Heredity,chromosome Howard Sochurek/Corbisthe sum of all biological processes by which particular characteristics are transmitted from parents to their offspring. The concept of heredity encompasses two seemingly paradoxical observations about organisms: the constancy of a species from generation to generation and the variation among individuals within a species. Constancy and variation are actually two sides of the same coin, as becomes clear in the study of genetics. Both aspects of heredity can be explained by genes, the functional units of heritable material that are found within all living cells. Every member of a species has a set of genes specific to that species. It is this set of genes that provides the constancy of the species. Among individuals within a species, however, variations can occur in the form each gene takes, providing the genetic basis for the fact that no two individuals (except identical twins) have exactly the same traits.
heredityEncyclopdia Britannica, Inc.The set of genes that an offspring inherits from both parents, a combination of the genetic material of each, is called the organisms genotype. The genotype is contrasted to the phenotype, which is the organisms outward appearance and the developmental outcome of its genes. The phenotype includes an organisms bodily structures, physiological processes, and behaviours. Although the genotype determines the broad limits of the features an organism can develop, the features that actually develop, i.e., the phenotype, depend on complex interactions between genes and their environment. The genotype remains constant throughout an organisms lifetime; however, because the organisms internal and external environments change continuously, so does its phenotype. In conducting genetic studies, it is crucial to discover the degree to which the observable trait is attributable to the pattern of genes in the cells and to what extent it arises from environmental influence.
Because genes are integral to the explanation of hereditary observations, genetics also can be defined as the study of genes. Discoveries into the nature of genes have shown that genes are important determinants of all aspects of an organisms makeup. For this reason, most areas of biological research now have a genetic component, and the study of genetics has a position of central importance in biology. Genetic research also has demonstrated that virtually all organisms on this planet have similar genetic systems, with genes that are built on the same chemical principle and that function according to similar mechanisms. Although species differ in the sets of genes they contain, many similar genes are found across a wide range of species. For example, a large proportion of genes in bakers yeast are also present in humans. This similarity in genetic makeup between organisms that have such disparate phenotypes can be explained by the evolutionary relatedness of virtually all life-forms on Earth. This genetic unity has radically reshaped the understanding of the relationship between humans and all other organisms. Genetics also has had a profound impact on human affairs. Throughout history humans have created or improved many different medicines, foods, and textiles by subjecting plants, animals, and microbes to the ancient techniques of selective breeding and to the modern methods of recombinant DNA technology. In recent years medical researchers have begun to discover the role that genes play in disease. The significance of genetics only promises to become greater as the structure and function of more and more human genes are characterized.
This article begins by describing the classic Mendelian patterns of inheritance and also the physical basis of those patternsi.e., the organization of genes into chromosomes. The functioning of genes at the molecular level is described, particularly the transcription of the basic genetic material, DNA, into RNA and the translation of RNA into amino acids, the primary components of proteins. Finally, the role of heredity in the evolution of species is discussed.
Heredity was for a long time one of the most puzzling and mysterious phenomena of nature. This was so because the sex cells, which form the bridge across which heredity must pass between the generations, are usually invisible to the naked eye. Only after the invention of the microscope early in the 17th century and the subsequent discovery of the sex cells could the essentials of heredity be grasped. Before that time, ancient Greek philosopher and scientist Aristotle (4th century bc) speculated that the relative contributions of the female and the male parents were very unequal; the female was thought to supply what he called the matter and the male the motion. The Institutes of Manu, composed in India between 100 and 300 ad, consider the role of the female like that of the field and of the male like that of the seed; new bodies are formed by the united operation of the seed and the field. In reality both parents transmit the heredity pattern equally, and, on average, children resemble their mothers as much as they do their fathers. Nevertheless, the female and male sex cells may be very different in size and structure; the mass of an egg cell is sometimes millions of times greater than that of a spermatozoon.
