In recent months, even as our attention has been focused on the coronavirus outbreak, there have been a slew of scientific breakthroughs in treating diseases that cause blindness.
Researchers at U.S.-based Editas Medicine EDIT, +1.45% and Ireland-based Allergan (now owned by AbbVie ABBV, +0.32% ) have administered CRISPR for the first time to a person with a genetic disease. This landmark treatment uses the CRISPR approach to a specific mutation in a gene linked to childhood blindness. The mutation affects the functioning of the light-sensing compartment of the eye, called the retina, and leads to loss of the light-sensing cells.
According to the World Health Organization, at least 2.2 billion people in the world have some form of visual impairment. In the United States, approximately 200,000 people suffer from inherited forms of retinal disease for which there is no cure. But things have started to change for good. We can now see light at the end of the tunnel.
I am an ophthalmology and visual sciences researcher, and am particularly interested in these advances because my laboratory is focusing on designing new and improved gene therapy approaches to treat inherited forms of blindness.
Gene therapy involves inserting the correct copy of a gene into cells that have a mistake in the genetic sequence of that gene, recovering the normal function of the protein in the cell. The eye is an ideal organ for testing new therapeutic approaches, including CRISPR. That is because the eye is the most exposed part of our brain and thus is easily accessible.
The second reason is that retinal tissue in the eye is shielded from the bodys defense mechanism, which would otherwise consider the injected material used in gene therapy as foreign and mount a defensive attack response. Such a response would destroy the benefits associated with the treatment.
In recent years, breakthrough gene therapy studies paved the way to the first-ever Food and Drug Administration-approved gene therapy drug, Luxturna TM, for a devastating childhood blindness disease, Leber congenital amaurosis Type 2. (Luxturna was developed by Spark Therapeutics and licensed to Novartis NVS, +0.26% NOVN, -0.93%. Spark Therapeutics has since been acquired by Roche ROG, -0.55% RHHBY, -0.45% .)
This form of Leber congenital amaurosis is caused by mutations in a gene that codes for a protein called RPE65. The protein participates in chemical reactions that are needed to detect light. The mutations lessen or eliminate the function of RPE65, which leads to our inability to detect light blindness.
The treatment method developed simultaneously by groups at University of Pennsylvania and at University College London and Moorefields Eye Hospital involved inserting a healthy copy of the mutated gene directly into the space between the retina and the retinal pigmented epithelium, the tissue located behind the retina where the chemical reactions takes place. This gene helped the retinal pigmented epithelium cell produce the missing protein that is dysfunctional in patients.
Although the treated eyes showed vision improvement, as measured by the patients ability to navigate an obstacle course at differing light levels, it is not a permanent fix. This is due to the lack of technologies that can fix the mutated genetic code in the DNA of the cells of the patient.
Lately, scientists have been developing a powerful new tool that is shifting biology and genetic engineering into the next phase. This breakthrough gene-editing technology, which is called CRISPR, enables researchers to directly edit the genetic code of cells in the eye and correct the mutation causing the disease.
Children suffering from the disease Leber congenital amaurosis Type 10 endure progressive vision loss beginning as early as one year old. This specific form of Leber congenital amaurosis is caused by a change to the DNA that affects the ability of the gene called CEP290 to make the complete protein. The loss of the CEP290 protein affects the survival and function of our light-sensing cells, called photoreceptors.
One treatment strategy is to deliver the full form of the CEP290 gene using a virus as the delivery vehicle. But the CEP290 gene is too big to be cargo for viruses. So another approach was needed. One strategy was to fix the mutation by using CRISPR.
The scientists at Editas Medicine first showed safety and proof of the concept of the CRISPR strategy in cells extracted from patient skin biopsy and in nonhuman primate animals.
These studies led to the formulation of the first-ever in human CRISPR gene therapeutic clinical trial. This Phase 1 and Phase 2 trial will eventually assess the safety and efficacy of the CRISPR therapy in 18 Leber congenital amaurosis Type 10 patients. The patients receive a dose of the therapy while under anesthesia when the retina surgeon uses a scope, needle and syringe to inject the CRISPR enzyme and nucleic acids into the back of the eye near the photoreceptors.
