The quick sequencing of the SARS-CoV-2 genome and distribution of the data early on in the COVID-19 outbreak has enabled the development of a variety of assays to diagnose patients based on snippets of the viruss genetic code. But as the number of potential cases increases, and concerns rise about the possibility of a global pandemic, the pressure is on to enable even faster, more-accessible testing.
Current testing methods are considered accurate, but governments have restricted testing to central health agencies or a few accredited laboratories, limiting the ability to rapidly diagnose new cases, says epidemiologist and immunologist Michael Mina, the director of the pathology laboratory and molecular diagnostics at Brigham and Womens Hospital in Boston. These circumstances are driving a commercial race to develop new COVID-19 tests that can be deployed within hospitals and clinics to provide diagnostic answers in short order.
Globally, nearly 89,000 cases have now been reportedmore than 80,000 of these in Chinaalong with more than 3,000 deaths. The virus has been found in 64 countries, six of those in just the past day.
The full genome of the novel coronavirus was published on January 10 of this year, just weeks after the disease was first identified in Wuhan, China. A week later, a group of researchers led by German scientists released the first diagnostic protocol for COVID-19 using swabbed samples from a patients nose and throat; this PCR-based protocol has since been selected by the World Health Organization (WHO).
Not all countries have adopted the WHOs recommended diagnostic, including the US.
The assay was initially developed from genetic similarities between SARS-CoV-2 and its close relative SARS, and later refined using the SARS-CoV-2 genome data to target viral genes unique to the newly discovered virus. In particular, the test detects the presence of SARS-CoV-2s E gene, which codes for the envelope that surrounds the viral shell, and the gene for the enzyme RNA-dependent RNA polymerase.
Yvonne Doyle, the medical director and the director of health protection for Public Health England, tells The Scientist in an email that once a sample is received by a laboratory, it takes 2448 hours to get a result. Commenting on the tests accuracy, she says all the positive results to date in the United Kingdom, a total of 36 so far, have been confirmed with whole genome sequencing of the virus isolated from patient samples, and the analytical sensitivity of the tests in use is very high.
This approach also underpins COVID-19 laboratory testing in Australia, where 27 cases have so far been diagnosed, says medical virologist Dominic Dwyer, the director of public health pathology for NSW Health Pathology at Westmead Hospital in Sydney. We decided in the end to have a screening approach using the WHO primers that target the so-called E gene of the coronavirus, he says. If a screening test is positive, we then do some confirmatory testing which selects other targets of the virus genome.
The laboratory at Westmead Hospital also does a complete sequencing of every virus sample to look for possible new strains of SARS-CoV-2 and has shared some of those sequences in the international Global Initiative on Sharing All Influenza Data (GISAID) database for other researchers to study. The staff also cultures the virus and images it using electron microscopy. Thats not really a diagnostic test, but gives you some confirmation of what youre seeing in the laboratory, Dwyer says.
He adds that, so far, theres no suggestion of false positive findings, because every positive test has been confirmed with whole genome sequencing, viral culture, or electron microscopy. As for false negatives, he adds, it would be hard to know if any infected patients were mistakenly given the all-clear.
Not all countries have adopted the WHOs recommended diagnostic. The US Centers for Disease Control and Prevention (CDC), for instance, has developed its own assay that looks for three sequences in the N gene, which codes for the nucleocapsid phosphoprotein found in the viruss shell, also known as the capsid. The assay also contains primers for the RNA-dependent RNA polymerase gene. Dwyer says that the principles of testing are the same; its just the genetic targets that vary.
Mina says its not clear why the CDC chose to develop a different assay to that selected by the WHO and taken up by other countries. Was this actually based on superior knowledge that the CDC had, or was this more of an effort to just go our own route and have our own thing and feel good about developing our own test in the US versus the rest of the world? says Mina, who is also assistant professor of epidemiology at the Harvard School of Public Health. The CDC declined to respond to questions from The Scientist.