heredityHulton Archive/Getty ImagesThe ancient Babylonians knew that pollen from a male date palm tree must be applied to the pistils of a female tree to produce fruit. German botanist Rudolph Jacob Camerarius showed in 1694 that the same is true in corn (maize). Swedish botanist and explorer Carolus Linnaeus in 1760 and German botanist Josef Gottlieb Klreuter, in a series of works published from 1761 to 1798, described crosses of varieties and species of plants. They found that these hybrids were, on the whole, intermediate between the parents, although in some characteristics they might be closer to one parent and in others closer to the other parent. Klreuter compared the offspring of reciprocal crossesi.e., of crosses of variety A functioning as a female to variety B as a male and the reverse, variety B as a female to A as a male. The hybrid progenies of these reciprocal crosses were usually alike, indicating that, contrary to the belief of Aristotle, the hereditary endowment of the progeny was derived equally from the female and the male parents. Many more experiments on plant hybrids were made in the 1800s. These investigations also revealed that hybrids were usually intermediate between the parents. They incidentally recorded most of the facts that later led Gregor Mendel (see below) to formulate his celebrated rules and to found the theory of the gene. Apparently, none of Mendels predecessors saw the significance of the data that were being accumulated. The general intermediacy of hybrids seemed to agree best with the belief that heredity was transmitted from parents to offspring by blood, and this belief was accepted by most 19th-century biologists, including English naturalist Charles Darwin.
The blood theory of heredity, if this notion can be dignified with such a name, is really a part of the folklore antedating scientific biology. It is implicit in such popular phrases as half blood, new blood, and blue blood. It does not mean that heredity is actually transmitted through the red liquid in blood vessels; the essential point is the belief that a parent transmits to each child all its characteristics and that the hereditary endowment of a child is an alloy, a blend of the endowments of its parents, grandparents, and more-remote ancestors. This idea appeals to those who pride themselves on having a noble or remarkable blood line. It strikes a snag, however, when one observes that a child has some characteristics that are not present in either parent but are present in some other relatives or were present in more-remote ancestors. Even more often, one sees that brothers and sisters, though showing a family resemblance in some traits, are clearly different in others. How could the same parents transmit different bloods to each of their children?
Mendel disproved the blood theory. He showed (1) that heredity is transmitted through factors (now called genes) that do not blend but segregate, (2) that parents transmit only one-half of the genes they have to each child, and they transmit different sets of genes to different children, and (3) that, although brothers and sisters receive their heredities from the same parents, they do not receive the same heredities (an exception is identical twins). Mendel thus showed that, even if the eminence of some ancestor were entirely the reflection of his genes, it is quite likely that some of his descendants, especially the more remote ones, would not inherit these good genes at all. In sexually reproducing organisms, humans included, every individual has a unique hereditary endowment.
Lamarck, Jean-Baptiste Photos.com/ThinkstockLamarckisma school of thought named for the 19th-century pioneer French biologist and evolutionist Jean-Baptiste de Monet, chevalier de Lamarckassumed that characters acquired during an individuals life are inherited by his progeny, or, to put it in modern terms, that the modifications wrought by the environment in the phenotype are reflected in similar changes in the genotype. If this were so, the results of physical exercise would make exercise much easier or even dispensable in a persons offspring. Not only Lamarck but also other 19th-century biologists, including Darwin, accepted the inheritance of acquired traits. It was questioned by German biologist August Weismann, whose famous experiments in the late 1890s on the amputation of tails in generations of mice showed that such modification resulted neither in disappearance nor even in shortening of the tails of the descendants. Weismann concluded that the hereditary endowment of the organism, which he called the germ plasm, is wholly separate and is protected against the influences emanating from the rest of the body, called the somatoplasm, or soma. The germ plasmsomatoplasm are related to the genotypephenotype concepts, but they are not identical and should not be confused with them.
The noninheritance of acquired traits does not mean that the genes cannot be changed by environmental influences; X-rays and other mutagens certainly do change them, and the genotype of a population can be altered by selection. It simply means that what is acquired by parents in their physique and intellect is not inherited by their children. Related to these misconceptions are the beliefs in prepotencyi.e., that some individuals impress their heredities on their progenies more effectively than othersand in prenatal influences or maternal impressionsi.e., that the events experienced by a pregnant female are reflected in the constitution of the child to be born. How ancient these beliefs are is suggested in the Book of Genesis, in which Laban produced spotted or striped progeny in sheep by showing the pregnant ewes striped hazel rods. Another such belief is telegony, which goes back to Aristotle; it alleged that the heredity of an individual is influenced not only by his father but also by males with whom the female may have mated and who have caused previous pregnancies. Even Darwin, as late as 1868, seriously discussed an alleged case of telegony: that of a mare mated to a zebra and subsequently to an Arabian stallion, by whom the mare produced a foal with faint stripes on his legs. The simple explanation for this result is that such stripes occur naturally in some breeds of horses.