To make sure that the experiment is working and safe for the patients, the clinical trial has recruited people with late-stage disease and no hope of recovering their vision. The doctors are also injecting the CRISPR editing tools into only one eye.
An ongoing project in my laboratory focuses on designing a gene therapy approach for the same gene CEP290. Contrary to the CRISPR approach, which can target only a specific mutation at one time, my team is developing an approach that would work for all CEP290 mutations in Leber congenital amaurosis Type 10.
This approach involves using shorter yet functional forms of the CEP290 protein that can be delivered to the photoreceptors using the viruses approved for clinical use.
Gene therapy that involves CRISPR promises a permanent fix and a significantly reduced recovery period. A downside of the CRISPR approach is the possibility of an off-target effect in which another region of the cells DNA is edited, which could cause undesirable side effects, such as cancer. However, new and improved strategies have made such likelihood very low.
Although the CRISPR study is for a specific mutation in CEP290, I believe the use of CRISPR technology in the body to be exciting and a giant leap. I know this treatment is in an early phase, but it shows clear promise. In my mind, as well as the minds of many other scientists, CRISPR-mediated therapeutic innovation absolutely holds immense promise.
In another study just reported in the journal Science, German and Swiss scientists have developed a revolutionary technology, which enables mice and human retinas to detect infrared radiation. This ability could be useful for patients suffering from loss of photoreceptors and sight.
The researchers demonstrated this approach, inspired by the ability of snakes and bats to see heat, by endowing mice and postmortem human retinas with a protein that becomes active in response to heat. Infrared light is light emitted by warm objects that is beyond the visible spectrum.
The heat warms a specially engineered gold particle that the researchers introduced into the retina. This particle binds to the protein and helps it convert the heat signal into electrical signals that are then sent to the brain.
In the future, more research is needed to tweak the ability of the infrared sensitive proteins to different wave lengths of light that will also enhance the remaining vision.
This approach is still being tested in animals and in retinal tissue in the lab. But all approaches suggest that it might be possible to either restore, enhance or provide patients with forms of vision used by other species.
Hemant Khanna is an associate professor of ophthalmology at the University of Massachusetts Medical School. This was first published on The Conversation Gene therapy and CRISPR strategies for curing blindness (Yes, you read that right)
More:
How gene therapy and CRISPR are helping to cure blindness - MarketWatch
- Unraveling The Complexity Of Cell Therapy: Advancements And Challenges - Life Science Leader Magazine - November 27th, 2024
- Novartis wagers more than $1B on gene therapies for the nervous system - BioPharma Dive - November 27th, 2024
- Gene therapy for geographic atrophy in age-related macular degeneration: current insights - Nature.com - November 27th, 2024
- Novartis buys gene therapy startup Kate Therapeutics, joining pursuit of muscular dystrophy treatment - STAT - November 27th, 2024
- At MGB's gene therapy institute, effort to win first venture capital investments continues - The Business Journals - November 27th, 2024
- Neurogene reports death of Rett patient left in critical condition by high dose of gene therapy - Fierce Biotech - November 27th, 2024
- Alzheimer Disease Awareness Month 2024: Looking Back at a Year of Progress in Cell and Gene Therapy - CGTLive - November 27th, 2024
- Why This Gene-Therapy Companys Stock Is Rising 228% - Yahoo! Voices - November 27th, 2024
- How Minaris is Tackling the Scalability Challenge in Cell and Gene Therapy: A Conversation with CEO, Dr. Hiroto Bando - geneonline - November 27th, 2024
- RNA editing is the next frontier in gene therapy heres what you need to know - The Conversation - November 27th, 2024
