Live Cell Therapy:
Live cell therapy was developed in Switzerland by Dr. Niehans. Over 2400 years ago, Hippocrates had theorized that, for example, if you had liver problems, the answer would be found in the healthy liver of a young animal because the livers of both man and animals operate almost exactly the same way. His theory applied to all organs and glands of the body: heart, lung, thymus, adrenals, spleen, etc.
Over the centuries, doctors and scientists scoffed at Hippocrates' theory. In the 1930s, Dr. Niehans reported success in curing a variety of illnesses with injections of live cell extracts from healthy animal organs mirroring the diseased organ in the human.
In the 1960's, however, separate radioactive labelling studies at the University of Vienna and the University of Heidelberg, showed unquestionably, that the vital constituents of a calf's gland or organ, when injected into a human, went directly to that same gland or organ. It appeared that the live cells offered unique biochemicals specifically needed by the diseased gland or organ which were unattainable elsewhere!
Dr. Niehans felt that the constituents of the gland or organ had to be extracted before the gland or organ began to deteriorate. He had his own cattle ranch next to his Clinique La Prairie in Switzerland, and butchered the calf the same day he planned to use its gland or organ. So, the gland or organ was still warm or "live" when he processed it. Unfortunately, extracting the important substances was excruciatingly slow. That's why the costs to go to the Clinique were so high.
[Return to "Quick-Index" for Live Cell & Stem Cell Therapy]
More about Dr. Paul Niehans:
The following is an excerpt from the book, Feeling Younger Longer, by Cornel Lumiere, 1973:
....In his Introduction to Cellular Therapy, Neihans devotes a brief section to "The Fate of the Cells After Injection." His opening sentence declares bluntly: "Nothing certain can be said on this subject, as the practitioners of this system of treatment are still of different opinions" (19, p.35).
He presented the varying theories in a series of questions:
1. When it is a question of cells needed by our organism, do the cells injected into the muscles remain alive and do they make their way towards the organ of which they bear the name if that organ is impaired? In other words, do the cells in question really make their way to the impaired organ? 2. Or do the injected cells continue to live in the muscles at the site of injection, the blood vessels assuring the supply of oxygen at the same time as the elimination of excretions? In other words, is it possible that the cells remain alive at the site of the injection and act on the impaired organ from a distance? 3. Or are the injected cells, attacked by antibodies, broken down into their elements, and are these elements utilized by the organism to rehabilitate the impaired organ? That is to say, disintegration of the injected cell, then utilization of the material by the organism for the purpose of reconstruction (19, pp. 35-36).
Niehans insist[ed] ... strongly [on] the use of ... whole cells rather than isolated components. He says: "Cells contain nuclei, chromosomes, granular tissue, mitochondria, protoplasm and many other materials. Many efforts have been made of late years to isolate these active substances and to inject them--a useless task--for the results obtained by using the cell itself as a unity (that is, according to the classical method of cellular therapy) are infinitely superior" (19, pp. 37-38).
While I was at the Clinique La Prairie, I asked Dr. Michel why cells were used in preference to hormones, since cells were frequently taken from glands such as the thyroid, hypothalamus, parathyroid, adrenals, and the sex glands. He replied to the effect that, although some excellent results have been achieved with hormones in a variety of complaints or deficiencies, in his experience and that of Professor Niehans, hormones are only a substitute, where cells actually cause a continuous regeneration by nature.
Niehans puts the case against hormones more strongly: "As the organism does not store hormones but produces only the quantities corresponding to the needs of the moment, treatment by hormones is only a temporary form of treatment and does not lead to a cure. This is precisely what happens with insulin. To that then is added in course of time an atrophy caused by inactivity of the gland, its cellular functions being totally exhausted.
"Hormonal therapy also has its limits. How, for example, can we treat a lesion of the [pituitary] with hormones when the cells of the [pituitary] act in part cyclically, in part according to the needs of the moment, and when the gland, according to our present knowledge, possesses 24 different hormone13s? (19, p.15).
