The world-altering coronavirus behind the COVID-19 pandemic is thought to be just 60 nanometres to 120 nanometres in size. This is so mind-bogglingly small that you could fit more than 400 of these virus particles into the width of a single hair on your head. In fact, coronaviruses are so small that we cant see them with normal microscopes and require much fancier electron microscopes to study them. How can we battle a foe so minuscule that we cannot see it?
One solution is to fight tiny with tiny. Nanotechnology relates to any technology that is or contains components that are between 1nm and 100nm in size. Nanomedicine that takes advantage of such tiny technology is used in everything from plasters that contain anti-bacterial nanoparticles of silver to complex diagnostic machines.
Nanotechnology also has an impressive record against viruses and has been used since the late 1880s to separate and identify them. More recently, nanomedicine has been used to develop treatments for flu, Zika, and HIV. And now its joining the fight against the COVID-19 virus, SARS-CoV-2.
If youre suspected of having COVID, swabs from your throat or nose will be taken and tested by reverse transcription polymerase chain reaction (RT-PCR). This method checks if genetic material from the coronavirus is present in the sample.
Despite being highly accurate, the test can take up to three days to produce results, requires high-tech equipment only accessible in a lab, and can only tell if you have an active infection when the test is taken. But antibody tests, which check for the presence of coronavirus antibodies in your blood, can produce results immediately, wherever youre tested.
Antibodies are formed when your body fights back against a virus. They are tiny proteins that search for and destroy invaders by hunting for the chemical markers of germs, called antigens. This means antibody tests can not only tell if you have coronavirus but if you have previously had it.
[Read: Oxfords COVID-19 vaccine is starting to look like a winner]
Antibody tests use nanoparticles of materials such as gold to capture any antibodies from a blood sample. These then slowly travel along with a small piece of paper and stick to an antigen test line that only the coronavirus antibody will bond to. This makes the line visible and indicates that antibodies are present in the sample. These tests are more than 95% accurate and can give results within 15 minutes.
A major turning point in the battle against coronavirus will be the development of a successful vaccine. Vaccines often contain an inactive form of a virus that acts as an antigen to train your immune system and enable it to develop antibodies. That way, when it meets the real virus, your immune system is ready and able to resist infection.
But there are some limitations in that typical vaccine material can prematurely break down in the bloodstream and does not always reach the target location, reducing the efficiency of a vaccine. One solution is to enclose the vaccine material inside a nanoshell by a process called encapsulation.
These shells are made from fats called lipids and can be as thin as 5nm in diameter, which is 50,000 times thinner than an eggshell. The nanoshells protect the inner vaccine from breaking down and can also be decorated with molecules that target specific cells to make them more effective at delivering their cargo.
This can improve the immune response of elderly people to the vaccine. And critically, people typically need lower doses of these encapsulated vaccines to develop immunity, meaning you can more quickly produce enough to vaccinate an entire population.
Encapsulation can also improve viral treatments. A major contribution to the deaths of virus patients in intensive care is acute respiratory distress syndrome, which occurs when the immune system produces an excessive response. Encapsulated vaccines can target specific areas of the body to deliver immunosuppressive drugs directly to targeted organs and helping regulate our immune system response.
Its hard to exaggerate the importance of wearing face masks and washing your hands to reducing the spread of COVID-19. But typical face coverings can have trouble stopping the most penetrating particles of respiratory droplets, and many can only be used once.
New fabrics made from nanofibres 100nm thick and coated in titanium oxide can catch droplets smaller than 1,000nm and so they can be destroyed by ultraviolet (UV) radiation from sunlight. Masks, gloves, and other personal protective equipment (PPE) made from such fabrics can also be washed and reused, and are more breathable.
New fabrics made from coated nanofibres could produce better PPE. AnnaVel/Shutterstock
Another important nanomaterial is graphene, which is formed from a single honeycomb layer of carbon atoms and is 200 times stronger than steel but lighter than paper. Fabrics laced with graphene can capture viruses and block them from passing through. PPE containing graphene could be more puncture, flame, UV, and microbe-resistant while also being lightweight.
Graphene isnt reserved for fabrics either. Nanoparticles could be placed on surfaces in public places that might be particularly likely to facilitate the transmission of the virus.
These technologies are just some of the ways nanoscience is contributing to the battle against COVID-19. While there is no one answer to a global pandemic, these tiny technologies certainly have the potential to be an important part of the solution.
This article is republished from The Conversation by Josh Davies, PhD Candidate in Chemistry, Cardiff University under a Creative Commons license. Read the original article.
