The chromosome set of a species remains relatively stable over long periods of time. However, within populations there can be found abnormalities involving the structure or number of chromosomes. These alterations arise spontaneously from errors in the normal processes of the cell. Their consequences are usually deleterious, giving rise to individuals who are unhealthy or sterile, though in rare cases alterations provide new adaptive opportunities that allow evolutionary change to occur. In fact, the discovery of visible chromosomal differences between species has given rise to the belief that radical restructuring of chromosome architecture has been an important force in evolution.
Two important principles dictate the properties of a large proportion of structural chromosomal changes. The first principle is that any deviation from the normal ratio of genetic material in the genome results in genetic imbalance and abnormal function. In the normal nuclei of both diploid and haploid cells, the ratio of the individual chromosomes to one another is 1:1. Any deviation from this ratio by addition or subtraction of either whole chromosomes or parts of chromosomes results in genomic imbalance. The second principle is that homologous chromosomes go to great lengths to pair at meiosis. The tightly paired homologous regions are joined by a ladderlike longitudinal structure called the synaptonemal complex. Homologous regions seem to be able to find each other and form a synaptonemal complex whether or not they are part of normal chromosomes. Therefore, when structural changes occur, not only are the resulting pairing formations highly characteristic of that type of structural change but they also dictate the packaging of normal and abnormal chromosomes into the gametes and subsequently into the progeny.
The simplest, but perhaps most damaging, structural change is a deletionthe complete loss of a part of one chromosome. In a haploid cell this is lethal, because part of the essential genome is lost. However, even in diploid cells deletions are generally lethal or have other serious consequences. In a diploid a heterozygous deletion results in a cell that has one normal chromosome set and another set that contains a truncated chromosome. Such cells show genomic imbalance, which increases in severity with the size of the deletion. Another potential source of damage is that any recessive, deleterious, or lethal alleles that are in the normal counterpart of the deleted region will be expressed in the phenotype. In humans, cri-du-chat syndrome is caused by a heterozygous deletion at the tip of the short arm of chromosome 5. Infants are born with this condition as the result of a deletion arising in parental germinal tissues or even in sex cells. The manifestations of this deletion, in addition to the cat cry that gives the syndrome its name, include severe intellectual disability and an abnormally small head.
A heterozygous duplication (an extra copy of some chromosome region) also results in a genomic imbalance with deleterious consequences. Small duplications within a gene can arise spontaneously. Larger duplications can be caused by crossovers following asymmetrical chromosome pairing or by meiotic irregularities resulting from other types of altered chromosome structures. If a duplication becomes homozygous, it can provide the organism with an opportunity to acquire new genetic functions through mutations within the duplicate copy.
An inversion occurs when a chromosome breaks in two places and the region between the break rotates 180 before rejoining with the two end fragments. If the inverted segment contains the centromere (i.e., the point where the two chromatids are joined), the inversion is said to be pericentric; if not, it is called paracentric. Inversions do not result in a gain or loss of genetic material, and they have deleterious effects only if one of the chromosomal breaks occurs within an essential gene or if the function of a gene is altered by its relocation to a new chromosomal neighbourhood (called the position effect). However, individuals who are heterozygous for inversions produce aberrant meiotic products along with normal products. The only way uninverted and inverted segments can pair is by forming an inversion loop. If no crossovers occur in the loop, half of the gametes will be normal and the other half will contain an inverted chromosome. If a crossover does occur within the loop of a paracentric inversion, a chromosome bridge and an acentric chromosome (i.e., a chromosome without a centromere) will be formed, and this will give rise to abnormal meiotic products carrying deletions, which are inviable. In a pericentric inversion, a crossover within the loop does not result in a bridge or an acentric chromosome, but inviable products are produced carrying a duplication and a deletion.
If a chromosome break occurs in each of two nonhomologous chromosomes and the two breaks rejoin in a new arrangement, the new segment is called a translocation. A cell bearing a heterozygous translocation has a full set of genes and will be viable unless one of the breaks causes damage within a gene or if there is a position effect on gene function. However, once again the pairing properties of the chromosomes at meiosis result in aberrant meiotic products. Specifically, half of the products are deleted for one of the chromosome regions that changed positions and half of the products are duplicated for the other. These duplications and deletions usually result in inviability, so translocation heterozygotes are generally semisterile (half-sterile).
