Empas multicellular model, which is mimicking the placental barrier: a core of connective tissue cells, surrounded by trophoblast cells. Credit: Empa
An Empa team has succeeded in developing a new three-dimensional cell model of the human placental barrier. The "model organ" can quickly and reliably deliver new information on the intake of substances, such as nano-particles, by the placental barrier and on any possible toxic effects for the unborn child. This knowledge can also be used in the future for the development of new approaches to therapy during pregnancy.
During its development, the foetus is extremely susceptible to toxic substances. Even the tiniest doses can cause serious damage. In order to protect the unborn child,one of the tasks of the placenta is to act as a barrier to "filter out" harmful substances, while at the same time providing the foetus with the nutrients it needs. In recent years, however, evidence has increasingly suggested that the placental barrier is not 100 percent effective and that nano-particles are actually able to penetrate it.
Nano-particles are being used in ever more varied areas of our lives. They are used, for example, in sun creams to protect against sunburn; they are used in condiments to stop them getting lumpy; they are used to make outdoor clothing waterproof and they are likely to be used in the future to transport medicines to their rightful destinations in the body . "At the moment, pregnant women are not being exposed to problematic amounts of nano-particles, but in the future that could well happen due to the ever increasing use of these tiny particles," suggests Tina Buerki of the "Department of Particles-Biology Interactions."
In order to ensure the safe development of nano-particles in the most diverse areas of application, their absorption mechanism at the placental barrier and their effect on the mother, foetus and placenta itself must be looked at more closely. It is the size, charge, chemical composition and shape of the nano-particles that could have an influence on whether they actually penetrate the placental barrier and, if so, in what way they are able to do so. At the moment, however, this research is only in its infancy. Since the function and structure of the human placenta is unique, studies undertaken on pregnant mammals are problematic and often inconclusive. Traditional models of the human placental barrier are either very time consuming to construct, or are extremely simplified.
A 3-D model of the human placental barrier
Tests of this nature are best carried out on donated placentas that become available after childbirth by Caesarean section. The organs are connected as quickly as possible to a perfusion system and this ensures the tissue is provided with nutrients and oxygen. This model is, indeed, the most accurate, i.e. the most clinically relevant. It is, however, very technically demanding and, moreover,restricted to a perfusion time window of six to eight hours. Against that, such placentas can be used to reliably test the ability of any given nano-particle to penetrate the placental barrier. The model does not, however, yield any information on the mechanism used by the particle to penetrate this complex organ.
Researchers are therefore tending to fall back on the use of simple cell cultures and other modelling systems. An individual cell, possibly taken from the epithelium and subsequently cultivated and propagated in a petri dish, is perfectly suited to a whole range of different experiments. However, researchers cannot be certain that the cells in the petri dish will ultimately behave like those in the human body. The new model that the Empa team under Tina Buerki described in the scientific journal Nanoscale at the end of last year is, by contrast, three-dimensional and consists of more than one cell type. The cells exist in a tissue-like environment analogous to the placenta and can be experimented on for a longer period of time.
Golden test candidate
In order to create the model, the research team used the "hanging drop" technology developed by Insphero AG. This technology allows models to be created without "scaffolding," which can hinder free access of the nano-particles to the cells in the subsequent transport tests. Rather than introducing the cells in a flat petri dish, a special device, in which the cells in the hanging drops combine to form spherical micro-tissue, is used. The resulting micro-tissue mimics the human placenta much more closely than cells cultivated on a "rigid" culture dish. Experiments can be carried out much more quickly using the 3-D model than with the real placenta and, significantly, on the most widely differing types of nano-particle. In this way, those nano-particles that show potentially toxic effects or demonstrate desirable transport behaviour can be efficiently pre-selected and the results verified using a real placenta.
The model has already proved itself in a second study, which the team has just published in the scientific journal Nanomedicine. Buerki's team has come up with an absorption mechanism for gold particles that could be used in a range of medicinal applications. The Empa team looked at gold particles of various sizes and different surface modifications. In accordance with the results of other studies, the researchers discovered that small gold particles were able to penetrate the placental barrier more easily. In addition, fewer particles passed through the barrier if they were carrying polyethylene glycol (PEG) on their surfaces. These are chain-forming molecules that almost completely envelope the particles. PEG is often used in medicine to allow particles and other small structures to travel "incognito" in the body, thus preventing them being identified and removed by the immune system. "It therefore appears possible to control the movement of nano-particles through the placenta by means of their properties," Buerki explains.