Read next: Schools are buying up surveillance technology to fight COVID-19
Read the original here:
How very tiny technologies are helping tackle the global pandemic - The Next Web
- Enhancing localized chemotherapy with anti-angiogenesis and nanomedicine synergy for improved tumor penetration in well-vascularized tumors -... - November 27th, 2024
- what is nanomedicine The British Society for Nanomedicine - November 16th, 2024
- Nanomedicine: Principles, Properties, and Regulatory Issues - October 6th, 2024
- Center for Nanomedicine - Johns Hopkins Medicine - October 6th, 2024
- Delivering the power of nanomedicine to patients today - October 6th, 2024
- Emerging Applications of Nanotechnology in Healthcare and Medicine - October 6th, 2024
- Tiny skin-stabbing stars designed to get meds through the epidermis - October 6th, 2024
- Inhibition of HIV-1 infection with curcumin conjugated PEG-citrate ... - October 6th, 2024
- Montgomery County, Kansas - Kansas Historical Society - October 6th, 2024
- The Nanomedicine Revolution - PMC - National Center for Biotechnology ... - October 6th, 2024
- Fawn Creek township, Montgomery County, Kansas (KS) detailed profile - October 6th, 2024
- Fawn Creek, Montgomery County, Kansas Population and Demographics - October 6th, 2024
- An Introduction to Nanomedicine - AZoNano - October 6th, 2024
- Nanomedicine Market is expected to show growth from 2024 to 2030, reported by Maximize Market Research - openPR - October 6th, 2024
- Oro Rx Healthcare LLP Unveils Oroceuticals: The Next-Gen Nutrition Delivery Tech - Hindustan Times - October 27th, 2023
- Leapfrogging as pharma leader of the worldNational Policy on Research and Development and Innovation in Pharma-MedTech Sector in India - The Sangai... - October 27th, 2023
- What will Indian healthcare look like in 2047? Robotics, AI, biotech will shape the future - The Economic Times - February 16th, 2023
- Going Beyond Target Or Mechanism Of Disease: Disruptive Innovation In Drug Delivery Systems - Forbes - September 12th, 2022
- Nanomedicine Market Size, Share, Types, Products, Trends, Growth, Applications and Forecast 2022 to 2028 - Digital Journal - September 12th, 2022
- Nano-preterm infants may not benefit from noninvasive versus invasive ventilation at birth - University of Alabama at Birmingham - September 12th, 2022
- Juan De Borbon - Introducing Cutting-Edge Techniques To The Healthcare Industry - CEOWORLD magazine - September 12th, 2022
- Organic thin-film sensors for light-source analysis and anti-counterfeiting applications - Nanowerk - September 12th, 2022
- Whole Exome Sequencing Market Projected to Reach CAGR of 19.0% Forecast by 2029, Global Trends, Size, Share, Growth, Future Scope and Key Player... - September 12th, 2022
- Another 'Dr. Copper' - MINING.COM - MINING.com - September 12th, 2022
- Artemisinin Combination Therapy Market Insights and Emerging Trends by 2027 - BioSpace - August 19th, 2022
- NASEM Recommends That EPA Conduct Ecological Risk Assessment of UV Filters Found in Sunscreen, Including Titanium Oxide and Zinc Oxide - JD Supra - August 19th, 2022
- Fast and noninvasive electronic nose for sniffing out COVID-19 based on exhaled breath-print recognition | npj Digital Medicine - Nature.com - August 19th, 2022
- Applications in Chronic Wound Healing | IJN - Dove Medical Press - July 25th, 2022
- Fundamental Knowledge on Nanobots - Bio-IT World - July 25th, 2022
- How different cancer cells respond to drug-delivering nanoparticles - MIT News - July 25th, 2022
- Nanorobots Market to close to USD 19576.43 million with CAGR of 12.23% during the forecast period to 2029 - Digital Journal - July 25th, 2022
- Microscopic Robots Made from White Blood Cells Could Treat and Prevent Life-Threatening Illnesses - Good News Network - July 25th, 2022
- Nano Therapy Market 2022 Growth Is Expected To See Development Trends and Challenges to 2030 This Is Ardee - This Is Ardee - July 25th, 2022
- Artificial Intelligence (AI), Cloud Computing, 5G, And Nanotech In Healthcare: How Organizations Are Preparing Best For The Future - Inventiva - July 25th, 2022
- Potassium Channels as a Target for Cancer Therapy & Research | OTT - Dove Medical Press - July 25th, 2022
- How can Nanotechnology be Used to Reverse Skin Aging? - AZoNano - May 20th, 2022
- Should Nanomaterial Synthesis Rely on Automation? - AZoNano - May 20th, 2022
- Fabrication Methods of Ceramic Nanoparticles - AZoNano - May 20th, 2022
- Explained: What are nanobots and how they can be used to help clean teeth? - Firstpost - May 20th, 2022
- Understanding the Health Risks of Graphene - AZoNano - May 20th, 2022
- Prevalence and predictors of SARS-CoV-2 | IDR - Dove Medical Press - May 20th, 2022
- Patches and robotic pills may one day replace injections - Science News for Students - May 20th, 2022
- Nanotechnology in the Nutricosmetics Industry - AZoNano - May 20th, 2022
