Legal Issues in Stem Cell Therapy in the U.S.Jul 30, 2019 | Fred Greguras
My wife has had osteoarthritis, sometimes called wear-and-tear arthritis, in both of her knees since 2011. She first saw an advertisement for stem cell treatment in 2012 and continued to do research on the treatment. Late in 2018, after ultrasounds on her knees and consultation with several doctors and clinics in California and Colorado, she decided to have stem cell therapy that could regenerate the meniscus cartilage of her knees. Such therapy is a minimally invasive procedure that has the potential to slow the progress of the arthritic damage, repair joint cartilage and avoid or delay invasive knee replacement surgery. Such therapy can help the body repair itself naturally.
We thought it was best to act now before her knees worsened since the earlier the stem cell treatment began, the greater the chances for a successful outcome there would be. The present lack of health insurance coverage was considered, but the treatment cost was reasonable given the potential to avoid more invasive surgery and the timing of treatment. Most insurance plans, including Medicare, define the procedure as experimental and investigational and do not cover the therapy.
Based on her research, my wife selected Dr. Jason Glowney of Boulder Biologics to perform the treatment. Her treatment took place in the second week of January, 2019, as an outpatient at a hospital in Boulder, Colorado. The procedure was completed in under four hours. She was injected with her own stem cells (called an autologous donation), reducing the risk of immune rejection and other complications.
The medical team used ultrasound to identify the best sites for injection into the damaged tissue of her knees. The same needle remained in each knee site during the treatment, but the injections in each step described below were all done with separate syringes in sequence. There was no mixture of any of the multiple components in a single syringe.
The doctor gave her light oral sedation to help her relax for the procedure and used local anesthetic at the points of cell harvest and injection. No general anesthetic was administered. The procedure began with a harvest of platelet-rich plasma (PRP) from her blood. Her blood was quickly processed through a centrifuge to separate the blood and concentrate the platelets in the plasma, which was then injected to fertilize the knee sites to enhance cell growth. The concentrated platelets contain growth factors along with bioactive proteins that help initiate and stimulate tissue repair and regeneration. (In late May, 2019, she had another PRP injection to stimulate and enhance the growth of the stem cells.)
The next step in the procedure was to harvest her bone marrow, centrifuge it into an injectable volume of aspirate concentrate and then inject the concentrate in both knees. The bone marrow aspirate contains stem cells that can help regenerate bone and cartilage.
The adipose (fat-derived) stem cells used in the next step compliment the bone marrow stem cells. The adipose cells were harvested by a minimally invasive liposuction procedure, centrifuged to isolate the cells and then injected in both knees. The fat on our bodies can be a rich source of stem cells.
Hundreds of thousands of cells were harvested and injected in each step in order to have an adequate number of stem cells for the treatment. The stem cells decide whether to differentiate into bone, meniscus or other cartilage or to simply renew.
My wife was given antibiotic (doxycycline) tablets to take at the end of the procedure and, for a period thereafter, to assist the differentiation process and to help decrease cartilage degradation.
As discussed in more detail below, the doctors procedure was designed to involve only simple human cellular and tissue products from the same patient and not to be a new biological product or drug which requires FDA approval. The procedure would be a new biological product or drug requiring FDA approval if there had been more than minimal manipulation of each component part. Even a mixture of a patients own stem cells and an antibiotic administered from the same syringe would be deemed a new biological product or drug by the FDA.
The doctor gave my wife guidelines for physical activity and medications during the post-injection period. The guidelines were designed to promote the growth of the stem cells to regenerate tissue. The cells are fragile, and she had to be careful not to cause too much stress or shearing on them which could impede growth. Her pain was intense during the first 24 hours, and she stayed in bed much of the time. She used a walker for about the first week. She started physical therapy about six days after the injections with the doctors approval. The doctor recommended that she not take any anti-inflammatory medications (like ibuprofen or motrin), for six weeks since they could impede the differentiation of the stem cells. The doctor advised her that most patients dont feel any knee improvement for at least three weeks and possibly for up to six to eight weeks. If there is no improvement by the six-month point after the injections, then the therapy has not worked.