Whole cells work better than isolated components and hormones. (19, p.112)
[Return to "Quick-Index" for Live Cell & Stem Cell Therapy]
Lyophilisate Whole Cells:
Treatment can be done with lyophilisate whole cells from Cytobiopharmica of Germany. Dr. Gerhard Heinstein, from Lohr, Germany, has twenty years experience in the use of whole, live cells with children and adults.
Some physicians have expressed concern about potential antibody/antigen reactions to whole cell therapy. To date, no adverse antigen and antibody reactions to the use of lyophilisates has been reported.
The Nobel Prize in Medicine and Physiology was awarded to Dr.'s Peter Medawar and Macfarlane Burnett in 1960, for their work in transplantation immunity. They showed that lyophilized tissue will not provoke an immune reaction. They also showed that fetal cells are less antigenic than any other types of cells. These studies were performed transfering allogenic spleen cell suspensions and leukocytes, which in the fresh state are highly immunogenic, from A-mice to CBA-mice.
When lyophilisized cells are implanted (injected), they are broken down by macrophages (tissue histiocytes). According to Dr.Trotsky of Israel, in 1985, the implantation of lyophilisized cells into 300 adults and children had only the production of local histamine at the site of injection in 10% of the population. This was an IgE mediated response. In his study, 5% had lethary and flu-like sypmtoms lasting 2-3 days, 5% with a slight rise in temperature for a couple hours to days, 30% with malaise lasting 10-15 days, 50% without any side effects, and 10% with Cell Therapy Local Reaction (CTLR) wherein, the histamine response took place. In an unpublished study, and personal communication with Dr. Harvey Good, a pediatrition in Scotland, he notes that in children the side effects are less, and approximately 75% of the children have no adverse response what so ever. If adults or children go through a general detoxification prior to cellular therapy, the incidence drops even further.
[Return to "Quick-Index" for Live Cell & Stem Cell Therapy]
Oral Organ Extracts:
In support of Hippocrates theory and Niehans therapy, Dr. W. Boecker directed a double-blind clinical trial on 146 patients with cirrhosis of the liver. Half were given a placebo, and half took a liver extract. Sixty-seven percent of those taking the liver extract had significant improvement in liver function (more than placebo).
In another double-blind study of 600 patients suffering from hepatitis, Dr. Kiyoshi Fujisawa at the Jikei Universtiy School of Medicine in Tokyo, showed that, in only 12 weeks, 35% of the patients taking a liver extract showed substantial improvement (better than placebo). He stated, "the results of this study clearly demonstrate that oral administration of liver hydrolysate preparations can be useful in the treatment of chronic hepatitis, and this efficacy is thought to derive from improved function of damaged hepatocytes and from subsidence of active changes of the liver.
Dr. Pietro Cazzola conducted a study of 130 patients with malfunctions of the immune system and reported that treating those patients with thymic gland extracts improved their conditions.
Dr. D.M. Kouttab of the Roger Williams Hospital and Brown University, reported health efficacy for extracts of the adrenal cortex.
Dr. Franco Pandolfi of the medical school at the University of Rome directed a double-blind clinical trial on elderly hospitalized patients. Half of the patients were given a thymic extract and half took a placebo. Those taking the extract had fewer infections over a six-month period than those receiving the placebo.
Dr. V. Cangemi followed 25 patients taking thymic extracts after cancer surgery and found that none of them got infections. Tests showed that their immune systems were substantially bolstered by the thymic extracts compared to controls.
Dr. Massimo Fedrico guided a double-blind clinical trial of 134 people undergoing chemotherapy. Half of the patients were given thymic extracts, and they lived 49% longer than those taking a placebo.
Dr. Alec Fiocchi led a double-blind clinical trial on patients with chronic respiratory infections. Half of the patients were given thymic extracts, and the other half received placebos. In only three months, but not during the winter cold season, those taking the thymic extracts had 30% fewer infections than the placebo group.
Tuftsin is a peptide found in spleen extracts. Dr. I. Florentin reported in the journal, Cancer Immunology, that laboratory animals given tuftsin showed a significant 3.1 fold increase of disease-fighting cells. Dr. M.S. Wleklik found that even the tiniest amount of tuftsin in vitro stimulated the production of TNF lymphokines. These lymphokines are killers of tumor cells. Dr. M. Bruley-Rosset gave elderly mice tuftsin for a few months, reporting in the Annals of the New York Academy of Sciences, that the capacity of disease-fighting macrophages in these old mice was restored to the level of much younger mice. Dr. M. Fridkin found that a deficiency of tuftsin is commonly found in people who get frequent infections as well as in cancer patients. AIDS patients also have very little tuftsin in their systems.