Medicines for pregnant women that do not harm the child
Empa's research team is keen to further develop this 3-D model in the future. The team is hoping to augment the model using a dynamic component. This would, for example, mean introducing the micro-tissue in a micro-fluid system able to simulate blood circulation in the mother and child. Another approach would be to combine the model of the placenta with other models. "With the model of a foetus, for example," Buerki suggests. In this way, complex organ interactions could also be incorporated and it would be possible, for example, to discover whether the placenta releases foetus-damaging substances as a reaction to certain nano-particles.
"With these studies, we are hoping to lay the foundations for the safe but nevertheless effective use of nano-medicines during pregnancy," Buerki continued. If we understand the transport mechanisms of nano-materials through the placental barrier well enough, we believe we can develop new carrier systems for therapeutic agents that can be safely given to pregnant women. This is because many women are forced to take medicines even during pregnancy patients suffering from epilepsy or diabetes, for example, or patients that have contracted life-threatening infections. Nano-carriers must be chosen which are unable to penetrate the placental barrier. It is also possible, for example, to provide such carriers with "address labels," which ensure that the medicine shuttle is transported to the correct organ i.e. to the diseased organ and is unable to penetrate the placenta. This would allow the medicine to be released first and foremost into the mother. Consequently, the amounts absorbed by the foetus or embryoand therefore the risk to the unborn child are significantly reduced.
Explore further: New placenta model could reveal how birth defect-causing infections cross from mom to baby
Continued here:
Medication for the unborn baby - Medical Xpress
- Post-doctoral Fellow in Drug Delivery, Nanomedicine & Advanced Therapeutics - Times Higher Education - January 6th, 2025
- Enhancing localized chemotherapy with anti-angiogenesis and nanomedicine synergy for improved tumor penetration in well-vascularized tumors -... - November 27th, 2024
- what is nanomedicine The British Society for Nanomedicine - November 16th, 2024
- Nanomedicine: Principles, Properties, and Regulatory Issues - October 6th, 2024
- Center for Nanomedicine - Johns Hopkins Medicine - October 6th, 2024
- Delivering the power of nanomedicine to patients today - October 6th, 2024
- Emerging Applications of Nanotechnology in Healthcare and Medicine - October 6th, 2024
- Tiny skin-stabbing stars designed to get meds through the epidermis - October 6th, 2024
- Inhibition of HIV-1 infection with curcumin conjugated PEG-citrate ... - October 6th, 2024
- Montgomery County, Kansas - Kansas Historical Society - October 6th, 2024
- The Nanomedicine Revolution - PMC - National Center for Biotechnology ... - October 6th, 2024
- Fawn Creek township, Montgomery County, Kansas (KS) detailed profile - October 6th, 2024
- Fawn Creek, Montgomery County, Kansas Population and Demographics - October 6th, 2024
- An Introduction to Nanomedicine - AZoNano - October 6th, 2024
- Nanomedicine Market is expected to show growth from 2024 to 2030, reported by Maximize Market Research - openPR - October 6th, 2024
- Oro Rx Healthcare LLP Unveils Oroceuticals: The Next-Gen Nutrition Delivery Tech - Hindustan Times - October 27th, 2023
- Leapfrogging as pharma leader of the worldNational Policy on Research and Development and Innovation in Pharma-MedTech Sector in India - The Sangai... - October 27th, 2023
- What will Indian healthcare look like in 2047? Robotics, AI, biotech will shape the future - The Economic Times - February 16th, 2023