Two types of changes in chromosome numbers can be distinguished: a change in the number of whole chromosome sets (polyploidy) and a change in chromosomes within a set (aneuploidy).
An individual with additional chromosome sets is called a polyploid. Individuals with three sets of chromosomes (triploids, 3n) or four sets of chromosomes (tetraploids, 4n) are polyploid derivatives of the basic diploid (2n) constitution. Polyploids with odd numbers of sets (e.g., triploids) are sterile, because homologous chromosomes pair only two by two, and the extra chromosome moves randomly to a cell pole, resulting in highly unbalanced, nonfunctional meiotic products. It is for this reason that triploid watermelons are seedless. However, polyploids with even numbers of chromosome sets can be fertile if orderly two-by-two chromosome pairing occurs.
Though two organisms from closely related species frequently hybridize, the chromosomes of the fusing partners are different enough that the two sets do not pair at meiosis, resulting in sterile offspring. However, if by chance the number of chromosome sets in the hybrid accidentally duplicates, a pairing partner for each chromosome will be produced, and the hybrid will be fertile. These chromosomally doubled hybrids are called allotetraploids. Bread wheat, which is hexaploid (6n) due to several natural spontaneous hybridizations, is an example of an allotetraploid. Some polyploid plants are able to produce seeds through an asexual type of reproduction called apomixis; in such cases, all progeny are identical to the parent. Polyploidy does arise spontaneously in humans, but all polyploids either abort in utero or die shortly after birth.
Some cells have an abnormal number of chromosomes that is not a whole multiple of the haploid number. This condition is called aneuploidy. Most aneuploids arise by nondisjunction, a failure of homologous chromosomes to separate at meiosis. When a gamete of this type is fertilized by a normal gamete, the zygotes formed will have an unequal distribution of chromosomes. Such genomic imbalance results in severe abnormalities or death. Only aneuploids involving small chromosomes tend to survive and even then only with an aberrant phenotype.
The most common form of aneuploidy in humans results in Down syndrome, a suite of specific disorders in individuals possessing an extra chromosome 21 (trisomy 21). The symptoms of Down syndrome include intellectual disability, severe disorders of internal organs such as the heart and kidneys, up-slanted eyes, an enlarged tongue, and abnormal dermal ridge patterns on the fingers, palms, and soles. Other forms of aneuploidy in humans result from abnormal numbers of sex chromosomes. Turner syndrome is a condition in which females have only one X chromosome. Symptoms may include short stature, webbed neck, kidney or heart malformations, underdeveloped sex characteristics, or sterility. Klinefelter syndrome is a condition in which males have one extra female sex chromosome, resulting in an XXY pattern. (Other, less frequent, chromosomal patterns include XXXY, XXXXY, XXYY, and XXXYY.) Symptoms of Klinefelter syndrome may include sterility, a tall physique, lack of secondary sex characteristics, breast development, and learning disabilities.
The data accumulated by scientists of the early 20th century provided compelling evidence that chromosomes are the carriers of genes. But the nature of the genes themselves remained a mystery, as did the mechanism by which they exert their influence. Molecular geneticsthe study of the structure and function of genes at the molecular levelprovided answers to these fundamental questions.
In 1869 Swiss chemist Johann Friedrich Miescher extracted a substance containing nitrogen and phosphorus from cell nuclei. The substance was originally called nuclein, but it is now known as deoxyribonucleic acid, or DNA. DNA is the chemical component of the chromosomes that is chiefly responsible for their staining properties in microscopic preparations. Since the chromosomes of eukaryotes contain a variety of proteins in addition to DNA, the question naturally arose whether the nucleic acids or the proteins, or both together, were the carriers of the genetic information. Until the early 1950s most biologists were inclined to believe that the proteins were the chief carriers of heredity. Nucleic acids contain only four different unitary building blocks, but proteins are made up of 20 different amino acids. Proteins therefore appeared to have a greater diversity of structure, and the diversity of the genes seemed at first likely to rest on the diversity of the proteins.