A self-reporting instrument is used for assessing a patients knee status. The 33 items measured are intended to represent all major indicators of knee status. My wifes measures are all very positive at this six-month point after the procedure. The measurement factors include: (1) knee symptoms such as knee swelling, stiffness and frequency of pain; (2) amount of pain in activities such as walking, standing and going up and down stairs; and (3) degree of difficulty in activities such as walking, bending down and going up and down stairs. Each item is rated on a five-point scale relating to the extent of its occurrence or severity during the past week.
Stem Cell Background
Stem cells are different from other cell types in our bodies because they are capable of renewing (copying) themselves through cell division, sometimes after long periods of inactivity. Stem cells also have the potential to differentiate into other cell types in our body. When a stem cell divides, each new cell has the potential either to remain a stem cell or to differentiate into more specialized cells that form the bodys tissues and organs. In some organs, stem cells regularly divide to repair and replace worn out or damaged tissues. In other organs, stem cells only divide under special conditions.
There are several types of stem cells that are formed at different times in our lives or come from different places in our body. Embryonic stem cells (ESCs) exist in the embryo only at the earliest stages of human development. ESCs are pluripotent, meaning they have the potential to differentiate into almost all cell types in the body. There are social and ethical issues relating to the use of ESCs, since harvesting the cells causes the destruction of an embryo. Many countries, including the U.S., have government-imposed restrictions on either ESC research or the production of new ESC lines.
Somatic or adult non-embryonic tissue-specific stem cells (ASCs) exist in specific tissues throughout the body after early human development. The stem cells injected into my wifes knees were ASCs. ASCs are multipotent, meaning they can differentiate into more than one type of specialized cell of the body, but not all types. ASCs are generally limited to differentiating into cell types of their tissue of origin, which can help with the replacement of cells from damaged tissue. ASCs can be an autologous stem cell donation, which is less likely to be rejected.
Amniotic stem cells (AMSCs) exist in the amniotic sac, which surrounds a baby in the uterus and remains until the babys birth. AMSCs are harvested right after the mother gives birth, without harming the baby. Some clinics make exaggerated claims about the therapeutic potential of ASMCs. AMSCs, however, are also multipotent, and the tissues they can differentiate into are substantially the same as stem cells from adipose (fat) and bone marrow. AMSCs exist only for a limited time, but adipose and bone marrow ASCs continue to be produced throughout our lives and can be harvested from the patient seeking therapy.
Some tissues and organs contain small amounts of ASCs whose function is to replace cells from that same tissue that deteriorate over time or are damaged by injury. For example, blood-forming stem cells in bone marrow can differentiate into red blood cells, white blood cells and platelets. However, blood-forming stem cells dont generate liver or lung or brain cells, and stem cells in other tissues and organs dont generate red or white blood cells or platelets.
Pluripotent stem cells have great therapeutic potential but still have major technical issues. Scientists cant control their differentiation into the many types of cells in the body which can result in unwanted tissue such as tumors. Since such stem cells are not from the recipient, they may also lack the compatibility needed to prevent rejection by the immune system.
Over 10 years ago, researchers identified conditions that enabled some specialized ASCs to be reprogrammed genetically back to an ESC-like state. The reprogrammed cells function similarly to ESCs and are called induced pluripotent stem cells (iPSCs). The iPSCs function similarly to ESCs, with the ability to differentiate into almost any cell of the body and to create an unlimited source of cells. iPSCs may ultimately help address the ethical concerns of ESCs and provide new potential for therapy, but there are still technical issues including whether they are actually equivalent to ESCs and the capability to control the differentiation process.
Legal Issues
FDA Approval Requirements
While the U.S. Food and Drug Administration (FDA) moves agonizingly slowly, its priority is human safety which is not the case in many other countries. Some other countries are the Wild West of stem cell therapy and have become medical tourism destinations for high-risk stem cell treatment. The FDA recommends that stem cell therapy is either FDA-approved or is done pursuant to an Investigational New Drug Application (IND), a clinical investigation plan submitted to and permitted to proceed by the FDA. There are many active clinical trials investigating the potential of ASCs listed on the U.S. National Institutes of Healths website.[1] Stem cell products approved by the FDA are listed on its web site.[2] There is no FDA-approved therapy involving the transplantation of ESCs. ESCs must be not be added to an injection, such as PRP, before it goes into a human.