- Going Beyond Target Or Mechanism Of Disease: Disruptive Innovation In Drug Delivery Systems - Forbes - September 12th, 2022
- Nanomedicine Market Size, Share, Types, Products, Trends, Growth, Applications and Forecast 2022 to 2028 - Digital Journal - September 12th, 2022
- Nano-preterm infants may not benefit from noninvasive versus invasive ventilation at birth - University of Alabama at Birmingham - September 12th, 2022
- Juan De Borbon - Introducing Cutting-Edge Techniques To The Healthcare Industry - CEOWORLD magazine - September 12th, 2022
- Organic thin-film sensors for light-source analysis and anti-counterfeiting applications - Nanowerk - September 12th, 2022
- Whole Exome Sequencing Market Projected to Reach CAGR of 19.0% Forecast by 2029, Global Trends, Size, Share, Growth, Future Scope and Key Player... - September 12th, 2022
- Another 'Dr. Copper' - MINING.COM - MINING.com - September 12th, 2022
- Artemisinin Combination Therapy Market Insights and Emerging Trends by 2027 - BioSpace - August 19th, 2022
- NASEM Recommends That EPA Conduct Ecological Risk Assessment of UV Filters Found in Sunscreen, Including Titanium Oxide and Zinc Oxide - JD Supra - August 19th, 2022
- Fast and noninvasive electronic nose for sniffing out COVID-19 based on exhaled breath-print recognition | npj Digital Medicine - Nature.com - August 19th, 2022
- Applications in Chronic Wound Healing | IJN - Dove Medical Press - July 25th, 2022
- Fundamental Knowledge on Nanobots - Bio-IT World - July 25th, 2022
- How different cancer cells respond to drug-delivering nanoparticles - MIT News - July 25th, 2022
- Nanorobots Market to close to USD 19576.43 million with CAGR of 12.23% during the forecast period to 2029 - Digital Journal - July 25th, 2022
- Microscopic Robots Made from White Blood Cells Could Treat and Prevent Life-Threatening Illnesses - Good News Network - July 25th, 2022
- Nano Therapy Market 2022 Growth Is Expected To See Development Trends and Challenges to 2030 This Is Ardee - This Is Ardee - July 25th, 2022
- Artificial Intelligence (AI), Cloud Computing, 5G, And Nanotech In Healthcare: How Organizations Are Preparing Best For The Future - Inventiva - July 25th, 2022
- Potassium Channels as a Target for Cancer Therapy & Research | OTT - Dove Medical Press - July 25th, 2022
- How can Nanotechnology be Used to Reverse Skin Aging? - AZoNano - May 20th, 2022
- Should Nanomaterial Synthesis Rely on Automation? - AZoNano - May 20th, 2022
- Fabrication Methods of Ceramic Nanoparticles - AZoNano - May 20th, 2022
- Explained: What are nanobots and how they can be used to help clean teeth? - Firstpost - May 20th, 2022
- Understanding the Health Risks of Graphene - AZoNano - May 20th, 2022
- Prevalence and predictors of SARS-CoV-2 | IDR - Dove Medical Press - May 20th, 2022
- Patches and robotic pills may one day replace injections - Science News for Students - May 20th, 2022
- Nanotechnology in the Nutricosmetics Industry - AZoNano - May 20th, 2022
- Nanomedicine: Nanotechnology, Biology and Medicine ... - December 22nd, 2021
- Frontiers | Nanomedicine: Principles, Properties, and ... - December 22nd, 2021
- Nanotechnology In Medicine: Huge Potential, But What Are ... - December 22nd, 2021
- Verseon Praised for Disruptive Approach to Physics- and AI-Based Drug Discovery - Digital Journal - December 22nd, 2021
- Nanotech opens up job options in variety of industries - BL on Campus - August 17th, 2021
- Homeopathic remedies that cattle farmers can use - Thats Farming - August 17th, 2021
- Healthcare Nanotechnology (Nanomedicine) Market Trend, Technology Innovations and Growth Prediction 2021-2027 The Manomet Current - The Manomet... - August 17th, 2021
- Regenerative Medicine Market Size Worth $57.08 Billion By 2027: Grand View Research, Inc. - PRNewswire - August 17th, 2021