All these beliefs, from inheritance of acquired traits to telegony, must now be classed as superstitions. They do not stand up under experimental investigation and are incompatible with what is known about the mechanisms of heredity and about the remarkable and predictable properties of genetic materials. Nevertheless, some people still cling to these beliefs. Some animal breeders take telegony seriously and do not regard as purebred the individuals whose parents are admittedly pure but whose mothers had mated with males of other breeds. Soviet biologist and agronomist Trofim Denisovich Lysenko was able for close to a quarter of a century, roughly between 1938 and 1963, to make his special brand of Lamarckism the official creed in the Soviet Union and to suppress most of the teaching and research in orthodox genetics. He and his partisans published hundreds of articles and books allegedly proving their contentions, which effectively deny the achievements of biology for at least the preceding century. The Lysenkoists were officially discredited in 1964.
Go here to read the rest:
heredity | genetics | Britannica.com
- 001 Stem Cell Therapy: Age of Human Cell Engineering is Born [Last Updated On: June 25th, 2010] [Originally Added On: June 25th, 2010]
- 002 Seattle Genetics Reports Fourth Quarter and Year 2011 Financial Results [Last Updated On: February 14th, 2012] [Originally Added On: February 14th, 2012]
- 003 Seattle Genetics Loss Narrows; But Stock Down - Update [Last Updated On: February 14th, 2012] [Originally Added On: February 14th, 2012]
- 004 Seattle Genetics: A Cancer Niche Too Small [Last Updated On: March 6th, 2012] [Originally Added On: March 6th, 2012]
- 005 Seattle Genetics Announces Pivotal ADCETRIS™ (Brentuximab Vedotin) Hodgkin Lymphoma Study Published in Journal of ... [Last Updated On: March 27th, 2012] [Originally Added On: March 27th, 2012]
- 006 Seattle Genetics Announces Data from Investigator Trial of ADCETRIS™ in Relapsed Cutaneous T-Cell Lymphoma [Last Updated On: May 11th, 2012] [Originally Added On: May 11th, 2012]
- 007 Seattle Genetics Highlights Updated Survival Data from ADCETRIS® Pivotal Trial in Patients with Relapsed or Refractory ... [Last Updated On: June 14th, 2012] [Originally Added On: June 14th, 2012]
- 008 Zebrafish reveal promising mechanism for healing spinal cord injury [Last Updated On: July 8th, 2012] [Originally Added On: July 8th, 2012]
- 009 Seattle Genetics Announces ADCETRIS® Receives Positive CHMP Opinion for Conditional Approval in European Union [Last Updated On: July 20th, 2012] [Originally Added On: July 20th, 2012]
- 010 A Growth-Free Quarter -- and That's OK [Last Updated On: August 11th, 2012] [Originally Added On: August 11th, 2012]
- 011 Seattle Genetics and Millennium Complete Enrollment in Phase III AETHERA Trial of ADCETRIS® for Post-Transplant ... [Last Updated On: October 1st, 2012] [Originally Added On: October 1st, 2012]
- 012 Bernard Siegel to Deliver Keynote Addresses at Midwest Conference on Stem Cell Biology and Therapy and BioFlorida ... [Last Updated On: October 4th, 2012] [Originally Added On: October 4th, 2012]
- 013 Seattle Genetics Announces ADCETRIS® Receives European Commission Conditional Marketing Authorization [Last Updated On: November 1st, 2012] [Originally Added On: November 1st, 2012]
- 014 3 Things to Watch With Seattle Genetics [Last Updated On: November 3rd, 2012] [Originally Added On: November 3rd, 2012]
- 015 Millennium and Seattle Genetics Initiate Global Phase 3 Clinical Trial of ADCETRIS® in Previously Untreated Advanced ... [Last Updated On: November 3rd, 2012] [Originally Added On: November 3rd, 2012]
- 016 Seattle Genetics Announces ADCETRIS® Receives European Commission Conditional Marketing Authorization [Last Updated On: November 4th, 2012] [Originally Added On: November 4th, 2012]
- 017 Millennium and Seattle Genetics Initiate Global Phase 3 Clinical Trial of ADCETRIS® in Previously Untreated Advanced ... [Last Updated On: November 4th, 2012] [Originally Added On: November 4th, 2012]