- Assessment of gene therapy viral vectors in RPE cells - News-Medical.Net - November 27th, 2024
- Retinal organoids and RPE models for retinal gene therapy development - News-Medical.Net - November 27th, 2024
- China Vows to Bolster Gene Therapy Research in Key Biotech Hub - Bloomberg - November 27th, 2024
- Gene Therapy - Volume 31 Issue 11-12, November 2024 - Nature.com - November 27th, 2024
- Iovance Biotherapeutics Announces the Promotion of Raj Puri, M.D., Ph.D. to Chief Regulatory Officer - GlobeNewswire - November 27th, 2024
- Patient Dies in Gene Therapy Trial, But FDA Permits Neurogene to Proceed With Low Dose - MedCity News - November 27th, 2024
- New CRISPR system pauses genes, rather than turning them off permanently - Livescience.com - November 27th, 2024
- Liver-targeting gene therapy lowers mice whole-body SMA symptoms - SMA News Today - November 27th, 2024
- Bright breakthroughs: Real stories of beating rare disease - Science - November 27th, 2024
- Sarepta Therapeutics Announces Global Licensing and Collaboration Agreement with Arrowhead Pharmaceuticals for Multiple Clinical and Preclinical siRNA... - November 27th, 2024
- A Year of DMD Gene Therapy Trial Failures - AJMC.com Managed Markets Network - November 3rd, 2024
- Hemophilia B: Gene Therapy Shows Promise - Medscape - November 3rd, 2024
- Around the Helix: Cell and Gene Therapy Company Updates October 30, 2024 - CGTLive - November 3rd, 2024
- 2024 PharmaVoice 100s: Cell and Gene Therapy Pioneers - PharmaVoice - November 3rd, 2024
- Cell therapy weekly: support for commercialization of complex therapies - RegMedNet - November 3rd, 2024
- Lexeo shares early data on Alzheimers gene therapy - Endpoints News - November 3rd, 2024
- Medicaid Aiming to Improve Patient Access to High-Cost Therapies - AJMC.com Managed Markets Network - November 3rd, 2024
- The Significance of Gene Therapy in Neuromuscular Medicine at the 2025 MDA Conference: Paul Melmeyer, MPP - Neurology Live - November 3rd, 2024
- OHSU researchers identify gene that could be key to future HIV vaccine - OHSU News - November 3rd, 2024
- Purespring gene therapy reduces kidney scarring in mice and is stably expressed in pigs - Fierce Biotech - November 3rd, 2024
- Data Roundup: October 2024 Features Update for TCR-Based Autologous Cell Therapy in Melanoma, the First Clinical Demonstration of Therapeutic RNA... - November 3rd, 2024
- NewBiologix Launches Xcell to Accelerate, Optimize, and Scale Gene and Cell Therapy Production - Business Wire - November 3rd, 2024
- Vertex Pharmaceuticals and CRISPR Therapeutics Casgevy: the 200 Best Inventions of 2024 - TIME - November 3rd, 2024
- Addressing gene and cell therapy commercialization challenges - TechTarget - November 3rd, 2024
- University of Pennsylvania gene therapy spinout Interius BioTherapeutics doses patient, achieves CAR therapy first - The Business Journals - November 3rd, 2024
- Roche will aim to tackle gene therapy challenges through Dyno deal - The Pharma Letter - November 3rd, 2024
- Behind the Breakthroughs: How to Turn $1,000,000 CAR Ts into Real Medicines - Inside Precision Medicine - November 3rd, 2024
- Terumo automates manufacturing to expand cell & gene therapies - European Pharmaceutical Manufacturer - November 3rd, 2024
- 12-Year-Old Leaves Washington DC Hospital As The First Patient To Receive Approved Gene Therapy For Sickle Cell Disease - AfroTech - November 3rd, 2024
- Lexeo Therapeutics Announces Positive Interim Data for - GlobeNewswire - November 3rd, 2024
- New FDA designations granted to NCATS for rare disease therapies. - NCBI - October 22nd, 2024
- $1.8 Million Awarded to Study the Durability of Gene Therapy - University of Arkansas Newswire - October 22nd, 2024
- By the numbers: US leads charge of cell and gene therapies - BioWorld Online - October 22nd, 2024
- University of Arkansas Researcher Awarded $1.8M for Gene Therapy Study - Arkansas Business - October 22nd, 2024
- Cellectis to Present Data on TALE-Base Editors and Non-Viral Gene Therapy at the ESGCT 31st Annual Congress - StockTitan - October 22nd, 2024
- Around the Helix: Cell and Gene Therapy Company Updates October 16, 2024 - CGTLive - October 22nd, 2024