- Nanomedicine: Nanotechnology, Biology and Medicine ... - December 22nd, 2021
- Frontiers | Nanomedicine: Principles, Properties, and ... - December 22nd, 2021
- Nanotechnology In Medicine: Huge Potential, But What Are ... - December 22nd, 2021
- Verseon Praised for Disruptive Approach to Physics- and AI-Based Drug Discovery - Digital Journal - December 22nd, 2021
- Nanotech opens up job options in variety of industries - BL on Campus - August 17th, 2021
- Homeopathic remedies that cattle farmers can use - Thats Farming - August 17th, 2021
- Healthcare Nanotechnology (Nanomedicine) Market Trend, Technology Innovations and Growth Prediction 2021-2027 The Manomet Current - The Manomet... - August 17th, 2021
- Regenerative Medicine Market Size Worth $57.08 Billion By 2027: Grand View Research, Inc. - PRNewswire - August 17th, 2021
- Nanotechnology Market Share, Industry Size, Leading Companies Outlook, Upcoming Challenges and Opportunities till 2028 - The Market Writeuo - The... - August 17th, 2021
- Global Nanomedicine Market is Expected to Grow at an Impressive CAGR by 2028 The Manomet Current - The Manomet Current - August 17th, 2021
- Complementary Protection May Be at Hand With a COVID-19-Preventing Nasal Spray - Newsweek - August 17th, 2021
- Nanorobotics Market By Player, Region, Type, Application And Sales Channel, Regions, Type and Application, Revenue Market Forecast to 2028 - Digital... - August 17th, 2021
- MagForce AG announces results of 2021 Annual General Meeting and changes to the Supervisory Board - Yahoo Eurosport UK - August 17th, 2021
- McMaster University researchers awarded more than $3M in Federal funds for projects - insauga.com - August 17th, 2021
- Global NANOTECHNOLOGY IN MEDICAL APPLICATIONS Statistics, CAGR, Outlook, and Covid-19 Impact 2016 The Bisouv Network - The Bisouv Network - February 14th, 2021
- Nanotechnology in Medical Market Demand Analysis To 2026 Lead By-Smith and Nephew, Novartis, Merck, Mitsui Chemicals, Amgen, Cytimmune KSU | The... - February 14th, 2021
- NanoViricides's Broad-Spectrum Antiviral Drug Candidate for the Treatment of COVID-19 Infections was Well Tolerated in GLP and non-GLP Animal Safety... - February 9th, 2021
- Nanorobots In Blood Market Top-Vendor And Industry Analysis By End-User Segments Till 2028 | Aries Chemical, GE Water & Process Technologies KSU... - February 9th, 2021
- Precision NanoSystems Receives Contribution from the Government of Canada to Build RNA Medicine Biomanufacturing Centre - PRNewswire - February 3rd, 2021
- Vaccine Production in BC's Future - AM 1150 (iHeartRadio) - February 3rd, 2021
- New facility to be built in Vancouver will produce 240 million vaccine doses annually | Urbanized - Daily Hive - February 3rd, 2021
- Faster tracking of treatment responses - MIT News - February 3rd, 2021
- NANOBIOTIX Announces First Patient Injected With NBTXR3 in Esophageal Cancer - Business Wire - February 3rd, 2021
- New Instrument Will Uncover Structure and Chemical Composition on Sub-Cell Scale - Georgia Tech News Center - January 12th, 2021
- Johns Hopkins Department of Otolaryngology-Head and Neck Surgery receives $15M contribution - The Hub at Johns Hopkins - January 9th, 2021
- COVID-19 Impact on Nanomedicine Market Size, Latest Trends, Growth and Share 2020 to 2026| Clinical Cardiology, Urology, Genetics, Orthopedics -... - January 9th, 2021
- Nanomedicine Market: Industry Analysis and forecast 2026: By Modality, Diseases, Application and Region - LionLowdown - January 9th, 2021
- Clene Nanomedicine Presents Blinded Interim Results from RESCUE-ALS Phase 2 Study at the 31st International Symposium on ALS/MNDResults provide... - December 16th, 2020
- Global Nanomedicine market 2020- Industry Overview, Global Trends, Market Analysis, CAGR Values and Country Level Demand To Forecast by 2027 -... - December 16th, 2020
- NHMRC awards Griffith University $4.5 million in research funding - Griffith News - December 16th, 2020
- Global Nanomedicine Market Analysis and Forecast to 2025 by Cancer Detection, Monitoring Therapy & Disease Detection - ResearchAndMarkets.com -... - December 10th, 2020
- Medical Physics Market: Growing Incidence of Chronic Diseases in Developing Regions to Drive the Market - BioSpace - December 10th, 2020
- Joseph DeSimone wins Harvey Prize in Science and Technology | The Dish - Stanford University News - December 10th, 2020
- Cancer Nanomedicine Market to Build Excessive Revenue at Healthy Growth rate at 12.50% up to 2027 - PharmiWeb.com - December 4th, 2020
- Sensing the body at all scales - MIT News - December 4th, 2020
- Healthcare Nanotechnology (Nanomedicine) Market Research Report with Revenue, Gross Margin, Market Share and Future Prospects till 2026 - The Market... - December 4th, 2020
- Technion Harvey prize in science awarded to Israeli, American professors - The Jerusalem Post - December 4th, 2020