Abstract
Stem cells are primitive cells that can differentiate and regenerate organs in different parts of the body such as heart, bones, muscles and nervous system. This has been a field of great clinical interest with immense possibilities of using the stem cells in regeneration of human organ those are damaged due to disease, developmental defects and accident. The knowledge of stem cell technology is increasing quickly in all medical specialties and in dental field too. Stem cells of dental origin appears to hold the key to various cell-based therapies in regenerative medicine, but most avenues are in experimental stages and many procedures are undergoing standardization and validation. Long-term preservation of SHED cells or DPSC is becoming a popular consideration, similar to the banking of umbilical cord blood. Dental pulp stem cells (DPSCs) are the adult multipotent cells that reside in the cell rich zone of the dental pulp. The multipotent nature of these DPSCs may be utilized in both dental and medical applications. A systematic review of the literature was performed using various internet based search engines (PubMed, Medline Plus, Cochrane, Medknow, Ebsco, Science Direct, Hinari, WebMD, IndMed, Embase) using keywords like dental pulp stem cells, regeneration, medical applications, tissue engineering. DPSCs appears to be a promising innovation for the re-growth of tissues however, long term clinical studies need to be carried out that could establish some authentic guidelines in this perspective.
KEYWORDS: Dental pulp stem cells, myocardial infarction, regenerative therapy, tissue engineering
The term stem cell was proposed for scientific use by Russian histologist Alexander Maksimov in 1909. He was the first to suggest the existence of hematopoietic stem cells (HSC) with the morphological appearance of a lymphocyte, capable of migrating throughout the blood to micro ecological niches that would allow them to proliferate and differentiate.[1] Tissue engineering as a scientific discipline has shown promising results in the field of dentistry also. Tissue engineering approaches can aid in either the replacement of damaged tooth structures and/or in the repair/regeneration of pulp-dentin complex (regenerative endodontics).
The science of tissue engineering and regenerative medicine has seen tremendous development, especially in the field of stem cell research. Tissue engineering approach requires the three main key elements (triad): Stem cells, scaffold (or matrix) and growth factors (morphogens).[2] These key elements can be used in three principal therapeutic strategies to obtain the desired result. Today stem cell biology is one of the most fascinating areas of science which brings in the hope for improved outcomes by replacing damaged or absent tissues with healthy regenerated tissue.[3] Dental pulp stem cells (DPSCs) can be found within the cell rich zone of dental pulp. Their embryonic origin, from neural crests, explains their multipotency.[4] The term stem cell was projected by Alexander Maksimov a Russian histologist, during 1908 in congress of hematologic society at Berlin.[5] Stem cells have the potential to renew themselves for long periods through cell division and under certain physiologic or experimental conditions, they can be induced to become cells with special functions.[6] Several studies have been carried out to verify whether stem cells could become a source of stable differentiated cells. These studies have confirmed their capacity to induce tissue formation during the embryonic development and proliferation along with differentiation to generate all other tissues.[7,8,9,10]
By definition the pluripotency of biological compounds describes the ability of certain substances to produce several distinct biological responses whereas multipotency means the ability to differentiate to a limited number of cell fates or into closely related family of cells. Recent advances in the tissue engineering have drawn scientists to test the possibility of tooth engineering and regeneration. However, these biotechnologies are in its initial phase, it is expected to be used to restore missing teeth and replace artificial dental implants.
Researchers have observed that these stem cells act differently than other adult stem cells. These dentally-derived mesenchymal stem cells are capable of extensive proliferation and differentiation, which makes them an important resource of stem cells for regeneration and repair of a multitude of diseased and injured organs and tissues.[10,11] Because of their ability to produce and secrete neurotrophic factors, these stem cells may also be beneficial for the treatment of neurodegenerative diseases and the repair of motoneurons following the injury. Research works on dental mesenchymal stem cells is expanding at an unprecedented rate. More than 1,000 research studies from institutions around the world have been published since the year 2000 that make reference to the dental stem cells. In the year 2007 alone, over 1,000 research articles were published on Dental Stem Cells.[12] Additionally, over 60 clinical investigations with animals and human volunteers have been published seeking to identify the potential new medical treatments from adult stem cells.[10] Stem cell-based therapies are being investigated for the treatment of many conditions including: Neurodegenerative conditions, liver disease, diabetes, cardiovascular disease, autoimmune diseases, musculoskeletal disorders, and for nerve regeneration following the brain or spinal cord injury.