- Japan mulls ways to boost cell, gene therapy approvals - BioWorld Online - October 22nd, 2024
- A New Type of Gene Therapy Shows Promise for Treating Retinitis Pigmentosa - Managed Healthcare Executive - October 22nd, 2024
- Buy, Sell, Hold: Cell and Gene Therapy - Part 2 - BioPharm International - October 22nd, 2024
- When a Miracle Cure Is Left on the Shelf - Bloomberg - October 22nd, 2024
- Genethon to Showcase the Latest Advances in Gene Therapies for Multiple Diseases at the ESGCT 31 - Business Wire - October 22nd, 2024
- MeiraGTx's gene therapy improves motor function and quality of life in phase 2 Parkinson's trial - Fierce Biotech - October 22nd, 2024
- 5 Sickle Cell Therapies to Watch Following Pfizers Oxbryta Exit - BioSpace - October 22nd, 2024
- Fiocruz and GEMMABio announce partnership for the development of gene therapies - Fiocruz - October 22nd, 2024
- JPMA on Japans Biotech Industry: Cancer, Cardiovascular, and Aging Lead Diseases; Antibody, Cell, and Gene Therapies Top the Innovation List -... - October 22nd, 2024
- Cell and Gene Therapy Clinical Trial Market is expected to reach USD 119.3 Billion by 2032 at a 24.9% of CAGR - PharmiWeb.com - October 22nd, 2024
- Buy, Sell, Hold: Cell and Gene Therapy - Part 3 - Pharmaceutical Technology Magazine - October 22nd, 2024
- The role of quality assurance in accelerating drug development for emerging therapies - pharmaphorum - October 22nd, 2024
- Cellectis to Present Data on TALE-Base Editors and Non-Viral Gene Therapy at the ESGCT 31st Annual Congress - The Manila Times - October 22nd, 2024
- Nucleic Acid and Gene Therapies in Neuromuscular Disorders Market is projected to grow at a CAGR of - PharmiWeb.com - October 22nd, 2024
- Gene therapy: advances, challenges and perspectives - PMC - October 6th, 2024
- Meeting on the Mesa to Highlight Cell and Gene Therapy Opportunities, Challenges - BioSpace - October 6th, 2024
- Ferring opens doors to Finnish manufacturing hub as supply of its bladder cancer gene therapy continues to grow - FiercePharma - October 6th, 2024
- Meet Boston's National STEM Champion who's a junior in high school studying gene therapy - CBS Boston - October 6th, 2024
- Gene therapy research offers hope for kids with life-altering condition - WCVB Boston - October 6th, 2024
- Is gene therapy the next big step in vision loss treatment? - Medical News Today - October 6th, 2024
- Protein's Role in Insulin Signaling Could Have Implications for Gene Therapy - AJMC.com Managed Markets Network - October 6th, 2024
- Scientists overcome major challenge in gene therapy and drug delivery - News-Medical.Net - October 6th, 2024
- Innovative gene therapy for hemophilia - healthcare-in-europe.com - October 6th, 2024
- The Largest Network of Research Sites Vetted to Execute Complexities of Cell & Gene Therapy (CGT) Trials Now Includes 1,500 Sites - PR Newswire - October 6th, 2024
- Weight loss drug breakthroughs, gene therapies, and more: 8 clinical trials to watch right now - Quartz - October 6th, 2024
- Cell therapy weekly: Promising Phase I results for Parkinsons disease cell therapy - RegMedNet - October 6th, 2024
- Targeting CREB-binding protein (CBP) abrogates colorectal cancer stemness through epigenetic regulation of C-MYC - Nature.com - October 6th, 2024
- Forge Biologics Announces the FUEL AAV Manufacturing Platform to Provide Developers with a More Efficient Solution for Gene Therapy Production -... - October 6th, 2024
- Ninth Circuit Decision Marks Critical Legal Victory for U.S. FDA in Mission to Protect Patients from Unregulated Cell Therapy Products - PR Newswire - October 6th, 2024
- Gene therapy: What is it and how does it work? | Live Science - September 21st, 2024
- How Does Gene Therapy Work? Types, Uses, Safety - Healthline - September 21st, 2024
- In race to make gene therapy for age-related blindness, 4D Molecular announces positive results - STAT - September 21st, 2024
- Penn gene therapy pioneer Jim Wilson explains why he's leaving - The Business Journals - September 21st, 2024
- Whats the Meaning of Cure in Gene Therapy? - Managed Healthcare Executive - September 21st, 2024