The remarkable power of stem cells - which can be programmed to become almost any type of cell in the body - means they are key to many scientific studies.
Increasingly, they are also being used for new cell-based therapies to treat a range of diseases.
While originally we could only get stem cells from embryos, now we can derive them from a range of adult tissues, including skin or blood, using Nobel Prize-winning technology.
But Cambridge researchers have found DNA damage caused by factors such as ultraviolet radiation affected 72 per cent of the stem cell lines they studied that had been derived from human skin cells. This has important implications for research and medicine.
Prof Serena Nik-Zainal, from the Department of Medical Genetics at the University of Cambridge, said: Almost three-quarters of the cell lines had UV damage. Some samples had an enormous amount of mutations sometimes more than we find in tumours. We were all hugely surprised to learn this, given that most of these lines were derived from skin biopsies of healthy people.
Induced pluripotent stem cells (iPSCs), as those derived from other cell types or tissues are known, hold huge potential for tackling diseases, including rare conditions.
It is even suggested that iPSCs programmed to grow into nerve cells could be used to replace those lost to neurodegeneration in diseases such as Parkinsons.
The new research, published in Nature Genetics, represents the largest genetic study to date of iPSCs to date.
Dr Foad Rouhani, who carried out the work while at the University of Cambridge and the Wellcome Sanger Institute, said: We noticed that some of the iPS cells that we were generating looked really different from each other, even when they were derived from the same patient and derived in the same experiment.
The most striking thing was that pairs of iPS cells would have a vastly different genetic landscape one line would have minimal damage and the other would have a level of mutations more commonly seen in tumours.
One possible reason for this could be that a cell on the surface of the skin is likely to have greater exposure to sunlight than a cell below the surface and therefore eventually may lead to iPS cells with greater levels of genomic damage.
[Read more: Evidence of new causes of cancer uncovered as genomic data of 12,000 NHS patients is studied by University of Cambridge researchers]
DNA comprises three billion pairs of nucleotides - molecules represented by the letters A, C, G and T.
Damage from sources such as ultraviolet radiation or smoking leads to mutations, meaning a letter C might change to T, for example.
Studying the mutational fingerprints on our DNA can reveal what is responsible for the damage.
An accumulation of mutations can have a profound effect on cell function and in some cases lead to tumours.
Using whole genome sequencing, the researchers inspected the entire DNA of stem cell lines from different sources, including the HipSci cohort at the Wellcome Sanger Institute.
They found blood-derived iPSCs - which are increasingly common, due to the ease with which blood can be taken - also carried mutations but at a lower level than skin-derived iPS cells, and they had no UV damage.
Some 26.9 per cent of them, however, carried mutations in a gene called BCOR, which is an important gene in blood cancers.
Next the researchers investigated whether these BCOR mutations had any functional impact.
They differentiated the iPSCs, turning them into neurons and tracking their progress along the way.
[Read more: 4m funding for Cambridge scientists under Cancer Grand Challenges initiative]
Dr Rouhani said: What we saw was that there were problems in generating neurons from iPSCs that have BCOR mutations they had a tendency to favour other cell types instead. This is a significant finding, particularly if one is intending to use those lines for neurological research.
Analysis of the blood samples showed the BCOR mutations were not present within the patient.
So it seemed that the process of culturing cells increased the frequency of the mutations, which could have implications for other researchers working with cells in culture.
Typically, scientists using cell lines will screen them at the chromosomal level checking, for example, that the requisite 23 pairs of chromosomes are present.
Such analysis would not pick up the potentially major problems that this new study has identified, however,
The researchers warn that without looking in detail at the genomes of these stem cells, researchers and clinicians would be unaware of the underlying damage in them.
The DNA damage that we saw was at a nucleotide level, explained Prof Nik-Zainal. If you think of the human genome as like a book, most researchers would check the number of chapters and be satisfied that there were none missing. But what we saw was that even with the correct number of chapters in place, lots of the words were garbled.
Using whole genome sequencing, however, would enable errors to be discovered at the outset..
The cost of whole genome sequencing has dropped dramatically in recent years to around 500 per sample, though it's the analysis and interpretation that's the hardest bit, said Prof Nik-Zainal.
If a research question involves cell lines and cellular models, and particularly if we're going to introduce these lines back into patients, we may have to consider sequencing the genomes of these lines to understand what we are dealing with and get a sense of whether they are suitable for use.
Dr Rouhani adds: In recent years we have been finding out more and more about how even our healthy cells carry many mutations and therefore it is not a realistic aim to produce stem cell lines with zero mutations.
The goal should be to know as much as possible about the nature and extent of the DNA damage to make informed choices about the ultimate use of these stem cell lines.
If a line is to be used for cell based therapies in patients for example, then we need to understand more about the implications of these mutations so that both clinicians and patients are better informed of the risks involved in the treatment.