Riccardo and co workers postulated two school of thoughts; one argues that these cells produce a dentin-like tissue,[7] whereas the other research group[11] has demonstrated that these cells are capable of producing bone, both in vitro and in vivo. Beyond natural capacity of response to the injury, dental pulp stem cells are attractive for their potential to differentiate, in vitro, into several cell types including odontoblasts, neural progenitors, chondrocytes, endotheliocytes, adipocytes, smooth muscle cells and osteoblasts.[12,13] The potential application of dental pulp stem cells and tissue engineering in medicine and dentistry in particularly are discussed in the present review.
At present, the mesenchymal stem cell populations having the high proliferative capacity and multi-lineage differentiation have been isolated from the dental tissues.[14,15] These are dental pulp stem cells (DPSCs), stem cells from human exfoliated deciduous teeth (SHEDs), periodontal ligament stem cells (PDLSCs), dental follicle progenitor stem cells (DFPCs), and stem cells from apical papilla (SCAPs). DPSCs and SHEDs originate from the cranial neural crest and express early markers for both mesenchymal and neuroectodermal stem cells.[16,17,18] This explains their multipotency and pluripotency. Sharpe and Young were pioneered the use of stem cells in the dental tissue engineering.[19,20] Various studies have shown that these cells have unique features of stem/progenitor cells having the capacity to differentiate into dentin forming odontoblasts.[21,22] The roots of the third molar are often incomplete at the age of eighteen, therefore these teeth contains a conspicuous pool of undifferentiated cells, resident within the cell rich zone of the dental germ pulp.[23,24] In an in vitro model, Hwang et al. derived DPSCs from supernumerary mesiodens, and it has been seen that DPSCs derived at the stage of crown development are more proliferative than at later stages.[25] Apart from these, the cells obtained from loosely attached tissue at the root apex (SCAP) and periodontal ligament (PDLSC) have been used for bio-root engineering.[26,27,28] More recently, stem cells obtained from the dental tissues have been shown to develop into fat, bone cartilage and neural cells.[29,30]
In addition to their therapeutic use in dentin regeneration, regeneration of periodontal tissues and skeletal articular tissues of craniofacial region, DPSCs were also reported to be used in the treatment of neurotrauma, autoimmune diseases, myocardial infarction, muscular dystrophy and connective tissue damages.[31] This review article is an attempt to highlight main strategies as related to the use of dental pulp stem cells, their characterization, storage, tissue engineering strategies and useful clinical applications in the field of modern dentistry.
Here is the original post:
Imperative Role of Dental Pulp Stem Cells in Regenerative ...
- 4 Reasons To Save Baby Teeth And Ways To Preserve Them - MomJunction - October 6th, 2024
- Stem Cells May Help In Treatment of Tuberculosis, But Challenges Remain: Study - News18 - April 23rd, 2023
- Buccal Fat Pad as a Potential Source of Stem Cells for Bone ... - Hindawi - December 20th, 2022
- Difference Between Adult and Embryonic Stem Cells - December 20th, 2022
- Nicklas Brendborg: Keeping your mouth clean is one of the few easy things you can do to extend your life - EL PAS USA - November 17th, 2022
- A Breakthrough in the Era of Calcium Silicate-Based Cements: A Critical Review - Cureus - September 4th, 2022
- Effect of Puerarin on New Bone Formation In Vivo | DDDT - Dove Medical Press - August 27th, 2022
- The Tokyo Medical and Dental University (TMDU) team succeeded with the world's first Mini Organ transplantation to a patient with Ulcerative Colitis... - August 27th, 2022
- Stem cell-based biological tooth repair and regeneration - PMC - June 26th, 2022
- Where Stem Cells Are Found, & the Difference That Makes | Cryo-Cell - June 26th, 2022
- Stem Cells International | Hindawi - June 26th, 2022
- The surprising science of breast milk - BBC - June 26th, 2022
- Plug-and-Play Human Organ-on-a-Chip Can Be Customized to the Patient - SciTechDaily - May 8th, 2022
- Twelve Rutgers Professors Named Fellows of the American Association for the Advancement of Science - Rutgers Today - January 30th, 2022