Evidence that DNA acts as the carrier of the genetic information was first firmly demonstrated by exquisitely simple microbiological studies. In 1928 English bacteriologist Frederick Griffith was studying two strains of the bacterium Streptococcus pneumoniae; one strain was lethal to mice (virulent) and the other was harmless (avirulent). Griffith found that mice inoculated with either the heat-killed virulent bacteria or the living avirulent bacteria remained free of infection, but mice inoculated with a mixture of both became infected and died. It seemed as if some chemical transforming principle had transferred from the dead virulent cells into the avirulent cells and changed them. In 1944 American bacteriologist Oswald T. Avery and his coworkers found that the transforming factor was DNA. Avery and his research team obtained mixtures from heat-killed virulent bacteria and inactivated either the proteins, polysaccharides (sugar subunits), lipids, DNA, or RNA (ribonucleic acid, a close chemical relative of DNA) and added each type of preparation individually to avirulent cells. The only molecular class whose inactivation prevented transformation to virulence was DNA. Therefore, it seemed that DNA, because it could transform, must be the hereditary material.
A similar conclusion was reached from the study of bacteriophages, viruses that attack and kill bacterial cells. From a host cell infected by one bacteriophage, hundreds of bacteriophage progeny are produced. In 1952 American biologists Alfred D. Hershey and Martha Chase prepared two populations of bacteriophage particles. In one population, the outer protein coat of the bacteriophage was labeled with a radioactive isotope; in the other, the DNA was labeled. After allowing both populations to attack bacteria, Hershey and Chase found that only when DNA was labeled did the progeny bacteriophage contain radioactivity. Therefore, they concluded that DNA is injected into the bacterial cell, where it directs the synthesis of numerous complete bacteriophages at the expense of the host. In other words, in bacteriophages DNA is the hereditary material responsible for the fundamental characteristics of the virus.
Today the genetic makeup of most organisms can be transformed using externally applied DNA, in a manner similar to that used by Avery for bacteria. Transforming DNA is able to pass through cellular and nuclear membranes and then integrate into the chromosomal DNA of the recipient cell. Furthermore, using modern DNA technology, it is possible to isolate the section of chromosomal DNA that constitutes an individual gene, manipulate its structure, and reintroduce it into a cell to cause changes that show beyond doubt that the DNA is responsible for a large part of the overall characteristics of an organism. For reasons such as these, it is now accepted that, in all living organisms, with the exception of some viruses, genes are composed of DNA.
Follow this link:
Heredity - Chromosomal aberrations | Britannica.com
- Molecular Genetics Testing - StatPearls - NCBI Bookshelf - November 16th, 2024
- Working with Molecular Genetics (Hardison) - Biology LibreTexts - November 16th, 2024
- Molecular Underpinnings of Genetic and Rare Diseases: From ... - Frontiers - November 16th, 2024
- The molecular genetics of schizophrenia: New findings promise new insights. - November 16th, 2024
- 8: Techniques of Molecular Genetics - Biology LibreTexts - September 4th, 2024
- 1.5: Molecular Genetics - Biology LibreTexts - September 4th, 2024
- Molecular genetics made simple - PMC - National Center for ... - September 4th, 2024
- 4 Introduction to Molecular Genetics - University of Minnesota Twin Cities - September 4th, 2024
- Molecular genetics - Definition and Examples - Biology Online - September 4th, 2024
- A Detailed Look at the Science of Molecular Genetics - KnowYourDNA - September 4th, 2024
- Molecular Genetics | NHLBI, NIH - September 4th, 2024
- Molecular biology - Wikipedia - September 4th, 2024
- Genetics, Molecular & Cellular Biology Admissions - September 4th, 2024
