Your life depends on purposeful, targeted changes to cellular DNA. Although conventional thinking says directed DNA changes are impossible, the truth is that you could not survive without them. Your immune system needs to engineer certain DNA sequences in just the right way to function properly.
Today's blog is a tale of how cells engineer their DNA molecules for a specific purpose. It also illustrates how an evolutionary process works within the human body.
Your immune system has to anticipate and inactivate unknown invaders. Living organisms deal with unpredictable events by evolving. They change to adapt to new circumstances. Variation comes from their capacity for self-modification. Cells have many molecular mechanisms that read, write, and reorganize the information in their genomes, the DNA molecules used for data storage.
The adaptive immune system executes basic evolutionary principles in real time. It has to recognize and combat unknown (and utterly unpredictable) invaders. Immune system cells have to produce antibody molecules that can bind to any possible molecular structure.
How do cells with finite DNA, and finite coding capacity, produce a virtually infinite variety of antibodies? The answer is that certain immune cells (B cells) become rapid evolution factories. They generate antibodies with effectively limitless diversity while preserving molecular structures needed to interact with other parts of the immune system.
Immune cells achieve both diversity and regularity in antibody structures. They accomplish this by a targeted yet flexible process of natural genetic engineering: they cut and splice DNA.
Diversity is strictly limited to a special part of the antibody molecules: a "variable" region encoded by engineered DNA. DNA encoding the "constant" region does not change in the same way. The diversity-generating process is called "VDJ recombination" because it involves cutting and splicing together different "variable" (V), "diversity" (D) and "joining" (J) coding segments. Immune cells do this by cutting DNA at defined "recombination signal sequences." There are hundreds of V segments, about a few dozen D segments, and ten J segments. The various combinations of different spliced segments makes for a tremendous amount of diversity.
Antibodies contain two paired protein chains: a longer heavy chain and a shorter light chain. The heavy chain variable coding region forms by splicing V, D, and J segments together. The light chain variable coding region forms by joining V and J segments together. There are at least 10,000 VDJ combinations and 1,000 VJ combinations. Altogether, over 10,000,000 different heavy + light chain antibodies are possible through "combinatorial diversity."
Not bad... but not good enough.
VDJ recombination generates additional diversity. Although cutting the V, D, and J segments is precise, immune cells join each pair of cleaved DNA segments at about a dozen different positions. Connection between the same two segments can have about 30 to 35 possible different sequence outcomes. This "junctional diversity" adds over 1,000 possible antibody combinations.
In addition, heavy chain D segment joining has another virtually unlimited source of variability. Immune cells have an enzyme that attaches unique new DNA sequences to either end of the D segment. These are not encoded anywhere in the genome. Such so-called "N region" sequences can add over 1,000 new variations to each existing VDJ combination.
So the total possible genetically engineered antibody diversity is something above 10,000,000 X 1,000 X 1,000 = 10,000,000,000,000 combinations. This extraordinary number appears to be large enough to generate antibodies that can protect you from virtually any invader, whatever its molecular structure may be.
The immune system is itself a rapid evolutionary process, replacing one set of immune specificities with another. The right antibody-producing cells multiply when an invader enters the body. Antibodies sit on the surface of cells that made them. When a particular variable region binds an invader, that event sends a signal inside the cell to begin dividing.
Dividing immune cells are called "activated B cells," which proliferate into distinct populations. Because the descendants of a single activated B cell share the same engineered variable region coding sequences, they produce even more invader-recognizing antibodies. By binding, these antibodies signal the rest of the immune system to begin eliminating the invaders. This is the front-line "primary" adaptive immune response.
In a future blog, I'll explain ongoing natural genetic engineering as activated immune cells mature in the "secondary" response. It is no less amazing. For now, let's draw three conclusions from the initial rapid evolution system. We see that:
Evolution has produced a system that engineers DNA with a specific purpose: encoding proteins that bind to unpredictable invaders and signal the immune system to make more antibodies and eliminate the invaders. Precise targeting of DNA cutting to variable region-coding segments allows the basic antibody structure to stay the same. At the same time, its recognition/binding capacity changes. Your B cells are able to combine several different kinds of DNA biochemistry into a functional engineering process: 1) cutting the V, D and J segments; 2) joining the cleaved segments; and 3) synthesizing and inserting the N region sequences.
In the immune system, "purposeful" and "having a predestined outcome" are far from the same thing. Your immune system follows a regular process, but the end result is not fixed in advance. This is an important lesson to keep in mind as we witness ongoing public debates over evolutionary DNA change.
In biology, the alternative to randomness is not necessarily strict determinism. If the cells of the immune system can use well-defined natural genetic engineering processes to make change when change is needed, there is a scientific basis for saying that germ-line cells might do the same in the course of evolution.