The research was funded by Cancer Research UK, the Medical Research Council and Wellcome, and supported by NIHR Cambridge Biomedical Research Centre and the UK Regenerative Medicine Platform.
Continue reading here:
Many stem cell lines used for research and therapies carry large number of mutations, Cambridge researchers find - Cambridge Independent
- Advances in regenerative medicine-based approaches for skin ... - March 9th, 2025
- Regenerative Medicine: Case Study for Understanding and Anticipating ... - March 9th, 2025
- Top 3 Grants in Regenerative Medicine: February 2025 - RegMedNet - March 9th, 2025
- Editorial: Tissue Engineering and Regenerative Medicine: Advances, Controversies, and Future Directions by Frontiers in Bioengineering and... - March 9th, 2025
- Malaysia To Host 7th World Conference On Exercise And Regenerative Medicine - BERNAMA - March 9th, 2025
- Advancing Regenerative Medicine: A Comprehensive Outlook on the Global Cell Therapy Market - openPR - March 9th, 2025
- Worlds First 3D-Printed Penis Implant Successfully Restores Function in Pigs and Rabbits - The Daily Galaxy --Great Discoveries Channel - March 9th, 2025
- AskBio Receives FDA Regenerative Medicine Advanced Therapy designation for Parkinsons disease investigational gene therapy - Bayer - February 24th, 2025
- What is Regenerative Medicine? | Regenerative Medicine | University of ... - February 24th, 2025
- The quest for a communication device that tells cells to regenerate the body - Big Think - February 24th, 2025
- Transforming the future of regenerative medicine - Reuters - February 24th, 2025
- Breakthrough Alzheimer's Treatment Gets Official WHO Recognition - Major Milestone for Rare Disease Therapy - StockTitan - February 24th, 2025
- Regenerative Medicine Pioneer with 35-Year Track Record Takes Scientific Helm at ZEO ScientifiX - StockTitan - February 24th, 2025
- 101 Guide to Regenerative Medicine Types | Applications, Challenges - February 7th, 2025
- Regenerative Medicine | What is it? | ASCPM - February 7th, 2025
- Regenerative medicine and advanced therapy | NIST - February 7th, 2025
- Therapeutic Reprogramming toward Regenerative Medicine - February 7th, 2025
- Novel living biomaterial aims to advance regenerative medicine - February 7th, 2025
- UC Irvine-led discovery of new skeletal tissue advances regenerative ... - February 7th, 2025
- Top 3 Grants in Regenerative Medicine: January 2025 - RegMedNet - February 7th, 2025
- Advancements in lung regeneration: from bench to bedside - February 7th, 2025
- Entos Pharmaceuticals Awarded $4 Million USD in Funding from the California Institute for Regenerative Medicine (CIRM) for its Congenital Generalized... - February 7th, 2025
- Adia Nutrition Officially Enters $15.1 Billion Global Stem Cell Market with Domestic Treatments by Successful Opening of First Florida Location -... - February 7th, 2025
- Cell therapy weekly: iPSC therapy IND for Phase III trial cleared - RegMedNet - February 7th, 2025
- Creative Medical Technology Holdings Expands Collaboration with Greenstone Biosciences to Accelerate iPSCelz - EIN News - February 7th, 2025
- Placental Stem Cell Therapy Solution Market Size And Booming - openPR - February 7th, 2025
- Stem Cells Applications in Regenerative Medicine and Disease ... - December 6th, 2024
- Ageing of stem cells reduces their capacity to form tumours - Nature.com - December 6th, 2024
- Master of Science in Regenerative Medicine and Entrepreneurships FUSION program information session - The Daily | Case Western Reserve University - December 6th, 2024
- BioRestorative Therapies Announces Notice of Allowance of - GlobeNewswire - December 6th, 2024
- Stem Cell Therapy Strategic Business Report 2024 - - GlobeNewswire - December 6th, 2024
- University of Colorado Anschutz Medical Campus-Led Team Receives Up to $46 Million to Develop Innovative Treatment to Cure Blindness - University of... - December 6th, 2024
- Affimed Announces Acimtamig and AlloNK Combination Granted Regenerative Medicine Advanced Therapy (RMAT) Designation by the U.S. Food and Drug... - December 6th, 2024
- Navigating the hope and hype of regenerative medicine - October 14th, 2024
- Cell and Gene Therapy Investment Ticks Up After Hard Few Years - BioSpace - October 14th, 2024
- Crackdowns on Unproven Stem Cell Therapies Worked Abroad - Medpage Today - October 14th, 2024
- How Regenerative Medicine can help you get out of pain without surgery - WJLA - October 14th, 2024
- Regenity Biosciences Receives 510(k) Clearance for RejuvaKnee, a Groundbreaking Regenerative Meniscus Implant Device to Redefine the Standard of Care... - October 14th, 2024
