Imagine being able to reverse blindness, cure multiple sclerosis (MS), or rebuild your heart muscles after a heart attack. For the past few decades, research into stem cells, the building blocks of tissues and organs, has raised the prospect of medical advances of this kind yet it has produced relatively few approved treatments. But that could be about to change, says Robin Ali, professor of human molecular genetics of Kings College London. Just as gene therapy went from being a fantasy with little practical value to becoming a major area of treatment, stem cells are within a few years of reaching the medical mainstream. Whats more, developments in synthetic biology, the process of engineering and re-engineering cells, could make stem cells even more effective.
Stem cells are essentially the bodys raw material: basic cells from which all other cells with particular functions are generated. They are found in various organs and tissues, including the brain, blood, bone marrow and skin. The primary promise of adult stem cells lies in regenerative medicine, says Professor Ali.
Stem cells go through several rounds of division in order to produce specialist cells; a blood stem cell can be used to produce blood cells and skin stem cells can be used to produce skin cells. So in theory you can take adult stem cells from one person and transplant them into another person in order to promote the growth of new cells and tissue.
In practice, however, things have proved more complicated, since the number of stem cells in a persons body is relatively limited and they are hard to access. Scientists were also previously restricted by the fact that adult stem cells could only produce one specific type of cell (so blood stem cells couldnt produce skin cells, for instance).
In their quest for a universal stem cell, some scientists initially focused on stem cells from human embryos, but that remains a controversial method, not only because harvesting stem cells involves destroying the embryo, but also because there is a much higher risk of rejection of embryonic stem cells by the recipients immune system.
The good news is that in 2006 Japanese scientist Shinya Yamanaka of Kyoto University and his team discovered a technique for creating what they call induced pluripotent stem cells (iPSC). The research, for which they won a Nobel Prize in 2012, showed that you can rewind adult stem cells development process so that they became embryo-like stem cells. These cells can then be repurposed into any type of stem cells. So you could turn skin stem cells into iPSCs, which could in turn be turned into blood stem cells.
This major breakthrough has two main benefits. Firstly, because iPSCs are derived from adults, they dont come with the ethical problems associated with embryonic stem cells. Whats more, the risk of the body rejecting the cells is much lower as they come from another adult or are produced by the patient. In recent years scientists have refined this technique to the extent that we now have a recipe for making all types of cells, as well as a growing ability to multiply the number of stem cells, says Professor Ali.
Having the blueprint for manufacturing stem cells isnt quite enough on its own and several barriers remain, admits Professor Ali. For example, we still need to be able to manufacture large numbers of stem cells at a reasonable cost. Ensuring that the stem cells, once they are in the recipient, carry out their function of making new cells and tissue remains a work in progress. Finally, regulators are currently taking a hard line towards the technology, insisting on exhaustive testing and slowing research down.
The good news, Professor Ali believes, is that all these problems are not insurmountable as scientists get better at re-engineering adult cells (a process known as synthetic biology). The costs of manufacturing large numbers of stem cells are falling and this can only speed up as more companies invest in the area. There are also a finite number of different human antigens (the parts of the immune system that lead a body to reject a cell), so it should be possible to produce a bank of iPSC cells for the most popular antigen types.
While the attitude of regulators is harder to predict, Professor Ali is confident that it needs only one major breakthrough for the entire sector to secure a large amount of research from the top drug and biotech firms. Indeed, he believes that effective applications are likely in the next few years in areas where there are already established transplant procedures, such as blood transfusion, cartilage and corneas. The breakthrough may come in ophthalmology (the treatment of eye disorders) as you only need to stimulate the development of a relatively small number of cells to restore someones eyesight.
In addition to helping the body repair its own tissues and organs by creating new cells, adult stem cells can also indirectly aid regeneration by delivering other molecules and proteins to parts of the body where they are needed, says Ralph Kern, president and chief medical officer of biotechnology company BrainStorm Cell Therapeutics.
For example, BrainStorm has developed NurOwn, a cellular technology using peoples own cells to deliver neurotrophic factors (NTFs), proteins that can promote the repair of tissue in the nervous system. NurOwn works by modifying so-called Mesenchymal stem cells (MSCs) from a persons bone marrow. The re-transplanted mesenchymal stem cells can then deliver higher quantities of NTFs and other repair molecules.