Read more here:
James A. Shapiro: Purposeful, Targeted Genetic Engineering in Immune System Evolution
- genetic engineering summary | Britannica - September 13th, 2024
- The great gene editing debate: can it be safe and ethical? - BBC.com - September 13th, 2024
- Anti-biotechnology campaigners embrace classic crops, are suspicious of hybrid varieties and claim genetic modification violates nature. Heres a... - September 13th, 2024
- Will IL-11 Control Extend Human Life One Day? Early Results are Tantalizing - Securities.io - September 13th, 2024
- Viewpoint: As New Zealand edges toward relaxing its ban on gene edited foods, experts weigh in - Genetic Literacy Project - September 13th, 2024
- Farmers in Brazil and Argentina ramp up growing of genetically-modified drought tolerant wheat that can grow in subtropical regions - Genetic Literacy... - September 13th, 2024
- Scientist explains why we'll never have a real Jurassic Park - and people are crestfallen - indy100 - September 13th, 2024
- Genetic engineering techniques - Wikipedia - January 9th, 2024
- 20.3: Genetic Engineering - Biology LibreTexts - January 9th, 2024
- Genetic engineering - DNA Modification, Cloning, Gene Splicing - December 13th, 2023
- Global Gene Editing Market Poised for Significant Growth, Projected to Reach $14.28 Billion by 2027 - EIN News - December 13th, 2023
- Principles of Genetic Engineering - PMC - National Center for ... - May 17th, 2023
- Quitting: A Life Strategy: The Myth of Perseveranceand How the New Science of Giving Up Can Set You Free - Next Big Idea Club Magazine - May 17th, 2023
- 18 Human Genetic Engineering - Clemson University - March 29th, 2023
- Pros and Cons of Genetic Engineering - Benefits and Risks - March 29th, 2023
- How artificial skin is made and its uses, from treating burns to skin cancer - South China Morning Post - March 29th, 2023
- Genetic Engineering - Meaning, Applications, Advantages and Challenges ... - March 13th, 2023
- Revolutionary Specialty Enzymes Transform Industries, Projected to Reach $2.2 Billion by 2031 - Billion-Dollar - EIN News - March 5th, 2023
- Explained: What is genome editing technology and how is it different from GM technology? - The Indian Express - April 2nd, 2022
- Scribe Therapeutics to Participate in Upcoming Goldman Sachs The New Guard: Privates Leading the Disruption in Healthcare Investor Conference - Yahoo... - April 2nd, 2022
- San Antonio Zoo In Discussions on Woolly Mammoth Project - iHeart - April 2nd, 2022
- Xenotransplantation trials will require adjusting expectations, experts say - STAT - April 2nd, 2022
- 5 Interesting Startup Deals You May Have Missed In March: Restoring The Woolly Mammoth, Faux Seafood And Lots Of Bees - Crunchbase News - April 2nd, 2022
- Synlogic to Present Data on Phenylketonuria and Homocystinuria Programs at the Society for ... - KULR-TV - April 2nd, 2022
- The Bay Area food tech industry is creating more than vegan burgers. Heres whats next - San Francisco Chronicle - April 2nd, 2022
- Student Startup Teams to Compete For $110000 Cash Prize Pool in U of A's Heartland Challenge - University of Arkansas Newswire - April 2nd, 2022
- Should we test for differences in allergen content between varieties of crops and animal species? - Open Access Government - April 2nd, 2022
- Genetic Engineering - Courses, Subjects, Eligibility ... - December 22nd, 2021
- Scientists Used CRISPR Gene Editing to Choose the Sex of Mouse Pups - Singularity Hub - December 22nd, 2021
- Report calls for broad public deliberation on releasing gene-edited species in the wild - EurekAlert - December 22nd, 2021
- RNA and DNA Extraction Kit Market Study | Know the Post-Pandemic Scenario of the Industry - BioSpace - December 22nd, 2021
- Opinion: Allow Golden Rice to save lives - pnas.org - December 22nd, 2021
- It's time for an alliance of democracies | TheHill - The Hill - December 22nd, 2021
- Aridis Pharmaceuticals Announces a Pan-Coronavirus Monoclonal Antibody Cocktail That Retains Effectiveness Against the Omicron variant, other COVID-19... - December 22nd, 2021
- 2021: when the link between the climate and biodiversity crises became clear - The Guardian - December 22nd, 2021
- Wuhan lab leak now the most likely cause of Covid pandemic and the truth WILL come out, experts tell MPs... - The US Sun - December 22nd, 2021
- Biotech ETFs That Outperformed Last Week - Yahoo Finance - December 22nd, 2021
- Human genetic enhancement - Wikipedia - October 5th, 2021
- Viewpoint: Part 1 Opposition stirred by anti-GMO advocacy group propaganda fading in the developing world, as more countries embrace crop... - October 5th, 2021
- Amyris Partners with Inscripta to Enhance Development of Sustainable Ingredients Using the Onyx Genome Engineering Platform - WWNY - October 5th, 2021
- Kingdom Supercultures raises $25m to expand Non GMO suite of microbes to unlock new flavors, textures, and functionalities in food & beverage -... - October 5th, 2021