- Nanotechnology Market Share, Industry Size, Leading Companies Outlook, Upcoming Challenges and Opportunities till 2028 - The Market Writeuo - The... - August 17th, 2021
- Global Nanomedicine Market is Expected to Grow at an Impressive CAGR by 2028 The Manomet Current - The Manomet Current - August 17th, 2021
- Complementary Protection May Be at Hand With a COVID-19-Preventing Nasal Spray - Newsweek - August 17th, 2021
- Nanorobotics Market By Player, Region, Type, Application And Sales Channel, Regions, Type and Application, Revenue Market Forecast to 2028 - Digital... - August 17th, 2021
- MagForce AG announces results of 2021 Annual General Meeting and changes to the Supervisory Board - Yahoo Eurosport UK - August 17th, 2021
- McMaster University researchers awarded more than $3M in Federal funds for projects - insauga.com - August 17th, 2021
- Global NANOTECHNOLOGY IN MEDICAL APPLICATIONS Statistics, CAGR, Outlook, and Covid-19 Impact 2016 The Bisouv Network - The Bisouv Network - February 14th, 2021
- Nanotechnology in Medical Market Demand Analysis To 2026 Lead By-Smith and Nephew, Novartis, Merck, Mitsui Chemicals, Amgen, Cytimmune KSU | The... - February 14th, 2021
- NanoViricides's Broad-Spectrum Antiviral Drug Candidate for the Treatment of COVID-19 Infections was Well Tolerated in GLP and non-GLP Animal Safety... - February 9th, 2021
- Nanorobots In Blood Market Top-Vendor And Industry Analysis By End-User Segments Till 2028 | Aries Chemical, GE Water & Process Technologies KSU... - February 9th, 2021
- Precision NanoSystems Receives Contribution from the Government of Canada to Build RNA Medicine Biomanufacturing Centre - PRNewswire - February 3rd, 2021
- Vaccine Production in BC's Future - AM 1150 (iHeartRadio) - February 3rd, 2021
- New facility to be built in Vancouver will produce 240 million vaccine doses annually | Urbanized - Daily Hive - February 3rd, 2021
- Faster tracking of treatment responses - MIT News - February 3rd, 2021
- NANOBIOTIX Announces First Patient Injected With NBTXR3 in Esophageal Cancer - Business Wire - February 3rd, 2021
- New Instrument Will Uncover Structure and Chemical Composition on Sub-Cell Scale - Georgia Tech News Center - January 12th, 2021
- Johns Hopkins Department of Otolaryngology-Head and Neck Surgery receives $15M contribution - The Hub at Johns Hopkins - January 9th, 2021
- COVID-19 Impact on Nanomedicine Market Size, Latest Trends, Growth and Share 2020 to 2026| Clinical Cardiology, Urology, Genetics, Orthopedics -... - January 9th, 2021
- Nanomedicine Market: Industry Analysis and forecast 2026: By Modality, Diseases, Application and Region - LionLowdown - January 9th, 2021
- Clene Nanomedicine Presents Blinded Interim Results from RESCUE-ALS Phase 2 Study at the 31st International Symposium on ALS/MNDResults provide... - December 16th, 2020
- Global Nanomedicine market 2020- Industry Overview, Global Trends, Market Analysis, CAGR Values and Country Level Demand To Forecast by 2027 -... - December 16th, 2020
- NHMRC awards Griffith University $4.5 million in research funding - Griffith News - December 16th, 2020
- Global Nanomedicine Market Analysis and Forecast to 2025 by Cancer Detection, Monitoring Therapy & Disease Detection - ResearchAndMarkets.com -... - December 10th, 2020
- Medical Physics Market: Growing Incidence of Chronic Diseases in Developing Regions to Drive the Market - BioSpace - December 10th, 2020
- Joseph DeSimone wins Harvey Prize in Science and Technology | The Dish - Stanford University News - December 10th, 2020
- Cancer Nanomedicine Market to Build Excessive Revenue at Healthy Growth rate at 12.50% up to 2027 - PharmiWeb.com - December 4th, 2020
- Sensing the body at all scales - MIT News - December 4th, 2020
- Healthcare Nanotechnology (Nanomedicine) Market Research Report with Revenue, Gross Margin, Market Share and Future Prospects till 2026 - The Market... - December 4th, 2020