- Mouth Sores from Chemo: Symptoms, Causes, and Treatments - Healthline - February 19th, 2021
- Tooth Regeneration Market to Exhibit Steadfast Expansion by 2027 | Unilever, Ocata Therapeutics, Integra LifeSciences, CryoLife, BioMimetic... - February 14th, 2021
- Using 3D Printing to Develop Bone-Like Structures that Contain Living Cells - AZoM - February 14th, 2021
- Fear of Covid keeps patients away from dental clinics resulting in an increased need of treatment. - ETHealthworld.com - February 9th, 2021
- 3D medical printing making strides, and helping patients do the same - MedCity News - February 9th, 2021
- Global Cord Blood Banking Industry Report 2021: Industry Trends, Expansion Technologies, Profiles of Select Cord Blood Banks and Companies -... - January 14th, 2021
- Bone Therapeutics and Rigenerand sign partnership for cell therapy process development - GlobeNewswire - January 14th, 2021
- Europe Prescription Spectacles Market to Exhibit a 5.2% CAGR and Reach USD 31.89 Billion by 2027; Increasing Incidence of Ocular Disorders to Favor... - January 14th, 2021
- Priming the Immune System to Fight Cancer - PRNewswire - December 17th, 2020
- Girl gets her smile back - and a new jaw - thanks to innovative tissue engineering procedure - Newswise - December 17th, 2020
- Bone Regeneration Material Market: Cell-based Segment to Expand Significantly - BioSpace - December 17th, 2020
- Stem Cell Therapy Market is estimated to be worth USD 8.5 Billion by 2030, claims Roots Analysis - Cheshire Media - November 28th, 2020
- Global Regenerative Medicine Market 2020-2025: Opportunities with the Implementation of the 21st Century Cures Act - Stockhouse - November 28th, 2020
- Molecular Diagnostics Market to Record over 7% Growth Rate and Hit USD 13873.6 Million by 2025; Advancements in this Field to Increase Productivity... - November 28th, 2020
- North America Tissue Engineering Market Report 2020: Market is Expected to Reach US$12.23 Billion by 2027 from US$4.45 Billion in 2019 -... - November 22nd, 2020
- Latest Study explores the Stem Cell Banking Market Witness Highest Growth in nea - GroundAlerts.com - November 5th, 2020
- Stem Cell Therapy Market is estimated to be worth USD 8.5 Billion by 2030 - PRnews Leader - November 5th, 2020
- Canine Stem Cell Therapy Market Size, Share Analysis by Manufacturers, Regions, Type and Application to 2026 - PRnews Leader - November 5th, 2020
- Stem Cell Banking Market to witness an impressive growth during the forecast pe - News by aeresearch - November 2nd, 2020
- Global Tooth Regeneration Market: Industry Analysis and Forecast (2020-2027)-by Type, Application, Population Demographics and Region - re:Jerusalem - October 10th, 2020
- The global regenerative medicine market is projected to reach USD 17.9 billion by 2025 from USD 8.5 billion in 2020, at a CAGR of 15.9% - Yahoo... - October 10th, 2020
- The end-use Industries to Help the Tooth Regenerations market stand in a good stead between 2018 and 2026 - The Daily Chronicle - September 18th, 2020
- Increase in Frequency of Product Innovations to Drive the Tooth Regenerations Market from 2018 to 2026 - Lake Shore Gazette - September 15th, 2020
- Incremental Sales to Drive the Tooth Regenerations Market from 2018 to 2026 - Lake Shore Gazette - September 15th, 2020
- Parents plea for stem cell help to save life of daughter with rare blood disorder - Mirror Online - September 2nd, 2020
- Unraveling the use of CBD in veterinary medicine - Jill Lopez - September 2nd, 2020
- Global Stem Cell Banking Market with Covid-19 Effect Analysis, Growth, Research Findings, Type, Application, Element Global Trends and Forecast to... - September 2nd, 2020
- Plasma Therapy Market Overview with Detailed Analysis, Competitive landscape, Forecast to 2025 - StartupNG - September 2nd, 2020
- Active Data Warehousing Market to Witness Robust Expansion Throughout the Forecast Period 2020 2025 - The Daily Chronicle - August 20th, 2020
- 3D bioprinting spatiotemporally defined patterns of growth factors to tightly control tissue regeneration - Science Advances - August 20th, 2020
- NIH names Dr. Rena D'Souza as director of the National Institute of Dental and Craniofacial Research - National Institutes of Health - August 13th, 2020