In the UK, testing for COVID-19 is being done by a range of accredited laboratories across the country. In the US, all laboratory testing for COVID-19 has until recently been done exclusively by the CDC. The turnaround time for a result has been 2472 hours. Mina argues that enabling hospitals to conduct their own on-site diagnostics could speed up the process. For instance, hospitals can generate flu results within an hour, Mina says, most commonly using assays that detect viral antigens. We spend a lot of money getting rapid turnaround tests in the hospital for flu, for example, because we have to know how to triage people.
The day or two or three that it takes to get COVID-19 results has had logistical ramifications for hospitals, Mina says. If we have a patient who we only suspect is positive, even if they are not positive, just the suspicion alone will lead us to have to find an isolation bed for them, he says.
There has been a move by the CDC to send out RT-PCR test kits to state health laboratories, says Molly Fleece, an infectious diseases physician at the University of Alabama at Birmingham. Hopefully, more laboratories around the country will be able to have access to these testing kits and be able to test specimens instead of having to send all the specimens to the CDC for testing, she says.
However, that plan hit a snag recently when one of the CDC kits reagents was found to be faulty. The agency has announced that the reagent is now being remanufactured.
There are now numerous companies working on commercial test kits in response to the rising diagnostic demands of the epidemic. Most are applying the same real-time PCR methods already in use, but others are taking a different approach. For instance, Mina and colleagues are trialling a diagnostic in partnership with Sherlock Biosciences, based in Cambridge, Massachusetts. The researchers are using CRISPR technology to tag the target SARS-CoV-2 sequences with a fluorescent probe.
Were not at that stage yet of rolling out the serology or antibody tests.
Dominic Dwyer,NSW Health Pathology at Westmead Hospital
In many ways its similar to real-time PCR but its just more sensitive and much more rapid, Mina says. Another CRISPR-based diagnostic protocol developed by researchers at the McGovern Institute at MIT uses paper strips to detect the presence of a target virus, and claims to take around one hour to deliver the result. It has not yet been tested on COVID-19 patient samples, and the institute has stressed the test still needs to be developed and validated for clinical use, for COVID-19 or any other viral disease. Meanwhile, Anglo-French biotech company Novacyte has announced the release of its real-time PCR diagnostic kit for COVID-19, which it says will deliver results in two hours.
A different diagnostics approach would be to devise blood tests for antibodies against the SARS-CoV-2 virus, a development that Mina says will be an important next step for monitoring the spread of the virus. Could we just start taking blood samples from people around the world and see how many people who had no symptoms or very minimal symptoms may have actually been exposed to this? Mina asks.
Dwyer says such approaches could help detect any false negatives that slip through the PCR-based protocols, but were not at that stage yet of rolling out the serology or antibody tests. Numerous groups are trying to isolate antibodies, some with more success than others. Researchers at Duke-NUS Medical School in Singapore have used antibody testing to demonstrate a link between two separate clusters of infections, and in patients who had cleared their symptoms at the time they were given the antibody test. Meanwhile, researchers in Taiwan are also working to identify a SARS-CoV-2 antibody that could be used for diagnostic testing, and they say such a test could deliver a result in a matter of minutes rather than hours.
Bianca Nogrady is a freelance science writer based in Sydney, Australia.