Calf heart extracts have 17 amino acids, five B vitamins, folic acid, calcium, iron, heparin, coenzyme Q10, cytochrome C and mesoglycan. A clinical study of the use of calf aorta in patients affected by chronic atherosclerotic arteriopathies showed a significant increase in femoral venous blood flow and an anticoagulant activity.
Folic acid is reported to reduce the oxidation of cholesterol Coenzyme Q10 assists the heart muscle in energy production. Cytochrome C helps all cells in the body convert oxygen and nutrients to energy.
The aorta is composed of a substance called mesoglycan, which provides structural support.
Dr. G. Laurora and researchers from the Cardiovascular Institute conducted double-blind trials on patients with early stages of arteriosclerosis (clogged arteries). Half of the patients received mesoglycan, and half took a placebo. A small section of one artery was scanned with high-resolution ultrasound before and after treatment. At the end of 18 months, the occlusion of the arteries of the patients taking the placebo had increased seven times more than those taking mesoglycan. Several clinical trials have shown that mesoglycan also deters blood clots and reduces the risk of strokes--even for people who have severely clogged arteries. Dr. F. Vecchio found that patients given mesoglycan for only 15 days experienced a 20% drop in "bad" cholesterol and 44% increase in "good" cholesterol.
A commercial product, Bioactive Cell Complex, is made from specific organ cells from young animals. The cells are "predigested" to liberate their ingredients. This matieral is freeze dried for maximum preservation. The orally ingested cells are organ-specific but not species-specific.
Theoretically, with autistic children, one would administer brain cells or gut cells for maximum efficacy.
[Return to "Quick-Index" for Live Cell & Stem Cell Therapy]
Stem Cell Therapy:
In principle, stem cells (immature cells that have not yet differentiated into specific types of cells) can be used to repair bone, cartilage, tendon and other injured or aged tissues. These cells can be derived from the patient's own bone marrow and thus present no problem of immune rejection.
Biologist at Osiris Therapeutics, in Baltimore, MD, have shown that human mesenchymal stem cells can be converted into bone cells, cartilage cells, fat cells and the stroma cells in the bone marrow that provide support for blood-forming cells.
Dr. Daniel R. Marshak, Osiris' chief scientific officer, said the mesenchymal stem cells could be formulated so that, when inserted in the right place in the body, they would change into the appropriate tissue.
Tests in animals show that when the cells are grown on ceramic and put into bone, they turn into bone-forming cells. If grown in a gel and inserted into cartilage, they metamorphose into cartilage cells. If injected into the bloodstream, the cells take up residence in the bone and turn into stroma cells.
A clinical trial is under way with breast cancer patients to explore the cells' stroma-forming abilities. Lack of stroma to support blood-forming cells may be why the bone marrow transplants given to cancer patients after chemotherapy are not always successful.
With Novartis AG, the Swiss pharmaceutical company, Osiris also plans to test in humans the cells' abilities to form new bone, tendon and cartilage.
The cells can also be converted to fat cells, which could prove useful in cosmetic surgery and possibly as material for breast implants.
Dr. Mark F. Pittenger,who identified the various factors needed to convert the cells into bone, cartilage, and fat, said he is now working to change them into heart-muscle cells. People are born with a fixed number of heart-muscle cells and the heart grows by enlargement of these cells, not by growing more. "We hope at the least we could prevent some of the scarring after a heart attack by implanting new cells," Pittenger said.
The human mesenchymal stem cells found in adult bone marrow are derived from the mesoderm, one of the three tissue types of the early embryo and the source of all the body's bone and connective tissue. The adult stem cells evidently retain much, and possibly all, of the mesoderm's magical plasticity.
[Return to "Quick-Index" of Live Cell & Stem Cell Therapy]
Research: "The Myelin Project":
The exciting work of researchers funded by The Myelin Project, whose goal is to remyelinate the human central nervous system, may someday have benefits for autistic children. Only time will tell if a specific area of damaged neurons can be found and potentially repaired with stem cells.