The FDA regulates human tissues intended for transplant under 21 C.F.R. Part 1271: Human Cells, Tissues and Cellular and Tissue-Based Products (HCT/Ps). Cellular and tissue-based therapies are regulated by the Office of Cellular, Tissue and Gene Therapies within the FDA Center for Biologics Evaluation. There are two primary regulatory pathways for these products. Cellular therapy products that meet all the criteria in 21 CFR 1271.10(a) are regulated solely as HCT/Ps and are not required to be licensed, approved or cleared by the FDA. These products are often referred to as 361 products because they are regulated solely under Section 361 of the Public Health Service Act (PHSA).[3] The regulatory purpose for such products is to prevent the introduction, transmission and spread of communicable diseases.
If a cellular therapy product does not meet all the criteria in 21 CFR 1271.10(a), it is regulated as a drug, device and/or biological product under the Federal Food, Drug and Cosmetic Act (FDCA)[4] and Section 351 of the PHSA (a 351 product). The FDA requires premarket approval for such a product. The criteria that determine whether a product is a Section 361 HCT/P or a Section 351 biological product include, primarily, whether a product has been minimally manipulated and is intended for homologous use. Stem cell therapies generally do not satisfy these criteria and therefore are usually regulated as Section 351 products.
In the 2014 decision, United States of America v. Regenerative Sciences, LLC,[5] the court held that a mixture of autologous ASCs and other components was a 351 product and subject to FDA approval. Regenerative Sciences, LLC argued that its process did not create a mixture but only expanded the patients own cells and, therefore, was a simple 361 product which does not require FDA approval. The FDAs position is that any process involving human cellular and tissue products that includes culturing, expansion and added growth components or antibiotics requires FDA approval as a biological product or new drug because the process constitutes significant manipulation.
The FDA alleged that the product was a 351 product for failure to comply with its minimal manipulation provisions and because the resulting stem cells were not intended for homologous use. Homologous use means that a human cellular or tissue product is used clinically in a manner that is essentially the same as the natural function. The homologous use definition is strictly interpreted by the FDA, so that most innovative ways to use stem cells to potentially treat patients would be through non-homologous usage. The FDA will generally define even modestly different uses as non-homologous.
There are many clinics offering stem cell therapy in the U.S., some which carefully follow the law and others which do not. The FDA has only has brought a small number of enforcement actions because of resource limitations and proof concerns. Enforcement usually occurs in high-profile situations where a patient has died or is severely harmed.
Intellectual Property Issues
The two important types of intellectual property protection relating to stem cell therapy are trade secret and patent protection. For example, the cell harvesting techniques and settings for the centrifuge processing in each step in my wifes treatment can be protected as trade secret know-how. The culturing and cocktails of growth factors and/or other components in the Regenerative Sciences, LLC case are another example.
There are many patents registered with the USPTO that contain the term stem cell, but recently, many human stem-based inventions have been rejected for not being eligible patentable subject matter. Patent-eligible subject matter is defined in 35 U.S.C. Section 101 as: Whoever invents or discovers any new and useful process, machine, manufacture or composition of matter, or any new and useful improvement thereof, may obtain a patent therefor, subject to the conditions and requirements of this title. There are three exceptions to subject matter eligibility: laws of nature, physical phenomena and abstract ideas.[6] The laws of nature exception has been the basis for rejection of patent eligibility for certain stem cell-related inventions.
There were two important court decisions in 1977 and 1980 relating to patent protection eligibility for the biotechnology industry.[7] The USPTO issued many stem cell patents following these decisions.
Several Supreme Court decisions in the past 10 years, however, have narrowed the scope of patent-eligible subject matter under Section 101.[8] In the Mayo decision, the Court held the invention was not patentable, stating that it effectively claimed the underlying laws of nature. The Court held that a claim that encompasses the use of a natural law must also include additional elements, sometimes referred to as an inventive concept, sufficient to ensure that the patent amounts to significantly more than a patent upon the natural law itself.
The scope of patent-eligible subject matter was further narrowed in the Myriad decision, which held that a naturally occurring DNA segment is a product of nature and not eligible for patent protection merely because it had been isolated. The Court looked for markedly different characteristics from any found in nature of the isolated gene to determine patent eligibility. The changes resulting from isolation of a gene sequence were considered incidental and not enough to make the isolated gene markedly different.