Visit link:
How SARS-CoV-2 Tests Work and Whats Next in COVID-19 Diagnostics - The Scientist
- Heredity - DNA, Genes, Inheritance | Britannica - January 6th, 2025
- Comparing Genetics and Molecular Genetics: What's the Difference? - December 19th, 2024
- Standards and guidelines for the interpretation of sequence ... - PubMed - December 19th, 2024
- Chapter 12: Techniques of Molecular Genetics - Biology LibreTexts - December 19th, 2024
- 8.S: Techniques of Molecular Genetics (Summary) - December 19th, 2024
- Master of Science Computational Biology and Quantitative Genetics - December 19th, 2024
- Pitt Researchers Lead Group that Calls for Global Discussion About Possible Risks from Mirror Bacteria - Pitt Health Sciences - December 19th, 2024
- Molecular Genetics Testing - StatPearls - NCBI Bookshelf - November 16th, 2024
- Working with Molecular Genetics (Hardison) - Biology LibreTexts - November 16th, 2024
- Molecular Underpinnings of Genetic and Rare Diseases: From ... - Frontiers - November 16th, 2024
- The molecular genetics of schizophrenia: New findings promise new insights. - November 16th, 2024
- 8: Techniques of Molecular Genetics - Biology LibreTexts - September 4th, 2024
- 1.5: Molecular Genetics - Biology LibreTexts - September 4th, 2024
- Molecular genetics made simple - PMC - National Center for ... - September 4th, 2024
- 4 Introduction to Molecular Genetics - University of Minnesota Twin Cities - September 4th, 2024
- Molecular genetics - Definition and Examples - Biology Online - September 4th, 2024
- A Detailed Look at the Science of Molecular Genetics - KnowYourDNA - September 4th, 2024
- Molecular Genetics | NHLBI, NIH - September 4th, 2024
- Molecular biology - Wikipedia - September 4th, 2024
- Genetics, Molecular & Cellular Biology Admissions - September 4th, 2024
- Researchers map 50,000 of DNAs mysterious knots in the human genome - EurekAlert - September 4th, 2024
- Artificial selection of mutations in two nearby genes gave rise to shattering resistance in soybean - Nature.com - September 4th, 2024
- Mainz Biomed Expands Corporate Health Program for ColoAlert with the Addition of Three New Companies in Germany - Marketscreener.com - April 7th, 2023
- Molecular Genetics and Metabolism | Journal - ScienceDirect - December 11th, 2022
- People don't mate randomly but the flawed assumption that they do is an essential part of many studies linking genes to diseases and traits - The... - November 25th, 2022
- Molecular and Cell Biology and Genetics - Master of Science / PhD ... - October 7th, 2022
- NIPD Genetics: Leading Genetic Testing Company - October 7th, 2022
- Skeletal Biology and Regeneration Students Recognized For Research Excellence - UConn Today - University of Connecticut - October 7th, 2022
- Mary Munson elected fellow of the American Society for Cell Biology - UMass Medical School - October 7th, 2022
- Every Body's Talking at Them: an Interview with Jon Lieff - CounterPunch - October 7th, 2022
- TriBeta invites students to explore opportunities to work with faculty at research fair on Oct. 11 - Ohio University - October 7th, 2022
- Genetics: the Vatican Does Not Intend to Be Behind the Times - FSSPX.News - October 7th, 2022
- Yield10 Bioscience Appoints Willie Loh, Ph.D., to the Board of Directors - citybiz - October 7th, 2022
- Molecular pathways of major depressive disorder converge on the synapse | Molecular Psychiatry - Nature.com - October 7th, 2022
- Sigyn Therapeutics Strengthens Board of Directors With the Appointments of Richa Nand, Jim Dorst and Christopher Wetzel - Yahoo Finance - October 7th, 2022
- UTHSC Researcher Co-Leads Study of Genes that Modulate Aging, Lifespan - UTHSC News - UTHSC News - October 7th, 2022
- GATC Health Investor Conference to Feature First Public Demonstration of Its AI Platform's Drug Discovery Capabilities - PR Newswire - October 7th, 2022
- Three Professors Conferred Tenure and Eleven Promoted - Wesleyan Argus - October 7th, 2022
- Who will get the call from Stockholm? It's time for STAT's 2022 Nobel Prize predictions - STAT - October 7th, 2022
- Dalhousie to present exhibition celebrating Gerhard Herzberg and his legacy - Dal News - October 7th, 2022
- Why Some People Should Rethink Their Morning Cup Of Coffee - Health Digest - October 7th, 2022
- Cell and Gene Therapy: Rewriting the Future of Medicine - Technology Networks - October 7th, 2022
- UofL researchers lead the call to increase genetic diversity in immunogenomics - uoflnews.com - July 6th, 2021