The first human trial, conducted by Dr. Timothy Vollmer at Yale University School of Medicine, will attempt to transplant myelin-forming Schwann cells into the brains of five patients with multiple sclerosis. The cells will be obtained from the sural nerves of the patients themselves. Although Schwann cells normally produce myelin in the peripheral nervous system, several recent experiments conducted on rodents and cats have shown these cells have the ability to remyelinate in the CNS as well.
While multiple sclerosis is a long way from autism, there is discussion of anti-myelin antibodies in autism, and there is talk of inflammatory processes involving myelin. Whether this technology can help autism if it works for multiple sclerosis is anybody's guess, but it's exciting to wonder about.
The Myelin Project funds a Cell Culture Unit at the University of Wisconsin-Madison, where Dr. Su-chun Zhang continues to generate cultures with ever-higher percentages of human oligodendrocyte precursors (OPs). Oligodendrocytes are the cells that normally myelinate the CNS. If obtainable in sufficient quantity, they would provide an alternative to Schwann cells for transplantation. The Unit has developed a method to track transplanted OPs by MRI, labeling the cells with iron particles. In another recent experiment, Dr. Baron-Van Evercooren and colleagues were able to remyelinate as many as 55% of the nerves in monkey spinal cord lesions by transplanting the monkeys' own Schwann cells. These initial positive results, however, have not been confirmed in subsequent attempts. She suspects that the viral labels she used to distinguish the transplanted cells caused them to die. She is trying again without viral labeling. If successful, this experiment would prove that CNS remyelination is feasible in higher animals.
Several researchers funded by The Myelin Project have injected myelin-forming cells into the ventricles of the brain of experimental animals and have shown that these cells were transported by the cerebrospinal fluid to all regions of the brain. This makes it more likely that injected cells will travel to where the myelin needs to be repopulated.
The Myelin Project has funded Dr. Oliver Brstle of the University of Bonn, Germany, and Dr. Evan Snyder of Harvard University to work with neural stem cells (NSC). These are self-renewing, multipotent cells, capable of differentiating into the major types of neural cells, including oligodendrocytes. One of their most potentially beneficial properties is their tendency to respond to signals in the CNS environment. In CNS diseases, these signals guide the cells to damaged areas. Second, they prompt them to differentiate into the specific cell type needed for the repair -- neurons in nerve diseases like Parkinson's and oligodendrocytes in myelin disorders like the leukodystrophies and multiple sclerosis.
NSCs are typically of fetal origin, but have also been found in the adult brain. NSCs can be multiplied in culture indefinitely as an "immortal" cell line. They could eventually provide an inexhaustible source of myelin-forming cells, eliminating the need for obtaining them from fresh tissue. Several research centers are now testing human NSCs to verify their safety and in particular to rule out any risk of their becoming cancerous. If this testing concludes favorably, then prospective myelin repair strategies could take a two-fold approach. NSCs would be injected into the ventricular system where the cerebrospinal fluid would circulate them to all parts of the CNS. Local signals would then come into play, guiding the cells to the specific demyelinated areas.
The Myelin Project has also funded Dr. Robin Franklin of the University of Cambridge to study olfactory ensheathing cells, a third type of myelin-producing cell. He has perfected a technique for demyelinating the area of rat brain connecting the cerebellum with the brain stem. He subsequently remyelinated the area by transplanting rat Schwann cells, which adds to the body of evidence in favor of Schwann cell transplantation as a way of repairing CNS myelin lesions.
The Myelin Project has also funded Dr. Inderjit Singh of the Medical University of South Carolina to study the use of Lovastatin in the treatment of myelin disorders. The drug corrects the biochemical defect of adrenoleukodystrophy, lowering the levels of very long chain fatty acids in plasma. Preliminary studies with an animal model of MS have confirmed Lovastatin's ability to block the induction of cytokines, substances responsible for the inflammation of the CNS. We know that the levels of very long chain fatty acids and of some cytokines are elevated in autism. I am wonderijng already if Lovastatin might be worth trying for children with documented elevated very long chain fatty acids and elevated cytokines.