Three recent decisions in the Federal Circuit indicate that method-of-treatment claims that may involve a law of nature are patent-eligible.[9] Each of the patents required an affirmative treatment step. The decisions seem to hold that a patent directed to detecting a condition in a patient is not Section 101-eligible under Mayo, while a patent directed to using that detection to change some aspect of the patient is eligible. The patent may have been based upon the inventors discovery of a law of nature but the patent did not simply claim that law of nature. Rather, it was directed to a specific method of treatment.
The United States Patent and Trademark Office (USPTO) has published guidelines for patent examiners on how to analyze a claim which includes a nature-based product for patent eligibility.[10] Claims are to be examined for an inventiveness that has markedly different characteristics from naturally occurring products. Patent eligibility for a natural product is to be determined primarily by whether the claimed product possesses any structural, functional and/or other properties that represent markedly different characteristics from the natural counterpart. If the claim includes a nature-based product that has markedly different characteristics, then the claim is not within the product of nature exception. On the other hand, if the claim includes a nature-based product that does not have markedly different characteristics from its naturally occurring counterpart in its natural state, then the claim is within the product of nature exception and is not eligible for patent protection.[11]
The first step in the analysis is to select the counterpart(s) to compare to the nature-based product. The second step is to identify characteristics to compare, since the analysis is based on comparing the characteristics of the claimed nature-based product and its counterpart. Characteristics can be expressed as the nature-based products structure, function and/or other properties, and are evaluated on a case-by-case basis. The final step is to compare the characteristics of the claimed nature-based product to the characteristics of its naturally occurring counterpart in its natural state to determine if the characteristics of the claimed product are markedly different. If there is a change in at least one characteristic resulting from, or produced by, the patent applicants efforts or influences, then the change will generally be found to be a markedly different characteristic.
Consumer Protection
My wife was provided with disclosures from the doctors office and requested to sign a number of consents and waivers as a condition of receiving therapy. One of the waivers was a no assurance of successful treatment agreement.
State laws protecting consumers against deceptive advertising are applicable to representations about the effectiveness of stem cell treatment. Several state legislatures have debated additional protections for consumers relating to such treatment. California enacted a consumer protection law in late 2017 that requires clinics offering stem cell treatments to disclose if the treatment is not approved by the FDA.
The Federal Trade Commission (FTC) and FDA are pursuing enforcement actions in selected cases that may cause stem cell clinics to be more careful about their representations and activity. In late 2018, the FTC settled charges with a California-based physician and his businesses of deceptively advertising that amniotic stem cell therapy can treat serious diseases.[12] The settlement prohibits the defendants from making any health claims in the future unless the claims are true and supported by competent and reliable scientific evidence. This was the first enforcement action brought by the FTC against a stem cell clinic.
In early June, 2019, a federal judge granted the FDA an injunction to prevent the U.S. Stem Cell Clinic (based in Florida) from offering treatments using adipose stem cells injected into the spinal cords of patients to treat Parkinsons disease, chronic obstructive pulmonary disease and other serious conditions.[13] The court held that the defendants misbranded the possible therapeutic effects. The court also determined the clinic failed to prevent microbiological contamination of products which put patients at risk for infections.
Conclusion
As indicated, the status measures for my wifes knees are all very positive six months after the procedure. She is glad she tried it. I would try the therapy if I have problems with my knees.
The FDA will continue to move slowly to approve stem cell therapies since its priority is human safety. Some other countries have become medical tourism destinations for high-risk stem cell treatment. Many of the claims of such foreign clinics and of some clinics in the U.S. are medically unproven. The FDA and other regulators will continue to bring enforcement actions based on the severity of patient risk and available resources. Obtaining patent protection for stem cell-related inventions is challenging because of the subject matter eligibility issue under Section 101. The recent method-of-treatment decisions in the Federal Circuit may provide a helpful eligibility precedent for some inventions.