- Researchers map 50,000 of DNAs mysterious knots in the human genome - EurekAlert - September 4th, 2024
- Artificial selection of mutations in two nearby genes gave rise to shattering resistance in soybean - Nature.com - September 4th, 2024
- Mainz Biomed Expands Corporate Health Program for ColoAlert with the Addition of Three New Companies in Germany - Marketscreener.com - April 7th, 2023
- Molecular Genetics and Metabolism | Journal - ScienceDirect - December 11th, 2022
- People don't mate randomly but the flawed assumption that they do is an essential part of many studies linking genes to diseases and traits - The... - November 25th, 2022
- Molecular and Cell Biology and Genetics - Master of Science / PhD ... - October 7th, 2022
- NIPD Genetics: Leading Genetic Testing Company - October 7th, 2022
- Skeletal Biology and Regeneration Students Recognized For Research Excellence - UConn Today - University of Connecticut - October 7th, 2022
- Mary Munson elected fellow of the American Society for Cell Biology - UMass Medical School - October 7th, 2022
- Every Body's Talking at Them: an Interview with Jon Lieff - CounterPunch - October 7th, 2022
- TriBeta invites students to explore opportunities to work with faculty at research fair on Oct. 11 - Ohio University - October 7th, 2022
- Genetics: the Vatican Does Not Intend to Be Behind the Times - FSSPX.News - October 7th, 2022
- Yield10 Bioscience Appoints Willie Loh, Ph.D., to the Board of Directors - citybiz - October 7th, 2022
- Molecular pathways of major depressive disorder converge on the synapse | Molecular Psychiatry - Nature.com - October 7th, 2022
- Sigyn Therapeutics Strengthens Board of Directors With the Appointments of Richa Nand, Jim Dorst and Christopher Wetzel - Yahoo Finance - October 7th, 2022
- UTHSC Researcher Co-Leads Study of Genes that Modulate Aging, Lifespan - UTHSC News - UTHSC News - October 7th, 2022
- GATC Health Investor Conference to Feature First Public Demonstration of Its AI Platform's Drug Discovery Capabilities - PR Newswire - October 7th, 2022
- Three Professors Conferred Tenure and Eleven Promoted - Wesleyan Argus - October 7th, 2022
- Who will get the call from Stockholm? It's time for STAT's 2022 Nobel Prize predictions - STAT - October 7th, 2022
- Dalhousie to present exhibition celebrating Gerhard Herzberg and his legacy - Dal News - October 7th, 2022
- Why Some People Should Rethink Their Morning Cup Of Coffee - Health Digest - October 7th, 2022
- Cell and Gene Therapy: Rewriting the Future of Medicine - Technology Networks - October 7th, 2022
- UofL researchers lead the call to increase genetic diversity in immunogenomics - uoflnews.com - July 6th, 2021
- In Brief This Week: Foundation Medicine, Myriad Genetics, Genetron Health, and More - GenomeWeb - July 6th, 2021
- More filling? Tastes great? How flies, and maybe people, choose their food - Yale News - July 6th, 2021
- Genetic mapping of subsets of patients with fragile X syndro | TACG - Dove Medical Press - July 6th, 2021
- What is The Babydust Method? Danielle Lloyd swears method helped her conceive girl - The Mirror - July 6th, 2021
- Datar Cancer Genetics joins hands with US based Iylon Precision Oncology to offer personalized Precision Oncology cancer treatment solutions - PR Web - July 6th, 2021
- Mapping a pathway to competitive production - hortidaily.com - hortidaily.com - July 6th, 2021
- Associations between pancreatic expression quantitative traits and risk of pancreatic ductal adenocarcinoma. - Physician's Weekly - July 6th, 2021
- Global Genomics Market | Rising Incidence of Chronic and Genetic Diseases are Key Factors to Grow Market During 2021-2029 | 23andMe, Agilent... - July 6th, 2021
- The Babydust Method Danielle Lloyd used to conceive a girl after four sons and how it works - RSVP Live - July 6th, 2021
- In the beginning science and faith - The Irish Times - June 24th, 2021
- Ancient Maya Maintained Native Tropical Forest Plants around Their Water Reservoirs | Archaeology - Sci-News.com - June 24th, 2021