These studies present exciting possibilities for the future for treating neurodegenerative diseases. They may eventually have relevence for such diverse conditions as autism, cerebral palsy, and CNS vaccine damage syndromes. Time will tell.
Read the original here:
Live Cell & Stem Cell Therapy - healing-arts.org
- Study finds stem cell therapy is safe and may benefit people with ... - October 22nd, 2024
- Stem Cell Therapy Market Size to Hit USD 48.89 Billion by 2033 - GlobeNewswire - October 22nd, 2024
- Eves dream to walk: Family raising vital funds for two-year-olds stem cell therapy - Her.ie - October 22nd, 2024
- Stem cell therapies for chronic obstructive pulmonary disease ... - September 21st, 2024
- Magellan Stem Cells welcomes $7 million federal government grant - September 21st, 2024
- Stem Cell Therapy Research: Creative Biolabs Advances iPSC-Derived Macrophage Solutions - openPR - September 21st, 2024
- Stem Cell Therapy Market Dynamics: Size, Share, and Growth - openPR - September 21st, 2024
- Stem cells: Therapy, controversy, and research - Medical News Today - September 4th, 2024
- Stem cell-based therapy for human diseases - PMC - September 4th, 2024
- Bone marrow mesenchymal stem cells in treatment of peripheral nerve ... - September 4th, 2024
- Stem Cell Therapy Mexico: R3 Stem Cell Unveils Innovative and Affordable Non-Invasive Solutions - openPR - September 4th, 2024
- 'Didn't know this would be possible': Autistic teen's mom on stem cell therapy benefits - WZTV - May 5th, 2024
- Putting Stem Cell-Based Therapies in Context | National Institutes of ... - April 8th, 2024
- Eggs from men, sperm from women: Stem cell therapy may just turn reproduction upside down! - The Economic Times - January 17th, 2024
- Stem Cell Therapy: From Idea to Clinical Practice - PMC - December 13th, 2023
- Current state of stem cell-based therapies: an overview - PMC - November 18th, 2023
- Stem Cell Therapy Is It Right for You? Cleveland Clinic - January 31st, 2023
- Stem Cell Therapy | Mellon Center Approach | Cleveland Clinic - January 31st, 2023
- Stem Cell Therapy for Parkinson's: Current Developments - Healthline - December 3rd, 2022
- Canine Stem Cell Therapy Market Size 2022 with a CAGR of % Market Share, prime companies report covers, world business Trends, Statistics, Definition,... - June 16th, 2022
- Global Rheumatoid Arthritis Stem Cell Therapy Market 2022 Swot Analysis by Top Key Vendors, Demand And Forecast Research to 2028 Designer Women -... - June 16th, 2022
- Sutton boy pledges to raise money to help his brother with autism go to America for stem cell therapy - Mansfield and Ashfield Chad - June 16th, 2022
- Japan's five hottest biotech companies in healthcare - Labiotech.eu - June 16th, 2022
- Hemostemix Announces the Incorporation of PreCerv Inc. And a Global Field of Use License to NCP-01 - Yahoo Finance - June 16th, 2022
- Stem cell therapy shows promise in aiding equine wound healing - Horsetalk.co.nz - Horsetalk - April 2nd, 2022
- Rheumatoid Arthritis Stem Cell Therapy Market Assessment, With Major Top Companies Analysis, Geographic Analysis, Growing Opportunities Data By... - April 2nd, 2022
- Jasper Therapeutics to Present Updated Data on JSP191 Conditioning in SCID Patients at the 2022 Clinical Immunology Society Annual Meeting - Yahoo... - April 2nd, 2022
- Talaris therapy ends need for immune drugs in transplant patients - - pharmaphorum - November 7th, 2021
- Safety of Stem Cell Therapy for Chronic Knee Pain Confirmed in New Study - SciTechDaily - August 4th, 2021
- Multiple myeloma stem cell transplant: What happens and more? - Medical News Today - August 4th, 2021