Read the original:
Legal Issues in Stem Cell Therapy in the U.S. - Inventus Law
- 001 U.S. appeals court reinstates stem cell suit [Last Updated On: June 29th, 2010] [Originally Added On: June 29th, 2010]
- 002 The Business of Stem Cells (Part 1) - Bloomberg - Video [Last Updated On: October 13th, 2011] [Originally Added On: October 13th, 2011]
- 003 The Business of Stem Cells (Part 2) - Bloomberg - Video [Last Updated On: October 17th, 2011] [Originally Added On: October 17th, 2011]
- 004 Lifting the Ban: The Struggle for Stem Cells (I) - Video [Last Updated On: October 18th, 2011] [Originally Added On: October 18th, 2011]
- 005 Inside Look: Stem-Cell Research Ban Lifted - Bloomberg - Video [Last Updated On: October 18th, 2011] [Originally Added On: October 18th, 2011]
- 006 Virgin Launches Qatar Stem Cell Bank - Video [Last Updated On: October 18th, 2011] [Originally Added On: October 18th, 2011]
- 007 Another Look - Stem Cell Debate - Bloomberg - Video [Last Updated On: October 18th, 2011] [Originally Added On: October 18th, 2011]
- 008 Obama Lifts Stem-Cell Research Ban - Bloomberg - Video [Last Updated On: October 19th, 2011] [Originally Added On: October 19th, 2011]
- 009 Adult Stem Cell - Video [Last Updated On: October 19th, 2011] [Originally Added On: October 19th, 2011]
- 010 More Perspective - Obama Uplifts Stem-Cell Research Ban - Bloomberg - Video [Last Updated On: October 19th, 2011] [Originally Added On: October 19th, 2011]
- 011 SCIENCE FRICTION - THE EMBRYO WAR - Video [Last Updated On: October 19th, 2011] [Originally Added On: October 19th, 2011]
- 012 Lifting the Ban: The Struggle for Stem Cells (II) - Video [Last Updated On: October 19th, 2011] [Originally Added On: October 19th, 2011]
- 013 The Business of Stem Cells (Part 3) - Bloomberg - Video [Last Updated On: October 20th, 2011] [Originally Added On: October 20th, 2011]
- 014 Virginia 18th State to Legislate Cord Blood Education - Video [Last Updated On: December 16th, 2011] [Originally Added On: December 16th, 2011]
- 015 Republican Presidential Candidate Video Question - Video [Last Updated On: December 16th, 2011] [Originally Added On: December 16th, 2011]
- 016 News Update: Judge Rules Against Obama's Stem Cell Policy - Video [Last Updated On: December 16th, 2011] [Originally Added On: December 16th, 2011]
- 017 Stem Cell Based Lab Grown Meat coming soon - Video [Last Updated On: December 16th, 2011] [Originally Added On: December 16th, 2011]
- 018 5 Things you should know about stem cell research - Video [Last Updated On: December 16th, 2011] [Originally Added On: December 16th, 2011]
- 019 San Diego Biotechs Impacted By Stem Cell Ruling - Video [Last Updated On: December 17th, 2011] [Originally Added On: December 17th, 2011]
- 020 The Real American News Show (4-08-09) - Video [Last Updated On: December 17th, 2011] [Originally Added On: December 17th, 2011]
- 021 Eugenics - Human Sperm Created in British Lab - Video [Last Updated On: December 17th, 2011] [Originally Added On: December 17th, 2011]
- 022 Neuroethics at the World Science Festival - Video [Last Updated On: December 20th, 2011] [Originally Added On: December 20th, 2011]
- 023 Stem Cell Research, Ethics and Religion - Video [Last Updated On: December 20th, 2011] [Originally Added On: December 20th, 2011]
- 024 Call for Obama Assassination Free Speech, Not a Crime - Video [Last Updated On: January 3rd, 2012] [Originally Added On: January 3rd, 2012]
- 025 Stem Cells Explained - Jeunesse Luminesce on www.WiseMLM.com - Video [Last Updated On: January 31st, 2012] [Originally Added On: January 31st, 2012]
- 026 Inventing life: patent law and synthetic biology [Last Updated On: February 28th, 2012] [Originally Added On: February 28th, 2012]