At present BrainStorm is using its stem-cell therapy to focus on diseases of the brain and nervous system, such as amyotrophic lateral sclerosis (ALS, also known as Lou Gehrigs disease), MS and Huntingtons disease. The data from a recent final-stage trial suggests that the treatment may be able to halt the progression of ALS in those who have the early stage of the disease. Phase-two trial (the second of three stages of clinical trials) of the technique in MS patients also showed that those who underwent the treatment experienced an improvement in the functioning of their body.
Kern notes that MSCs are a particularly promising area of research. They are considered relatively safe, with few side effects, and can be frozen, which improves efficiency and drastically cuts down the amount of bone marrow that needs to be extracted from each patient.
Because the manufacture of MSC cells has become so efficient, NurOwn can be used to get years of therapy in one blood draw. Whats more, the cells can be reintroduced into patients bodies via a simple lumbar puncture into the spine, which can be done as an outpatient procedure, with no need for an overnight stay in hospital.
Kern emphasises that the rapid progress in our ability to modify cells is opening up new opportunities for using stem cells as a molecular delivery platform. Through taking advantage of the latest advances in the science of cellular therapies, BrainStorm is developing a technique to vary the molecules that its stem cells deliver so they can be more closely targeted to the particular condition being treated. BrainStorm is also trying to use smaller fragments of the modified cells, known as exosomes, in the hope that these can be more easily delivered and absorbed by the body and further improve its ability to avoid immune-system reactions to unrelated donors. One of BrainStorms most interesting projects is to use exosomes to repair the long-term lung damage from Covid-19, a particular problem for those with long Covid-19. Early preclinical trials show that modified exosomes delivered into the lungs of animals led to remarkable improvements in their condition. This included increasing the lungs oxygen capacity, reducing inflammation, and decreasing clotting.
Overall, while Kern admits that you cant say that stem cells are a cure for every condition, there is a lot of evidence that in many specific cases they have the potential to be the best option, with fewer side effects. With Americas Food and Drug Administration recently deciding to approve Biogens Alzheimers drug, Kern thinks that they have become much more open to approving products in diseases that are currently considered untreatable. As a result, he thinks that a significant number of adult stem-cell treatments will be approved within the next five to ten years.
Adult stem cells and synthetic biology arent just useful in treatments, says Dr Mark Kotter, CEO and founder of Bit Bio, a company spun out of Cambridge University. They are also set to revolutionise drug discovery. At present, companies start out by testing large numbers of different drug combinations in animals, before finding one that seems to be most effective. They then start a process of clinical trials with humans to test whether the drug is safe, followed by an analysis to see whether it has any effects.
Not only is this process extremely lengthy, but it is also inefficient, because human and animal biology, while similar in many respects, can differ greatly for many conditions. Many drugs that seem promising in animals end up being rejected when they are used on humans. This leads to a high failure rate. Indeed, when you take the failures into account, it has been estimated that it may cost as much to around $2bn to develop the typical drug.
As a result, pharma companies are now realising that you have to insert the human element at a pre-clinical stage by at least using human tissues, says Kotter. The problem is that until recently such tissues were scarce, since they were only available from biopsies or surgery. However, by using synthetic biology to transform adult stem cells from the skin or other parts of the body into other types of stem cells, researchers can potentially grow their own cells, or even whole tissues, in the laboratory, allowing them to integrate the human element at a much earlier stage.
Kotter has direct experience of this himself. He originally spent several decades studying the brain. However, because he had to rely on animal tissue for much of his research he became frustrated that he was turning into a rat doctor.
And when it came to the brain, the differences between human and rat biology were particularly stark. In fact, some human conditions, such as Alzheimers, dont even naturally appear in rodents, so researchers typically use mice and rats engineered to develop something that looks like Alzheimers. But even this isnt a completely accurate representation of what happens in humans.
As a result of his frustration, Kotter sought a way to create human tissues. It initially took six months. However, his company, Bit Bio, managed to cut costs and greatly accelerate the process. The companys technology now allows it to grow tissues in the laboratory in a matter of days, on an industrial scale. Whats more, the tissues can also be designed not just for particular conditions, such as dementia and Huntingdons disease, but also for particular sub-types of diseases.