- Buy, Sell, Hold: Cell and Gene Therapy - BioPharm International - October 14th, 2024
- Mayo Clinic offers unique regenerative medicine procedure for knee and ... - September 13th, 2024
- Regenerative Medicine to the Rescue - Cleveland Clinic - September 13th, 2024
- Regenerative medicine applications: An overview of clinical trials - September 13th, 2024
- The Progression of Regenerative Medicine and its Impact on Therapy ... - September 13th, 2024
- Immune cell injection significantly boosts healing of bone, muscle & skin - September 13th, 2024
- Regenerative Medicine Foundation - September 13th, 2024
- BridgeBio Receives FDAs Regenerative Medicine Advanced Therapy (RMAT ... - September 13th, 2024
- Tissue engineering and regenerative medicine approaches in colorectal ... - September 13th, 2024
- Tubular scaffolds boost stem cell-driven bone regeneration in skull defects - Phys.org - September 13th, 2024
- Finding the right path(way) to reduce fat accumulation in the liver - Medical University of South Carolina - September 13th, 2024
- NAMRU EURAFCENT Signs Agreement with Egypt Center for Research and Regenerative Medicine - DVIDS - September 13th, 2024
- BridgeBio Receives FDAs Regenerative Medicine Advanced Therapy (RMAT) Designation for BBP-812 Canavan Disease Gene Therapy Program - StockTitan - September 13th, 2024
- BioNexus Gene Lab Corp. Signs Strategic Partnership MOU with Shenzhen Rongguang Group to Advance Cancer Screening, Precision Medicine, and... - September 13th, 2024
- Neurona Therapeutics Receives $3.8 Million CIRM Grant for the Development of Next Generation Neural Cell Therapy Candidate - Yahoo Finance - September 13th, 2024
- Aging is associated with functional and molecular changes in distinct hematopoietic stem cell subsets - Nature.com - September 13th, 2024
- Cellino Awarded $25M in Funding from the Advanced Research Projects Agency for Health (ARPA-H) - Business Wire - September 13th, 2024
- HepaTx Enters Collaboration with Mayo Clinic to Advance Cell Therapy Technology for Liver Disease to Clinical Trials - Longview News-Journal - September 13th, 2024
- Obsidian Therapeutics Receives FDA Regenerative Medicine Advanced Therapy (RMAT) Designation for OBX-115 for the Treatment of Advanced Melanoma -... - September 4th, 2024
- Regenerative Medicine in Orthopedic Surgery: Expanding Our Toolbox - Cureus - September 4th, 2024
- Somite.ai takes pre-seed to $10M as it eyes to become the OpenAI of stem cell biology - CTech - September 4th, 2024
- Longeveron Announces Positive Type C Meeting with U.S. FDA Regarding Pathway to BLA for Lomecel-B in Hypoplastic Left Heart Syndrome (HLHS) - Yahoo... - September 4th, 2024
- Study Explores Potential Of 3D Printed Regenerative Breast Implants - Forbes - September 4th, 2024
- Nikon Announces New Image Analysis Functions to Empower Drug Discovery Research for Cancer, Neurological Disease, and Regenerative Medicine - PR... - September 4th, 2024
- Trinity researcher scores 800,000 to boost regenerative medicine - SiliconRepublic.com - September 4th, 2024
- Seeing the future: Zebrafish regenerates fully functional photoreceptor cells and restores its vision - EurekAlert - September 4th, 2024
- Regenerative Medicine Industry Projected to Surge to USD 73,084.2 Million by 2033, Growing at an 18.5% CAGR - Future Market Insights - September 4th, 2024
- What is regenerative medicine? | Northwell Health - July 2nd, 2024
- Science Saturday: A regenerative reset for aging - July 2nd, 2024
- Science Saturday: A year of new directions and advancements for ... - March 29th, 2024
- Diverse ways regenerative medicine is advancing health care - March 29th, 2024
- Stem cell-based regenerative medicine - PMC - National Center for ... - February 27th, 2024
- Regenerative medicine | NIST - February 10th, 2024
- San Jose blood stem cell donor meets 15-year-old whose life he saved in Los Angeles - The Mercury News - May 17th, 2023
- Regenerative medicine: Current therapies and future directions - April 23rd, 2023
- What Is Regenerative Medicine? | Goals and Applications | ISCRM - April 23rd, 2023
- Important Patient and Consumer Information About Regenerative Medicine ... - April 23rd, 2023
- Regenerative medicine can be a boon for those with Drug-Resistant Tuberculosis - Hindustan Times - April 23rd, 2023
- About Regenerative Medicine - Center for Regenerative ... - Mayo Clinic - April 7th, 2023
- Regenerative Medicine | National Institutes of Health (NIH) - April 7th, 2023
- Porcine Vaccine Market is estimated to be US$ 4.41 billion by 2030 with a CAGR of 7.50%during the forecast - EIN News - April 7th, 2023
- Advancing Safe and Effective Regenerative Medicine Products - March 21st, 2023