- Animal Stem Cell Therapy Market Research 2021-2027 With Medivet Biologics LLC, VETSTEM BIOPHARMA, J-ARM, US Stem Cell The Manomet Current - The... - August 4th, 2021
- Global Stem Cell Therapy Market to witness exponential proliferation during 2020-2026 The Manomet Current - The Manomet Current - August 4th, 2021
- FDA gives speedy review to Bayer's Parkinson's stem cell therapy - - pharmaphorum - July 21st, 2021
- Stem Cell Therapy Market Analysis of Key Players, End User, Demand and Consumption By 2026 26 Sports - 2x6 Sports - July 21st, 2021
- NanoString Launches nCounter Stem Cell Characterization Panel to Advance the Development of Stem Cell Therapy - Business Wire - June 24th, 2021
- Adipose Tissue Derived Stem Cell Therapy Market New Innovation and Perception 2028 AlloCure, Antria, Celgene, Cellleris SA, Corestem, Intrexon,... - June 24th, 2021
- Jasper Therapeutics and Aruvant Announce Research Collaboration to Study JSP191, an Antibody-Based Conditioning Agent, with ARU-1801, a Novel Gene... - June 24th, 2021
- Global Nerve Repair and Regeneration Devices Market to Reach $11. 8 Billion by 2026 - GlobeNewswire - June 24th, 2021
- Controversial Stem Cell Therapy Has Helped Repair Injured Spinal Cords in 13 Patients - ScienceAlert - March 3rd, 2021
- Cynata tests wound dressing tech for stem cell therapy delivery - The West Australian - March 3rd, 2021
- Stem Cell Injections Could Treat Spinal Cord Injuries | IE - Interesting Engineering - March 3rd, 2021
- NSAIDs to Treat Arthritic Canines Through 2028; Stem Cell Therapies to Invigorate Canine Arthritis T - PharmiWeb.com - March 3rd, 2021
- Overview of stem cells therapy in amyotrophic lateral sclerosis - DocWire News - March 3rd, 2021
- We have a hint it may be possible: Controversial stem cell therapy repaired injured spinal cords in 13 patients - RT - March 3rd, 2021
- Global Stem Cell Therapy Market 2021- Regional Analysis(Consumption, Revenue, Market Share and Growth Rate) and Forecast Till 2027 NeighborWebSJ -... - March 3rd, 2021
- Global Animal Stem Cell Therapy Market 2020 2025 Research Report Segment Outlook, Growth Potentials and Analysis of COVID-19 Worldwide Outbreak KSU... - March 3rd, 2021
- Animal Stem Cell Therapy Market Size 2021 | Global Trends, Business Overview, Challenges, Opportunities and Forecast to 2027 The Bisouv Network - The... - March 3rd, 2021
- Projected Stem Cell Therapy Market Growth After Coronavirus COVID-19 Outbrek Analysis and Forecast (2020-2027) The Bisouv Network - The Bisouv... - March 3rd, 2021
- Stem Cell and PRP Injection for Knee Osteoporosis Pain and Injury Using US Image Guidance - Magazine of Santa Clarita - March 3rd, 2021
- Animal Stem Cell Therapy Market Potential Growth, Share and Demand Analysis of Key Players MediVet Biologic, VETSTEM BIOPHARMA, J-ARM, Celavet NY... - March 3rd, 2021
- Musculoskeletal Disorder Stem Cell Therapy Market Size 2021 | Global Trends, Business Overview, Challenges, Opportunities and Forecast to 2027 The... - March 3rd, 2021
- Exclusive Insights on Stem Cell Therapy for Multiple Sclerosis Market 2021-2026: Latest Trends, Drivers, Strategies and Competitive Landscape The... - March 3rd, 2021
- Stem Cell Therapy Market By Treatment,Application,End Users And Geography Forecast To 2027 The Bisouv Network - The Bisouv Network - March 3rd, 2021
- 10 Best Clinics for Stem Cell Therapy in Thailand [2021 ... - February 14th, 2021
- Therapeutic Solutions International Acquires Stem Cell Therapy That Successfully Completed FDA Double Blind Placebo Controlled Efficacy Study for Lung... - February 14th, 2021
- Outlook on the Cell Therapy Global Market to 2027 - Opportunity Analysis and Industry Forecasts - Yahoo Finance - February 14th, 2021