Kotter and Bit Bio are currently working with Charles River Laboratories, a global company that has been involved in around 80% of drugs approved by the US Food and Drug Administration over the last three years, to commercialise this product. They have already attracted interest from some of the ten largest drug companies in the world, who believe that it will not only reduce the chances of failure, but also speed up development. Early estimates suggest that the process could double the chance of a successful trial, effectively cutting the cost of each approved drug by around 50% from $2bn to just $1bn. This in turn could increase the number of successful drugs on the market.
Two years ago my colleague Dr Mike Tubbs tipped Fate Therapeutics (Nasdaq: FATE). Since then, the share price has soared by 280%, thanks to growing interest from other drug companies (such as Janssen Biotech and ONO Pharmaceutical) in its cancer treatments involving genetically modified iPSCs.
Fate has no fewer than seven iPSC-derived treatments undergoing trials, with several more in the pre-clinical stage. While it is still losing money, it has over $790m cash on hand, which should be more than enough to support it while it develops its drugs.
As mentioned in the main story, the American-Israeli biotechnology company BrainStorm Cell Therapeutics (Nasdaq: BCLI) is developing treatments that aim to use stem cells as a delivery mechanism for proteins. While the phase-three trial (the final stage of clinical trials) of its proprietary NurOwn system for treatment of Amyotrophic lateral sclerosis (ALS, or Lou Gehrigs disease) did not fully succeed, promising results for those in the early stages of the disease mean that the company is thinking about running a new trial aimed at those patients. It also has an ongoing phase-two trial for those with MS, a phase-one trial in Alzheimers patients, as well as various preclinical programmes aimed at Parkinsons, Huntingtons, autistic spectrum disorder and peripheral nerve injury. Like Fate Therapeutics, BrainStorm is currently unprofitable.
Australian biotechnology company Mesoblast (Nasdaq: MESO) takes mesenchymal stem cells from the patient and modifies them so that they can absorb proteins that promote tissue repair and regeneration. At present Mesoblast is working with larger drug and biotech companies, including Novartis, to develop this technique for conditions ranging from heart disease to Covid-19. Several of these projects are close to being completed.
While the US Food and Drug Administration (FDA) controversially rejected Mesoblasts treatment remestemcel-L for use in children who have suffered from reactions to bone-marrow transplants against the advice of the Food and Drug Administrations own advisory committee the firm is confident that the FDA will eventually change its mind.
One stem-cell company that has already reached profitability is Vericel (Nasdaq: VCEL). Vericels flagship MACI products use adult stem cells taken from the patient to grow replacement cartilage, which can then be re-transplanted into the patient, speeding up their recovery from knee injuries. It has also developed a skin replacement based on skin stem cells.
While earnings remain relatively small, Vericel expects profitability to soar fivefold over the next year alone as the company starts to benefit from economies of scale and runs further trials to expand the range of patients who can benefit.
British micro-cap biotech ReNeuron (Aim: RENE) is developing adult stem-cell treatments for several conditions. It is currently carrying out clinical trials for patients with retinal degeneration and those recovering from the effects of having a stroke. ReNeuron has also developed its own induced pluripotent stem cell (iPSC) platform for research purposes and is seeking collaborations with other drug and biotech companies.
Like other small biotech firms in this area, it is not making any money, so it is an extremely risky investment although the rewards could be huge if any of its treatments show positive results from their clinical trials.