- Fact check: Genetically engineering your salad with the COVID-19 vaccines? We're not there yet. - USA TODAY - October 5th, 2021
- Making the Transition from an Academic to a Biobusiness Entrepreneur - Genetic Engineering & Biotechnology News - October 5th, 2021
- Is The New York Times Finally 'Learning To Love GMOS'? - American Council on Science and Health - October 5th, 2021
- Gene editing, joke theft and manifesting - The Week UK - October 5th, 2021
- Opinion: Saving lives through real social justice - Agri-Pulse - October 5th, 2021
- Science, business and the humanities: CP Snow's 'Two Cultures' sixty years on - TheArticle - October 5th, 2021
- Probiotic Yeast Engineered To Produce Beta-Carotene - Technology Networks - April 17th, 2021
- In the US, Imminent Release of Genetically Modified Mosquitoes To Fight Dengue - The Wire Science - April 17th, 2021
- CRISPRoff: A New Addition to the CRISPR Toolbox - Technology Networks - April 17th, 2021
- A Massive New Gene Editing Project Is Out to Crush Alzheimer's - Singularity Hub - April 17th, 2021
- Grammar of the Genome: Reading the Influence of DNA on Disease - Baylor University - April 17th, 2021
- We cannot let China set the standards for 21st century technologies | TheHill - The Hill - April 17th, 2021
- First GMO Mosquitoes to Be Released in the Florida Keys - Singularity Hub - April 17th, 2021
- Novavax to Participate in University of Oxford Com-COV2 Study Comparing Mixed COVID-19 Vaccine Combinations - BioSpace - April 17th, 2021
- AmunBio and NorthShore University to Advance Cancer Immunotherapy with Engineered Oncolytic Viruses - OncoZine - April 17th, 2021
- StrideBio Announces a Multi-technology License and Master SRA with Duke University to Advance Next-generation Gene Therapies - BioSpace - April 17th, 2021
- ThermoGenesis : The History of Cell and Gene Therapy - marketscreener.com - April 17th, 2021
- EU's refusal to permit GMO crops led to millions of tonnes of additional CO2, scientists reveal - Alliance for Science - Alliance for Science - February 14th, 2021
- New species of fly named after Singanallur Tank - The Hindu - February 14th, 2021
- Son of Monarchs Pays Homage to the Beauty of Migration - Sierra Magazine - February 14th, 2021
- Podcast: TIME's 2020 Kid of the Year, Gitanjali Rao - All Together - Society of Women Engineers - February 14th, 2021
- Geoengineering: What could possibly go wrong? Elizabeth Kolbert's take, in her new book - Bulletin of the Atomic Scientists - February 14th, 2021
- An Introduction to PCR - Technology Networks - February 14th, 2021
- Science Talk - Evolution, cancer and coronavirus how biology's 'Theory of Everything' is key to fighting cancer and global pandemics - The Institute... - February 14th, 2021
- 22nd Century Group and KeyGene Launch Advanced Cannabis Technology Platform for Accelerated Development of New Varieties of Hemp/Cannabis Plants with... - February 14th, 2021
- Aleph Farms and The Technion Reveal World's First Cultivated Ribeye Steak - PRNewswire - February 9th, 2021
- Researchers create rice that captures more CO2 with 30 percent more yield - FoodIngredientsFirst - February 9th, 2021
- Interview: Elizabeth Kolbert on why well never stop messing with nature - Grist - February 9th, 2021
- Is Biotechnology the Answer to a More Sustainable Beauty Industry? - Fashionista - February 9th, 2021
- New Jersey arts and entertainment news, features, and event previews. - New Jersey Stage - February 9th, 2021
- CollPlant Announces Development and Global Commercialization Agreement with Allergan Aesthetics, an AbbVie company, for rhCollagen in Dermal and Soft... - February 9th, 2021
- Taysha Gene Therapies Announces Collaborations to Advance Next-Generation Mini-Gene Payloads for AAV Gene Therapies for the Treatment of Genetic... - February 9th, 2021
- A new tool to investigate bacteria behind hospital infections - MIT News - February 9th, 2021
- Outlook on the CRISPR Gene Editing Global Market to 2030 - Analysis and Forecasts - GlobeNewswire - February 9th, 2021
- Novavax Announces Start of Rolling Review by Multiple Regulatory Authorities for COVID-19 Vaccine Authorization - GlobeNewswire - February 9th, 2021
- Global Lab-On-A-Chip Market Industry Perspective, Comprehensive Analysis, and Forecast 2027||Players-Perkin Elmer Corporation, IDEX, Thermo Fisher... - February 9th, 2021
- Freeline Presents Data on its Gaucher Disease and Fabry Disease AAV-Based Gene Therapies at the 17th Annual WORLDSymposium - PharmiWeb.com - February 9th, 2021
- Global Bacterial and Plasmid Vectors Market Report 2020: Market is Expected to Recover and Reach $0520 Million in 2023 at a CAGR of 15.48% - Forecast... - January 12th, 2021
- mRNA Technology Gave Us the First COVID-19 Vaccines. It Could Also Upend the Drug Industry - TIME - January 12th, 2021