- 027 After-Birth Abortion Claim Points Instead to Pre-Birth Humanity [Last Updated On: March 3rd, 2012] [Originally Added On: March 3rd, 2012]
- 028 The UFC's Supposed Testosterone Epidemic: Critics Living in the Past [Last Updated On: June 14th, 2012] [Originally Added On: June 14th, 2012]
- 029 Celltex Responds to Media Reporting on FDA Visit [Last Updated On: June 28th, 2012] [Originally Added On: June 28th, 2012]
- 030 Dish-Grown Sperm and Eggs Produce Mouse Pups [Last Updated On: October 6th, 2012] [Originally Added On: October 6th, 2012]
- 031 Stem cells: this election's neglected child [Last Updated On: October 17th, 2012] [Originally Added On: October 17th, 2012]
- 032 Ministers may split cost of new washing machine for Yamanaka: Tanaka [Last Updated On: October 17th, 2012] [Originally Added On: October 17th, 2012]
- 033 Stem cell - Wikipedia, the free encyclopedia [Last Updated On: May 19th, 2015] [Originally Added On: May 19th, 2015]
- 034 Stem Cell Research and the Law | Hinnovic [Last Updated On: May 19th, 2015] [Originally Added On: May 19th, 2015]
- 035 Stem Cells and the law - Europe's stem cell hub | EuroStemCell [Last Updated On: May 19th, 2015] [Originally Added On: May 19th, 2015]
- 036 Is Stem Cell Research Ethical ? Ethical issues stem cell ... [Last Updated On: May 19th, 2015] [Originally Added On: May 19th, 2015]
- 037 Stem Cell Research, Morality, and Law [Last Updated On: May 21st, 2015] [Originally Added On: May 21st, 2015]
- 038 Jewish Law - Articles - Stem Cell Research in Jewish Law [Last Updated On: May 25th, 2015] [Originally Added On: May 25th, 2015]
- 039 Stem cell laws - Wikipedia, the free encyclopedia [Last Updated On: June 1st, 2015] [Originally Added On: June 1st, 2015]
- 040 Stem Cells and Cloning | New Jersey Right to Life ... [Last Updated On: June 1st, 2015] [Originally Added On: June 1st, 2015]
- 041 Stem cell laws and policy in the United States - Wikipedia ... [Last Updated On: June 4th, 2015] [Originally Added On: June 4th, 2015]
- 042 Background and Legal Issues Related to Stem Cell Research [Last Updated On: June 4th, 2015] [Originally Added On: June 4th, 2015]
- 043 stemcellbioethics - home [Last Updated On: June 8th, 2015] [Originally Added On: June 8th, 2015]
- 044 Stem cell patents: legal aspects | Europe's stem cell hub ... [Last Updated On: June 8th, 2015] [Originally Added On: June 8th, 2015]
- 045 History of Stem Cell Research - Popular Issues [Last Updated On: June 15th, 2015] [Originally Added On: June 15th, 2015]
- 046 "Ethical Issues in Human Stem Cell Research: Executive ... [Last Updated On: June 15th, 2015] [Originally Added On: June 15th, 2015]
- 047 Global Stem Cells Group to Participate in the 15th ... [Last Updated On: June 19th, 2015] [Originally Added On: June 19th, 2015]
- 048 Stem Cell Research - Newsbatch [Last Updated On: June 19th, 2015] [Originally Added On: June 19th, 2015]
- 049 NIH Fact Sheet on Human Pluripotent Stem Cell Research ... [Last Updated On: June 28th, 2015] [Originally Added On: June 28th, 2015]
- 050 Gordie Howe's Stem Cell Treatment Raises Issues [Last Updated On: June 28th, 2015] [Originally Added On: June 28th, 2015]
- 051 The FDAs Misguided Regulation of Stem-Cell Procedures ... [Last Updated On: July 3rd, 2015] [Originally Added On: July 3rd, 2015]
- 052 CGS : Egg Extraction For Stem Cell Research: Issues for ... [Last Updated On: July 3rd, 2015] [Originally Added On: July 3rd, 2015]
- 053 Practical Problems with Embryonic Stem Cells [Last Updated On: August 5th, 2015] [Originally Added On: August 5th, 2015]
- 054 Judaism and Stem Cell Research - Torah.org [Last Updated On: September 15th, 2015] [Originally Added On: September 15th, 2015]
