenerative Medicine - BERNAMA - March 9th, 2025
- Advancing Regenerative Medicine: A Comprehensive Outlook on the Global Cell Therapy Market - openPR - March 9th, 2025
- Worlds First 3D-Printed Penis Implant Successfully Restores Function in Pigs and Rabbits - The Daily Galaxy --Great Discoveries Channel - March 9th, 2025
- AskBio Receives FDA Regenerative Medicine Advanced Therapy designation for Parkinsons disease investigational gene therapy - Bayer - February 24th, 2025
- What is Regenerative Medicine? | Regenerative Medicine | University of ... - February 24th, 2025
- The quest for a communication device that tells cells to regenerate the body - Big Think - February 24th, 2025
- Transforming the future of regenerative medicine - Reuters - February 24th, 2025
- Breakthrough Alzheimer's Treatment Gets Official WHO Recognition - Major Milestone for Rare Disease Therapy - StockTitan - February 24th, 2025
- Regenerative Medicine Pioneer with 35-Year Track Record Takes Scientific Helm at ZEO ScientifiX - StockTitan - February 24th, 2025
- 101 Guide to Regenerative Medicine Types | Applications, Challenges - February 7th, 2025
- Regenerative Medicine | What is it? | ASCPM - February 7th, 2025
- Regenerative medicine and advanced therapy | NIST - February 7th, 2025
- Therapeutic Reprogramming toward Regenerative Medicine - February 7th, 2025
- Novel living biomaterial aims to advance regenerative medicine - February 7th, 2025
- UC Irvine-led discovery of new skeletal tissue advances regenerative ... - February 7th, 2025
- Top 3 Grants in Regenerative Medicine: January 2025 - RegMedNet - February 7th, 2025
- Advancements in lung regeneration: from bench to bedside - February 7th, 2025
- Entos Pharmaceuticals Awarded $4 Million USD in Funding from the California Institute for Regenerative Medicine (CIRM) for its Congenital Generalized... - February 7th, 2025
- Adia Nutrition Officially Enters $15.1 Billion Global Stem Cell Market with Domestic Treatments by Successful Opening of First Florida Location -... - February 7th, 2025
- Cell therapy weekly: iPSC therapy IND for Phase III trial cleared - RegMedNet - February 7th, 2025
- Creative Medical Technology Holdings Expands Collaboration with Greenstone Biosciences to Accelerate iPSCelz - EIN News - February 7th, 2025
- Placental Stem Cell Therapy Solution Market Size And Booming - openPR - February 7th, 2025
- Stem Cells Applications in Regenerative Medicine and Disease ... - December 6th, 2024
- Ageing of stem cells reduces their capacity to form tumours - Nature.com - December 6th, 2024
- Master of Science in Regenerative Medicine and Entrepreneurships FUSION program information session - The Daily | Case Western Reserve University - December 6th, 2024
- BioRestorative Therapies Announces Notice of Allowance of - GlobeNewswire - December 6th, 2024
- Stem Cell Therapy Strategic Business Report 2024 - - GlobeNewswire - December 6th, 2024
- University of Colorado Anschutz Medical Campus-Led Team Receives Up to $46 Million to Develop Innovative Treatment to Cure Blindness - University of... - December 6th, 2024
- Affimed Announces Acimtamig and AlloNK Combination Granted Regenerative Medicine Advanced Therapy (RMAT) Designation by the U.S. Food and Drug... - December 6th, 2024
- Navigating the hope and hype of regenerative medicine - October 14th, 2024
- Cell and Gene Therapy Investment Ticks Up After Hard Few Years - BioSpace - October 14th, 2024
- Crackdowns on Unproven Stem Cell Therapies Worked Abroad - Medpage Today - October 14th, 2024
- How Regenerative Medicine can help you get out of pain without surgery - WJLA - October 14th, 2024
- Regenity Biosciences Receives 510(k) Clearance for RejuvaKnee, a Groundbreaking Regenerative Meniscus Implant Device to Redefine the Standard of Care... - October 14th, 2024
- Buy, Sell, Hold: Cell and Gene Therapy - BioPharm International - October 14th, 2024