- In Brief This Week: Foundation Medicine, Myriad Genetics, Genetron Health, and More - GenomeWeb - July 6th, 2021
- More filling? Tastes great? How flies, and maybe people, choose their food - Yale News - July 6th, 2021
- Genetic mapping of subsets of patients with fragile X syndro | TACG - Dove Medical Press - July 6th, 2021
- What is The Babydust Method? Danielle Lloyd swears method helped her conceive girl - The Mirror - July 6th, 2021
- Datar Cancer Genetics joins hands with US based Iylon Precision Oncology to offer personalized Precision Oncology cancer treatment solutions - PR Web - July 6th, 2021
- Mapping a pathway to competitive production - hortidaily.com - hortidaily.com - July 6th, 2021
- Associations between pancreatic expression quantitative traits and risk of pancreatic ductal adenocarcinoma. - Physician's Weekly - July 6th, 2021
- Global Genomics Market | Rising Incidence of Chronic and Genetic Diseases are Key Factors to Grow Market During 2021-2029 | 23andMe, Agilent... - July 6th, 2021
- The Babydust Method Danielle Lloyd used to conceive a girl after four sons and how it works - RSVP Live - July 6th, 2021
- In the beginning science and faith - The Irish Times - June 24th, 2021
- Ancient Maya Maintained Native Tropical Forest Plants around Their Water Reservoirs | Archaeology - Sci-News.com - June 24th, 2021
- Local foundation awards $1.25 million to MIND Institute to study rare genetic condition - UC Davis Health - June 24th, 2021
- Xlife Sciences AG: Collaboration with the University of Marburg - Yahoo Finance - June 24th, 2021
- Genetics diagnostics in India is on the verge of transformation: Neeraj Gupta, Founder and CEO of Genes2me - The Financial Express - June 24th, 2021
- Precision Medicine: Improving Health With Personalized Solutions - BioSpace - June 24th, 2021
- Half of Portland areas 22 top National Merit winners hail from just 2 schools - OregonLive - June 24th, 2021
- Investing in stem cells, the building blocks of the body - MoneyWeek - June 24th, 2021
- New study finds low levels of a sugar metabolite associates with disability and neurodegeneration in multiple sclerosis - Newswise - May 14th, 2021
- Cernadas-Martn Is a Champion for Marine and Human Diversity | | SBU News - Stony Brook News - May 14th, 2021
- Four Penn Faculty: Election to the National Academy of Sciences - UPENN Almanac - May 14th, 2021
- Is there a difference between a gene-edited organism and a 'GMO'? The question has important implications for regulation - Genetic Literacy Project - May 14th, 2021
- 5 Students Inducted Into American Society for Biochemistry and Molecular Biology Honor Society - Wesleyan Connection - May 14th, 2021
- The Science of Aliens, Part 2: What Kind of Genetic Code Would Extraterrestrials Have? - Air & Space Magazine - May 14th, 2021
- UT Austin Faculty Member Receives 2021 Piper Professor Award - Office of the Executive Vice President and Provost - UT News | The University of Texas... - May 14th, 2021
- Distinguished University of Birmingham plant scientist elected to the Royal Society - University of Birmingham - May 14th, 2021
- Double Hoo Research: Undergrads and Grads Team Up to Create Knowledge - University of Virginia - May 14th, 2021
- Global Genetic Testing Market Top Countries Analysis and Manufacturers With Impact of COVID-19 | 2021-2028 Detail Analysis focusing on Application,... - May 14th, 2021
- Morag Park named to the Order of Quebec - McGill Reporter - McGill Reporter - May 14th, 2021
- Third Rock Ventures Launches Flare Therapeutics With $82 Million Series A - BioSpace - May 14th, 2021
- The Royal Society announces election of new Fellows 2021 - Cambridge Network - May 14th, 2021
- Researchers Decode the "Language" of Immune Cells - Technology Networks - May 14th, 2021
- RepliCel Launches the Next Stage of a Research Project with the University of British Columbia to Build World-Class Hair Follicle Cell Data Map -... - May 14th, 2021
- Mice Sperm Sabotage Other Swimmers With Poison | Smart News - Smithsonian Magazine - February 14th, 2021
- Study Identifies Never-Before-Seen Dual Function in Enzyme Critical for Cancer Growth - Newswise - February 14th, 2021
- Devious sperm 'poison' their rivals, forcing them to swim in circles until they die - Livescience.com - February 14th, 2021
- More needs to be done to find and fight COVID-19 variants, says Colorado researcher - FOX 31 Denver - February 14th, 2021
- Selfish sperm genes 'poison' the competition for the win - Big Think - February 14th, 2021