- 055 Cloning/Embryonic Stem Cells - Genome.gov [Last Updated On: September 16th, 2015] [Originally Added On: September 16th, 2015]
- 056 What are embryonic stem cells? [Stem Cell Information] [Last Updated On: September 18th, 2015] [Originally Added On: September 18th, 2015]
- 057 Scientific Experts Agree Embryonic Stem Cells Are ... [Last Updated On: September 20th, 2015] [Originally Added On: September 20th, 2015]
- 058 Stem Cell Research Legal Issues and Political Impact [Last Updated On: September 23rd, 2015] [Originally Added On: September 23rd, 2015]
- 059 Ethics of Stem Cell Research (Stanford Encyclopedia of ... [Last Updated On: October 24th, 2015] [Originally Added On: October 24th, 2015]
- 060 Embryonic stem cell research: an ethical dilemma | Europe ... [Last Updated On: August 4th, 2016] [Originally Added On: August 4th, 2016]
- 061 Stem Cell Network [Last Updated On: August 4th, 2016] [Originally Added On: August 4th, 2016]
- 062 stemcellbioethics - Legal and Political History of Stem ... [Last Updated On: August 4th, 2016] [Originally Added On: August 4th, 2016]
- 063 Societal and Legal Issues of Stem Cell Research - Yola [Last Updated On: August 4th, 2016] [Originally Added On: August 4th, 2016]
- 064 What are Stem Cells? - Health News - Medical News Today [Last Updated On: September 25th, 2016] [Originally Added On: September 25th, 2016]
- 065 Stem Cells & Spinal Cord Injuries - sci-info-pages.com [Last Updated On: November 27th, 2016] [Originally Added On: November 27th, 2016]
- 066 Stem cell controversy - Wikipedia [Last Updated On: November 27th, 2016] [Originally Added On: November 27th, 2016]
- 067 Charity Watchlist - Get Involved | American Life League [Last Updated On: January 28th, 2017] [Originally Added On: January 28th, 2017]
- 068 Stem cell laws - Wikipedia [Last Updated On: January 29th, 2017] [Originally Added On: January 29th, 2017]
- 069 Stem cell agency faces leadership challenge - Capitol Weekly [Last Updated On: July 3rd, 2017] [Originally Added On: July 3rd, 2017]
- 070 Pros And Cons Of Stem Cell Research - Popular Issues [Last Updated On: July 3rd, 2017] [Originally Added On: July 3rd, 2017]
- 071 Stem Cell Therapy: You can be sexually active again - Vanguard ... - Vanguard [Last Updated On: July 9th, 2017] [Originally Added On: July 9th, 2017]
- 072 Bedford inmate's family criticizes jail staff - Altoona Mirror [Last Updated On: July 9th, 2017] [Originally Added On: July 9th, 2017]
- 073 More Americans Than Ever Say Polygamy Is Morally Acceptable - HuffPost [Last Updated On: August 1st, 2017] [Originally Added On: August 1st, 2017]
- 074 Charlie Gard Dies, Leaving a Legacy of Thorny Ethics Questions - New York Times [Last Updated On: August 1st, 2017] [Originally Added On: August 1st, 2017]
- 075 India needs biannual amendment to Stem Cell Rules, Section 8 of Rules controversial: Dr Totey - pharmabiz.com [Last Updated On: August 1st, 2017] [Originally Added On: August 1st, 2017]
- 076 Patents in Brazil - Lexology (registration) [Last Updated On: August 2nd, 2017] [Originally Added On: August 2nd, 2017]
- 077 Opinion: Human genome editingwe should all have a say - Phys.Org [Last Updated On: August 2nd, 2017] [Originally Added On: August 2nd, 2017]
- 078 Britain can lead the world in gene editing - The Times [Last Updated On: August 12th, 2017] [Originally Added On: August 12th, 2017]
- 079 Dolphins QB Ryan Tannehill will reportedly have surgery, miss entire season - FOXSports.com [Last Updated On: August 12th, 2017] [Originally Added On: August 12th, 2017]
- 080 Stem cell research: the debate continues to rage - CosmicNovo.com (Science and Technology) [Last Updated On: August 12th, 2017] [Originally Added On: August 12th, 2017]