- Global Cell Theraputics Market Value Estimated To Grow With A Healthy CAGR Rate During 2020-2025: Cell Theraputics Bristol-Myers Squibb Company... - July 10th, 2020
- Global Tissue-Replacement Products Market to Witness Rapid Development During the Period 2017 2025 - Lake Shore Gazette - July 10th, 2020
- Job interviews zoom without leaving the house | What's Working - The Union Leader - July 6th, 2020
- Citius Receives FDA Response on Pre-Investigational New Drug (PIND) Application for its Induced Mesenchymal Stem Cells (iMSCs) to Treat Acute... - June 30th, 2020
- Medical Professionals in the Ozarks - 417mag - June 30th, 2020
- Dental Fitting Market 2019 Break Down by Top Companies, Countries, Applications, Challenges, Opportunities and Forecast 2026 - Cole of Duty - June 10th, 2020
- Coronavirus daily news updates, June 9: What to know today about COVID-19 in the Seattle area, Washington state and the world - Seattle Times - June 10th, 2020
- Metal Fiducial Marks Market Emerging Trends, Strong Application Scope, Size, Status, Analysis and Forecast to 2025 - Cole of Duty - June 10th, 2020
- Impacts of COVID 19 on the Global Regenerative Medicine Market Size: Global Industry Analysis, Growth, Top Companies Revenue, MRFR Reveals Insights... - June 2nd, 2020
- Exceptional stem cell science on tap for ISSCR 2020 Virtual June 23-27, 2020 - 7thSpace Interactive - June 2nd, 2020
- Orthopedic Joint Replacement Market to Gain Traction; Rising Prevalence of Bone Diseases to Boost Growth, states Fortune Business Insights -... - June 2nd, 2020
- Coming Together to Solve COVID-19 Mysteries | University of Pennsylvania Almanac - UPENN Almanac - June 2nd, 2020
- Impact of Covid-19 on Stem Cell Banking Market 2020: Remarking Enormous Growth with Recent Trends | Cord Blood Registry (CBR) Systems (US), Cordlife... - May 27th, 2020
- Researchers develop nanoengineered bioink to 3D print functional bone tissue - 3D Printing Industry - May 27th, 2020
- Directional Osteo-Differentiation Effect of hADSCs on Nanotopographica | IJN - Dove Medical Press - May 8th, 2020
- Bone Therapeutics raises additional EUR 4.0 million, totalling EUR 15 million, providing runway into Q2 2021 - PharmiWeb.com - May 8th, 2020
- Coming together to solve the many scientific mysteries of COVID-19 - Penn: Office of University Communications - May 8th, 2020
- Bone Therapeutics secures EUR 11.0 million financing - PharmiWeb.com - April 30th, 2020
- GLOBAL TOOTH REGENERATION MARKET: INDUSTRY ANALYSIS AND FORECAST (2020-2027) - MR Invasion - April 28th, 2020
- Stromal Vascular Fraction Market to Register CAGR 4.5% Growth in Revenue During the Forecast Period 2019 to 2029 - Jewish Life News - April 28th, 2020
- UCLA scientists invent nanoparticle that could improve treatment for bone defects - UCLA Newsroom - April 27th, 2020
- Orthopedic Devices Market to Reach USD 71.67 Billion by 2026; Increasing Geriatric Population to Boost Growth, says Fortune Business Insights -... - April 10th, 2020
- A new way to study HIV's impact on the brain - Penn: Office of University Communications - March 28th, 2020
- Bone Therapeutics appoints Stefanos Theoharis as Chief Business Officer - OrthoSpineNews - March 28th, 2020
- Walking Sticks Stop, Drop and Clone to Survive - KQED - March 25th, 2020
- Hydrogel could be step forward in therapies to generate bones in head and neck - UCLA Newsroom - March 19th, 2020
- Cell Banking Outsourcing Market to Witness Surge in Demand Owing to Increasing End-use Adoption - Lake Shore Gazette - March 19th, 2020
- New evidence teeth can fill their own cavities - Big Think - March 16th, 2020
- These new stem cells have the ability to generate new bone - Tech Explorist - March 12th, 2020
- Bone Therapeutics announces 2019 full year results - OrthoSpineNews - March 12th, 2020
- Stem cells that can grow new bone discovered by researchers - Drug Target Review - March 6th, 2020
- Stem Cells that will aid new bone generation discovered as per latest research - Medical Herald - March 6th, 2020
- UConn Researchers Discover New Stem Cells That Can Generate New Bone - UConn Today - March 6th, 2020
- What's coming down the pike in the dental profession? - Dentistry IQ - February 26th, 2020
- On the Road to 3-D Printed Organs - The Scientist - February 26th, 2020