More here:
Investing in stem cells, the building blocks of the body - MoneyWeek
- Molecular Genetics Testing - StatPearls - NCBI Bookshelf - November 16th, 2024
- Working with Molecular Genetics (Hardison) - Biology LibreTexts - November 16th, 2024
- Molecular Underpinnings of Genetic and Rare Diseases: From ... - Frontiers - November 16th, 2024
- The molecular genetics of schizophrenia: New findings promise new insights. - November 16th, 2024
- 8: Techniques of Molecular Genetics - Biology LibreTexts - September 4th, 2024
- 1.5: Molecular Genetics - Biology LibreTexts - September 4th, 2024
- Molecular genetics made simple - PMC - National Center for ... - September 4th, 2024
- 4 Introduction to Molecular Genetics - University of Minnesota Twin Cities - September 4th, 2024
- Molecular genetics - Definition and Examples - Biology Online - September 4th, 2024
- A Detailed Look at the Science of Molecular Genetics - KnowYourDNA - September 4th, 2024
- Molecular Genetics | NHLBI, NIH - September 4th, 2024
- Molecular biology - Wikipedia - September 4th, 2024
- Genetics, Molecular & Cellular Biology Admissions - September 4th, 2024
- Researchers map 50,000 of DNAs mysterious knots in the human genome - EurekAlert - September 4th, 2024
- Artificial selection of mutations in two nearby genes gave rise to shattering resistance in soybean - Nature.com - September 4th, 2024
- Mainz Biomed Expands Corporate Health Program for ColoAlert with the Addition of Three New Companies in Germany - Marketscreener.com - April 7th, 2023
- Molecular Genetics and Metabolism | Journal - ScienceDirect - December 11th, 2022
- People don't mate randomly but the flawed assumption that they do is an essential part of many studies linking genes to diseases and traits - The... - November 25th, 2022
- Molecular and Cell Biology and Genetics - Master of Science / PhD ... - October 7th, 2022
- NIPD Genetics: Leading Genetic Testing Company - October 7th, 2022
- Skeletal Biology and Regeneration Students Recognized For Research Excellence - UConn Today - University of Connecticut - October 7th, 2022
- Mary Munson elected fellow of the American Society for Cell Biology - UMass Medical School - October 7th, 2022
- Every Body's Talking at Them: an Interview with Jon Lieff - CounterPunch - October 7th, 2022
- TriBeta invites students to explore opportunities to work with faculty at research fair on Oct. 11 - Ohio University - October 7th, 2022
- Genetics: the Vatican Does Not Intend to Be Behind the Times - FSSPX.News - October 7th, 2022
- Yield10 Bioscience Appoints Willie Loh, Ph.D., to the Board of Directors - citybiz - October 7th, 2022
- Molecular pathways of major depressive disorder converge on the synapse | Molecular Psychiatry - Nature.com - October 7th, 2022
- Sigyn Therapeutics Strengthens Board of Directors With the Appointments of Richa Nand, Jim Dorst and Christopher Wetzel - Yahoo Finance - October 7th, 2022
- UTHSC Researcher Co-Leads Study of Genes that Modulate Aging, Lifespan - UTHSC News - UTHSC News - October 7th, 2022
- GATC Health Investor Conference to Feature First Public Demonstration of Its AI Platform's Drug Discovery Capabilities - PR Newswire - October 7th, 2022
- Three Professors Conferred Tenure and Eleven Promoted - Wesleyan Argus - October 7th, 2022
- Who will get the call from Stockholm? It's time for STAT's 2022 Nobel Prize predictions - STAT - October 7th, 2022
- Dalhousie to present exhibition celebrating Gerhard Herzberg and his legacy - Dal News - October 7th, 2022
- Why Some People Should Rethink Their Morning Cup Of Coffee - Health Digest - October 7th, 2022
- Cell and Gene Therapy: Rewriting the Future of Medicine - Technology Networks - October 7th, 2022
- UofL researchers lead the call to increase genetic diversity in immunogenomics - uoflnews.com - July 6th, 2021
- In Brief This Week: Foundation Medicine, Myriad Genetics, Genetron Health, and More - GenomeWeb - July 6th, 2021
- More filling? Tastes great? How flies, and maybe people, choose their food - Yale News - July 6th, 2021
- Genetic mapping of subsets of patients with fragile X syndro | TACG - Dove Medical Press - July 6th, 2021
- What is The Babydust Method? Danielle Lloyd swears method helped her conceive girl - The Mirror - July 6th, 2021
- Datar Cancer Genetics joins hands with US based Iylon Precision Oncology to offer personalized Precision Oncology cancer treatment solutions - PR Web - July 6th, 2021
- Mapping a pathway to competitive production - hortidaily.com - hortidaily.com - July 6th, 2021
- Associations between pancreatic expression quantitative traits and risk of pancreatic ductal adenocarcinoma. - Physician's Weekly - July 6th, 2021