- Local foundation awards $1.25 million to MIND Institute to study rare genetic condition - UC Davis Health - June 24th, 2021
- Xlife Sciences AG: Collaboration with the University of Marburg - Yahoo Finance - June 24th, 2021
- Genetics diagnostics in India is on the verge of transformation: Neeraj Gupta, Founder and CEO of Genes2me - The Financial Express - June 24th, 2021
- Precision Medicine: Improving Health With Personalized Solutions - BioSpace - June 24th, 2021
- Half of Portland areas 22 top National Merit winners hail from just 2 schools - OregonLive - June 24th, 2021
- Investing in stem cells, the building blocks of the body - MoneyWeek - June 24th, 2021
- New study finds low levels of a sugar metabolite associates with disability and neurodegeneration in multiple sclerosis - Newswise - May 14th, 2021
- Cernadas-Martn Is a Champion for Marine and Human Diversity | | SBU News - Stony Brook News - May 14th, 2021
- Four Penn Faculty: Election to the National Academy of Sciences - UPENN Almanac - May 14th, 2021
- Is there a difference between a gene-edited organism and a 'GMO'? The question has important implications for regulation - Genetic Literacy Project - May 14th, 2021
- 5 Students Inducted Into American Society for Biochemistry and Molecular Biology Honor Society - Wesleyan Connection - May 14th, 2021
- The Science of Aliens, Part 2: What Kind of Genetic Code Would Extraterrestrials Have? - Air & Space Magazine - May 14th, 2021
- UT Austin Faculty Member Receives 2021 Piper Professor Award - Office of the Executive Vice President and Provost - UT News | The University of Texas... - May 14th, 2021
- Distinguished University of Birmingham plant scientist elected to the Royal Society - University of Birmingham - May 14th, 2021
- Double Hoo Research: Undergrads and Grads Team Up to Create Knowledge - University of Virginia - May 14th, 2021
- Global Genetic Testing Market Top Countries Analysis and Manufacturers With Impact of COVID-19 | 2021-2028 Detail Analysis focusing on Application,... - May 14th, 2021
- Morag Park named to the Order of Quebec - McGill Reporter - McGill Reporter - May 14th, 2021
- Third Rock Ventures Launches Flare Therapeutics With $82 Million Series A - BioSpace - May 14th, 2021
- The Royal Society announces election of new Fellows 2021 - Cambridge Network - May 14th, 2021
- Researchers Decode the "Language" of Immune Cells - Technology Networks - May 14th, 2021
- RepliCel Launches the Next Stage of a Research Project with the University of British Columbia to Build World-Class Hair Follicle Cell Data Map -... - May 14th, 2021
- Mice Sperm Sabotage Other Swimmers With Poison | Smart News - Smithsonian Magazine - February 14th, 2021
- Study Identifies Never-Before-Seen Dual Function in Enzyme Critical for Cancer Growth - Newswise - February 14th, 2021
- Devious sperm 'poison' their rivals, forcing them to swim in circles until they die - Livescience.com - February 14th, 2021
- More needs to be done to find and fight COVID-19 variants, says Colorado researcher - FOX 31 Denver - February 14th, 2021
- Selfish sperm genes 'poison' the competition for the win - Big Think - February 14th, 2021
- Some sperm cells swim faster and even poison their competition to climb to the top - ZME Science - February 14th, 2021
- We are scientists: U of T researchers reach out to girls and women around the world - News@UofT - February 14th, 2021
- Mutations in frogs point to autism genes' shared role in neurogenesis - Spectrum - February 14th, 2021
- Global Genetic Testing Market Insights, Size Estimation, Research Insights, COVID-19 Impact and Future Trends By 2028 KSU | The Sentinel Newspaper -... - February 14th, 2021
- Acer Therapeutics Announces Topline Results from its Bioequivalence Trial of ACER-001 Compared to BUPHENYL Under Fed Conditions - GlobeNewswire - February 14th, 2021
- GeneSight Psychotropic Test's Combinatorial Approach Proves Better than Single-Gene Testing at Predicting Patient Outcomes and Medication Blood Levels... - February 14th, 2021
- Gu Ailing Eileen: I've learned to win for myself, not other people - Olympic Channel - February 14th, 2021