- Mayo Clinic offers unique regenerative medicine procedure for knee and ... - September 13th, 2024
- Regenerative Medicine to the Rescue - Cleveland Clinic - September 13th, 2024
- Regenerative medicine applications: An overview of clinical trials - September 13th, 2024
- The Progression of Regenerative Medicine and its Impact on Therapy ... - September 13th, 2024
- Immune cell injection significantly boosts healing of bone, muscle & skin - September 13th, 2024
- Regenerative Medicine Foundation - September 13th, 2024
- BridgeBio Receives FDAs Regenerative Medicine Advanced Therapy (RMAT ... - September 13th, 2024
- Tissue engineering and regenerative medicine approaches in colorectal ... - September 13th, 2024
- Tubular scaffolds boost stem cell-driven bone regeneration in skull defects - Phys.org - September 13th, 2024
- Finding the right path(way) to reduce fat accumulation in the liver - Medical University of South Carolina - September 13th, 2024
- NAMRU EURAFCENT Signs Agreement with Egypt Center for Research and Regenerative Medicine - DVIDS - September 13th, 2024
- BridgeBio Receives FDAs Regenerative Medicine Advanced Therapy (RMAT) Designation for BBP-812 Canavan Disease Gene Therapy Program - StockTitan - September 13th, 2024
- BioNexus Gene Lab Corp. Signs Strategic Partnership MOU with Shenzhen Rongguang Group to Advance Cancer Screening, Precision Medicine, and... - September 13th, 2024
- Neurona Therapeutics Receives $3.8 Million CIRM Grant for the Development of Next Generation Neural Cell Therapy Candidate - Yahoo Finance - September 13th, 2024
- Aging is associated with functional and molecular changes in distinct hematopoietic stem cell subsets - Nature.com - September 13th, 2024
- Cellino Awarded $25M in Funding from the Advanced Research Projects Agency for Health (ARPA-H) - Business Wire - September 13th, 2024
- HepaTx Enters Collaboration with Mayo Clinic to Advance Cell Therapy Technology for Liver Disease to Clinical Trials - Longview News-Journal - September 13th, 2024
- Obsidian Therapeutics Receives FDA Regenerative Medicine Advanced Therapy (RMAT) Designation for OBX-115 for the Treatment of Advanced Melanoma -... - September 4th, 2024
- Regenerative Medicine in Orthopedic Surgery: Expanding Our Toolbox - Cureus - September 4th, 2024
- Somite.ai takes pre-seed to $10M as it eyes to become the OpenAI of stem cell biology - CTech - September 4th, 2024
- Longeveron Announces Positive Type C Meeting with U.S. FDA Regarding Pathway to BLA for Lomecel-B in Hypoplastic Left Heart Syndrome (HLHS) - Yahoo... - September 4th, 2024
- Study Explores Potential Of 3D Printed Regenerative Breast Implants - Forbes - September 4th, 2024
- Nikon Announces New Image Analysis Functions to Empower Drug Discovery Research for Cancer, Neurological Disease, and Regenerative Medicine - PR... - September 4th, 2024
- Trinity researcher scores 800,000 to boost regenerative medicine - SiliconRepublic.com - September 4th, 2024
- Seeing the future: Zebrafish regenerates fully functional photoreceptor cells and restores its vision - EurekAlert - September 4th, 2024
- Regenerative Medicine Industry Projected to Surge to USD 73,084.2 Million by 2033, Growing at an 18.5% CAGR - Future Market Insights - September 4th, 2024
- What is regenerative medicine? | Northwell Health - July 2nd, 2024
- Science Saturday: A regenerative reset for aging - July 2nd, 2024
- Science Saturday: A year of new directions and advancements for ... - March 29th, 2024
- Diverse ways regenerative medicine is advancing health care - March 29th, 2024
- Stem cell-based regenerative medicine - PMC - National Center for ... - February 27th, 2024
- Regenerative medicine | NIST - February 10th, 2024
- San Jose blood stem cell donor meets 15-year-old whose life he saved in Los Angeles - The Mercury News - May 17th, 2023
- Regenerative medicine: Current therapies and future directions - April 23rd, 2023