- 018 Bernard Siegel - Aging: The Disease, The Cure, The Implications - Video [Last Updated On: November 17th, 2012] [Originally Added On: November 17th, 2012]
- 019 Catherine Malabou. Epigenetics and Plasticity. 2012 - Video [Last Updated On: December 24th, 2012] [Originally Added On: December 24th, 2012]
- 020 Genetics Video Pluripotent Stem Cells - Video [Last Updated On: November 23rd, 2013] [Originally Added On: November 23rd, 2013]
- 021 Genetics Policy Institute (GPI) and the Regenerative Medicine Foundation (RMF) Announce Merger Plan - Video [Last Updated On: December 7th, 2014] [Originally Added On: December 7th, 2014]
- 022 Stem Cells: Tools for Human Genetics and Heart Regeneration - Video [Last Updated On: December 23rd, 2014] [Originally Added On: December 23rd, 2014]
- 023 Chimera (genetics) - Wikipedia, the free encyclopedia [Last Updated On: May 19th, 2015] [Originally Added On: May 19th, 2015]
- 024 DNA from the Beginning - An animated primer of 75 ... [Last Updated On: May 19th, 2015] [Originally Added On: May 19th, 2015]
- 025 Inbreeding - Wikipedia, the free encyclopedia [Last Updated On: May 24th, 2015] [Originally Added On: May 24th, 2015]
- 026 genetics | Britannica.com [Last Updated On: June 1st, 2015] [Originally Added On: June 1st, 2015]
- 027 What is DNA? - Genetics Home Reference [Last Updated On: July 13th, 2015] [Originally Added On: July 13th, 2015]
- 028 Genetics of Colorectal Cancer - National Cancer Institute [Last Updated On: July 16th, 2015] [Originally Added On: July 16th, 2015]
- 029 Genetics | The Biology Corner [Last Updated On: July 21st, 2015] [Originally Added On: July 21st, 2015]
- 030 Mutation - Wikipedia, the free encyclopedia [Last Updated On: July 23rd, 2015] [Originally Added On: July 23rd, 2015]
- 031 Genetics Practice Problems - Biology [Last Updated On: July 26th, 2015] [Originally Added On: July 26th, 2015]
- 032 Gregor Mendel - Wikipedia, the free encyclopedia [Last Updated On: August 14th, 2015] [Originally Added On: August 14th, 2015]
- 033 What Is Genetics? (with pictures) - wiseGEEK [Last Updated On: September 2nd, 2015] [Originally Added On: September 2nd, 2015]
- 034 Genetics - Simple English Wikipedia, the free encyclopedia [Last Updated On: September 2nd, 2015] [Originally Added On: September 2nd, 2015]
- 035 Genetics and Genetic Disorders and Diseases - WebMD [Last Updated On: September 2nd, 2015] [Originally Added On: September 2nd, 2015]
- 036 Genetics - Biology [Last Updated On: September 2nd, 2015] [Originally Added On: September 2nd, 2015]
- 037 Home > Genetics | Yale School of Medicine [Last Updated On: September 2nd, 2015] [Originally Added On: September 2nd, 2015]
- 038 Ology Genetics - AMNH [Last Updated On: September 2nd, 2015] [Originally Added On: September 2nd, 2015]
- 039 Genetics: MedlinePlus Medical Encyclopedia [Last Updated On: September 2nd, 2015] [Originally Added On: September 2nd, 2015]
- 040 Genetics of Skin Cancer - National Cancer Institute [Last Updated On: September 13th, 2015] [Originally Added On: September 13th, 2015]
- 041 Genetics in Georgia | New Georgia Encyclopedia [Last Updated On: September 16th, 2015] [Originally Added On: September 16th, 2015]
- 042 Genetics | Learn Science at Scitable [Last Updated On: October 13th, 2015] [Originally Added On: October 13th, 2015]
- 043 Genetics - B.S. - University of Georgia [Last Updated On: October 26th, 2015] [Originally Added On: October 26th, 2015]
- 044 Genetic Counseling | Woman's Hospital | Baton Rouge, LA [Last Updated On: November 4th, 2015] [Originally Added On: November 4th, 2015]
- 045 The History of the Highland Breed | Scottish Genetics [Last Updated On: August 4th, 2016] [Originally Added On: August 4th, 2016]
- 046 Population genetics - Wikipedia, the free encyclopedia [Last Updated On: August 4th, 2016] [Originally Added On: August 4th, 2016]
- 047 Genetics | Define Genetics at Dictionary.com [Last Updated On: August 4th, 2016] [Originally Added On: August 4th, 2016]
- 048 Human Genetics - Population Genetics [Last Updated On: August 4th, 2016] [Originally Added On: August 4th, 2016]