- Global Stem Cell Therapy Market Set to Reach USD 214.5 Million by 2024 - The Courier - February 14th, 2021
- Magenta Therapeutics to Present Additional Data from Phase 1 MGTA-145 Stem Cell Mobilization Program and Preclinical Updates on Targeting Conditioning... - February 14th, 2021
- Stem Cell Therapy Market Revenue, Key Players, Supply-Demand, Investment Feasibility and Forecast By 2029: Osiris Therapeutics, NuVasive, Chiesi... - February 14th, 2021
- Global Autologous Stem Cell and Non-Stem Cell Based Therapies Market Tendencies, Revenue Forecast and Interesting Opportunities from 2020 to 2025 FLA... - February 14th, 2021
- Dancing on Ice's Colin Jackson to get stem cell op as he's got 'knees of 85-year-old' - Mirror Online - February 1st, 2021
- Stem Cell Therapy Market Size to Reach USD 5,040 Million by 2028 | Rising Public-Private Investments and Developing Regulatory Framework for Stem Cell... - January 31st, 2021
- ProgenCell - Stem Cell Therapies offers an updated Stem Cell Therapy for Anti Aging Protocol - PR Web - January 31st, 2021
- Stem Cell Therapy Market 2021: Global Key Players, Trends, Share, Industry Size, Segmentation, Forecast To 2027 KSU | The Sentinel Newspaper - KSU |... - January 31st, 2021
- ClearPoint Neuro, Inc. Announces Expansion of Pre-Clinical and Translational Development Team to Support Gene and Stem Cell Therapy Partners -... - January 31st, 2021
- Stem Cell Therapy for Diabetes and Related Conditions Market Size |Incredible Possibilities and Growth Analysis and Forecast To 2025 - AlgosOnline - January 31st, 2021
- Stem Cell Therapy Market 2021 Industry Size, Trends, Global Growth, Insights And Forecast Research Report 2026 NeighborWebSJ - NeighborWebSJ - January 31st, 2021
- Animal Stem Cell Therapy Market to witness high growth in near future - Fractovia News - January 31st, 2021
- Regenerative medicine is advancing health care in diverse ways - Hometown Focus - January 23rd, 2021
- Hemostemix Announces the Bread Contract with the Department of Foreign Affairs, Trade & Development Canada - BioSpace - January 23rd, 2021
- Stem Cell Therapy Market Size, Growth Opportunities, Trends, Key Players and Forecast to 2027 - The Courier - January 23rd, 2021
- Animal Stem Cell Therapy Market Size, Business Growth Tactics, Future Strategies, Competitive Outlook and Forecast to 2027 Jumbo News - Jumbo News - January 23rd, 2021
- How Will Global Stem Cell Therapy Market React from 2021 Onwards? - The Courier - January 23rd, 2021
- Impact of COVID-19 on Canine Stem Cell Therapy Market by 2027 |Aratana Therapeutics, Okyanos, Magellan Stem Cells, Stem Cell Vet, VetStem Biopharma -... - January 23rd, 2021
- Impact of COVID-19 on Canine Stem Cell Therapy Market 2021 | Size, Growth, Demand, Opportunities & Forecast To 2027 | VETSTEM BIOPHARMA, Cell... - January 23rd, 2021
- Global Animal Stem Cell Therapy Market Size| Share| Trends and Analysis | Industry Growth Insight By 2025 Globalmarketers.biz Jumbo News - Jumbo... - January 23rd, 2021
- Impacts of COVID 19 on Stem Cell Therapy Market 2021 Size, Demand, Opportunities & Forecast To 2026 - NeighborWebSJ - January 23rd, 2021
- Stem Cell Therapy Market: Clear Understanding of The Competitive Landscape and Key Product Segments 2026 NeighborWebSJ - NeighborWebSJ - January 23rd, 2021
- Animal Stem Cell Therapy Market Research Report And Predictive Business Strategy By 2027 | Industry Growth Insights - Murphy's Hockey Law - January 23rd, 2021
- Report On Canine Stem Cell Therapy Market to 2026: (Industry Insights, Company Overview and Investment Analysis) - Farming Sector - December 24th, 2020