- Global Genomics Market | Rising Incidence of Chronic and Genetic Diseases are Key Factors to Grow Market During 2021-2029 | 23andMe, Agilent... - July 6th, 2021
- The Babydust Method Danielle Lloyd used to conceive a girl after four sons and how it works - RSVP Live - July 6th, 2021
- In the beginning science and faith - The Irish Times - June 24th, 2021
- Ancient Maya Maintained Native Tropical Forest Plants around Their Water Reservoirs | Archaeology - Sci-News.com - June 24th, 2021
- Local foundation awards $1.25 million to MIND Institute to study rare genetic condition - UC Davis Health - June 24th, 2021
- Xlife Sciences AG: Collaboration with the University of Marburg - Yahoo Finance - June 24th, 2021
- Genetics diagnostics in India is on the verge of transformation: Neeraj Gupta, Founder and CEO of Genes2me - The Financial Express - June 24th, 2021
- Precision Medicine: Improving Health With Personalized Solutions - BioSpace - June 24th, 2021
- Half of Portland areas 22 top National Merit winners hail from just 2 schools - OregonLive - June 24th, 2021
- New study finds low levels of a sugar metabolite associates with disability and neurodegeneration in multiple sclerosis - Newswise - May 14th, 2021
- Cernadas-Martn Is a Champion for Marine and Human Diversity | | SBU News - Stony Brook News - May 14th, 2021
- Four Penn Faculty: Election to the National Academy of Sciences - UPENN Almanac - May 14th, 2021
- Is there a difference between a gene-edited organism and a 'GMO'? The question has important implications for regulation - Genetic Literacy Project - May 14th, 2021
- 5 Students Inducted Into American Society for Biochemistry and Molecular Biology Honor Society - Wesleyan Connection - May 14th, 2021
- The Science of Aliens, Part 2: What Kind of Genetic Code Would Extraterrestrials Have? - Air & Space Magazine - May 14th, 2021
- UT Austin Faculty Member Receives 2021 Piper Professor Award - Office of the Executive Vice President and Provost - UT News | The University of Texas... - May 14th, 2021
- Distinguished University of Birmingham plant scientist elected to the Royal Society - University of Birmingham - May 14th, 2021
- Double Hoo Research: Undergrads and Grads Team Up to Create Knowledge - University of Virginia - May 14th, 2021
- Global Genetic Testing Market Top Countries Analysis and Manufacturers With Impact of COVID-19 | 2021-2028 Detail Analysis focusing on Application,... - May 14th, 2021
- Morag Park named to the Order of Quebec - McGill Reporter - McGill Reporter - May 14th, 2021
- Third Rock Ventures Launches Flare Therapeutics With $82 Million Series A - BioSpace - May 14th, 2021
- The Royal Society announces election of new Fellows 2021 - Cambridge Network - May 14th, 2021
- Researchers Decode the "Language" of Immune Cells - Technology Networks - May 14th, 2021
- RepliCel Launches the Next Stage of a Research Project with the University of British Columbia to Build World-Class Hair Follicle Cell Data Map -... - May 14th, 2021
- Mice Sperm Sabotage Other Swimmers With Poison | Smart News - Smithsonian Magazine - February 14th, 2021
- Study Identifies Never-Before-Seen Dual Function in Enzyme Critical for Cancer Growth - Newswise - February 14th, 2021
- Devious sperm 'poison' their rivals, forcing them to swim in circles until they die - Livescience.com - February 14th, 2021
- More needs to be done to find and fight COVID-19 variants, says Colorado researcher - FOX 31 Denver - February 14th, 2021
- Selfish sperm genes 'poison' the competition for the win - Big Think - February 14th, 2021
- Some sperm cells swim faster and even poison their competition to climb to the top - ZME Science - February 14th, 2021
- We are scientists: U of T researchers reach out to girls and women around the world - News@UofT - February 14th, 2021
- Mutations in frogs point to autism genes' shared role in neurogenesis - Spectrum - February 14th, 2021
- Global Genetic Testing Market Insights, Size Estimation, Research Insights, COVID-19 Impact and Future Trends By 2028 KSU | The Sentinel Newspaper -... - February 14th, 2021
- Acer Therapeutics Announces Topline Results from its Bioequivalence Trial of ACER-001 Compared to BUPHENYL Under Fed Conditions - GlobeNewswire - February 14th, 2021
- GeneSight Psychotropic Test's Combinatorial Approach Proves Better than Single-Gene Testing at Predicting Patient Outcomes and Medication Blood Levels... - February 14th, 2021
- Gu Ailing Eileen: I've learned to win for myself, not other people - Olympic Channel - February 14th, 2021
- Model organisms are more than just monkeys and mice - DW (English) - February 7th, 2021