- 049 Department of Genetics at Washington University St. Louis [Last Updated On: August 4th, 2016] [Originally Added On: August 4th, 2016]
- 050 Genetics - Genetic inheritance - NHS Choices [Last Updated On: August 4th, 2016] [Originally Added On: August 4th, 2016]
- 051 Genetics, Breeding, & Animal Health : Home [Last Updated On: August 4th, 2016] [Originally Added On: August 4th, 2016]
- 052 STAR: Genetics - Home [Last Updated On: August 4th, 2016] [Originally Added On: August 4th, 2016]
- 053 Genetics | The Gruber Foundation [Last Updated On: August 4th, 2016] [Originally Added On: August 4th, 2016]
- 054 Learn Genetics Visually in 24 Hours by Rapid Learning [Last Updated On: August 4th, 2016] [Originally Added On: August 4th, 2016]
- 055 Interdepartmental Genetics Program | Kansas State University [Last Updated On: August 4th, 2016] [Originally Added On: August 4th, 2016]
- 056 Introduction to genetics - Wikipedia, the free encyclopedia [Last Updated On: August 4th, 2016] [Originally Added On: August 4th, 2016]
- 057 The Basics on Genes and Genetic Disorders - KidsHealth [Last Updated On: August 4th, 2016] [Originally Added On: August 4th, 2016]
- 058 Colloquium | Laboratory of Genetics | University of Wisconsin ... [Last Updated On: August 4th, 2016] [Originally Added On: August 4th, 2016]
- 059 Genetics News -- ScienceDaily [Last Updated On: August 4th, 2016] [Originally Added On: August 4th, 2016]
- 060 Laser Genetics - Night Vision, Green Lasers for Law ... [Last Updated On: August 4th, 2016] [Originally Added On: August 4th, 2016]
- 061 An Introduction to Genetics and Genetic Testing - KidsHealth [Last Updated On: August 4th, 2016] [Originally Added On: August 4th, 2016]
- 062 Genetics | Carolina.com [Last Updated On: August 4th, 2016] [Originally Added On: August 4th, 2016]
- 063 Genetic Counseling Center - Cupertino, CA - MedicineNet [Last Updated On: August 4th, 2016] [Originally Added On: August 4th, 2016]
- 064 Genetics - NHS Choices [Last Updated On: August 4th, 2016] [Originally Added On: August 4th, 2016]
- 065 Genetics - BIO410 - University of Phoenix [Last Updated On: August 4th, 2016] [Originally Added On: August 4th, 2016]
- 066 What kind of jobs can I get with a Genetics major? | Texas A ... [Last Updated On: August 4th, 2016] [Originally Added On: August 4th, 2016]
- 067 Genetics | Bioscience Topics | About Bioscience [Last Updated On: August 4th, 2016] [Originally Added On: August 4th, 2016]
- 068 The Genetics of Cancer - National Cancer Institute [Last Updated On: August 4th, 2016] [Originally Added On: August 4th, 2016]
- 069 UAB - SOM - Department of Genetics - UASOM Department of ... [Last Updated On: August 4th, 2016] [Originally Added On: August 4th, 2016]
- 070 Syllabus - Genetics [Last Updated On: August 4th, 2016] [Originally Added On: August 4th, 2016]
- 071 University of Wisconsin Laboratory of Genetics [Last Updated On: August 4th, 2016] [Originally Added On: August 4th, 2016]
- 072 Genetics (B.S.) | Degree Programs | Clemson University, South ... [Last Updated On: August 4th, 2016] [Originally Added On: August 4th, 2016]
- 073 Genetics Clinic - University of Iowa Children's Hospital [Last Updated On: August 4th, 2016] [Originally Added On: August 4th, 2016]
- 074 FlyBook! | Genetics [Last Updated On: August 4th, 2016] [Originally Added On: August 4th, 2016]
- 075 PLOS Genetics: A Peer-Reviewed Open-Access Journal [Last Updated On: August 4th, 2016] [Originally Added On: August 4th, 2016]
- 076 Human Genetics - The University of Chicago Medicine [Last Updated On: August 4th, 2016] [Originally Added On: August 4th, 2016]
- 077 Genetics flashcards | Quizlet [Last Updated On: August 4th, 2016] [Originally Added On: August 4th, 2016]
- 078 Overview | Department of Genetics | Albert Einstein College ... [Last Updated On: August 4th, 2016] [Originally Added On: August 4th, 2016]
- 079 Articles about Genetics - latimes [Last Updated On: August 4th, 2016] [Originally Added On: August 4th, 2016]
- 080 Annual Review of Genetics - Home [Last Updated On: August 4th, 2016] [Originally Added On: August 4th, 2016]