GammaDelta Therapeutics is a company that focusses on utilizing the unique properties of gamma delta () T cells to develop novel immunotherapies for patients.Through their research, the companys scientists have discovered a number of targets and antibodies that have the potential to modulate the activity of T-cells in situ. Therefore, GammaDelta Therapeutics recently announced the formation of Adaptate Biotherapeutics, a spin-out company that will focus on research in this area.
Technology Networks spoke with Natalie Mount, CEO of Adaptate BioTherapeutics, to learn more about the company's aims and the challenges faced when developing immunotherapies and advancing them into clinical studies.
Molly Campbell (MC) Please can you tell us more about T-cell based cell therapy products and their potential applications?Natalie Mount (NM): T cells play an increasingly appreciated critical role in immune surveillance, being able to recognize malignant/transformed cells through a pattern of stress markers. The recognition mechanism is not major histocompatibility complex (MHC) restricted and not dependent on a single antigen.
T cells therefore have potential in a range of disease indications, including both hematological and solid malignancies and a positive correlation between T cell infiltration and prognosis/survival in patients has been determined in a range of oncology indications in studies published in the literature by other groups. Additionally, as a cell therapy, T cells can be used in an allogeneic setting (ie, T cells can be used for unrelated recipients without a requirement for matching).
Both Adaptate Biotherapeutics and GammaDelta Therapeutics are focussed on harnessing the potential of T cells, in particular the V1 subtype which is the predominant T cell type in tissue.This is based on data originating from the labs of Professor Adrian Hayday of Kings College London and the Crick Institute, supported by Cancer Research Technology and also from Professor Bruno Silva Santos of Institute for Molecular Medicine at the University of Lisbon, Portugal.
Previous clinical trials conducted by other groups/companies targeting or using T cells in cancer have focussed on the V2 subtype which is predominant in the blood. These trials have demonstrated safety, but efficacy has been limited.Compared to V2 cells, V1 cells, which are the focus of work at Adaptate Biotherapeutics and GammaDelta Therapeutics, are less susceptible to exhaustion and activation induced cell death. Expansion of donor derived V1 has been shown to be a positive prognostic indicator for acute myeloid leukemia patients following hematopoietic stem cell transplant.
MC: Why are current immunotherapy treatment approaches limited?NM: Immunotherapy approaches have had very significant success and impact in Oncology recently, however, challenges and unmet needs remain.One challenge is effective treatment of solid tumors. The hypoxic, low nutrient tumor environment provides a challenge for successful infiltration and activation of T cells. However, V1 T cells have real potential as they are naturally tissue resident and hence primed for this environment. In addition, their ability to recognize malignant cells by a pattern of markers expressed by dysregulated, transformed cells rather than one specific antigen presented by the MHC provides an additional advantage for both specificity of response and maintenance of efficacy.
T cells act as orchestrators of an immune response and, following recognition of a cell as malignant, they induce maturation of monocytes and signal to alpha beta T cells, hence increasing immunogenicity of the tumor and providing a sustained response, with potential even in tumors with low mutational load which have proven challenging with other immunotherapies.
MC: The new spin-out company, Adaptate Biotherapeutics, will build on GammaDelta's knowledge to modulate T-cell activity using therapeutic antibodies. Why have you decided to create a spin-out focusing on this area of research?NM: GammaDelta Therapeutics was formed in 2016 to harness the unique properties of T cells, and since then has gained extensive knowledge of T-cell biology. In addition to gaining insight into cell growth and isolation, the companys scientists have also discovered a number of targets and antibodies that have potential to modulate the activity of T-cells in situ.
GammaDelta Therapeutics now has a pipeline of cell therapy products progressing into clinical development under the guidance of CEO, Dr Paolo Paoletti.
Adaptate Biotherapeutics will be developing antibodies which will be administered to cancer patients to modulate activity of the patient's gamma delta T cells in situ.
Delivery of cell therapy and antibody therapeutics each needs focus and specific skillsets and formation of two independent entities will facilitate this. The two companies share a common goal to harness the potential of T cells to bring effective therapies to patients. Both benefit from support of the scientific founding team and have common investors, Abingworth and Takeda Pharmaceuticals.MC; Your goal is to develop targets and antibodies that can modulate the activity of T-cells and advance them into clinical studies. What challenges exist here, and how do you hope to overcome them?
Our assets at Adaptate Biotherapeutics are currently at the pre-clinical stage and therefore face the non-clinical development risks for a novel therapy. However, these risks are mitigated by biology understanding from our scientific founders and the work at GammaDelta Therapeutics to date.
One of our challenges is in selecting the most suitable patient population for initial trials. There is potential for opportunity for our therapeutics in multiple indications but the utility of animal models in modelling the human immune compartment and human tumor setting is limited. Therefore in vitro and ex vivo models are important, in addition to the learnings from other clinical studies.
MC: GammaDelta Therapeutics formed in 2016 to gain extensive knowledge of T-cell biology and to developing a portfolio of investigational cell therapies. Some of these cell therapies are poised to enter clinical development. Can you tell us any further information about these therapies?NM: GammaDelta was set up to develop cell-based therapy utilizing ex-vivo expanded tissue resident gd T cells. Subsequent acquisition of Lymphact SAS allowed GammaDelta to augment its capabilities with a platform for ex-vivo expansion of blood derived V1 cells. GammaDelta is focussed on progressing ex-vivo expanded skin and blood derived V1 cells to the clinic both in unengineered and engineered formats. Clinical trials are currently on track to commence in the next 12-18 months.
MC: Your press release states: "The two companies will continue sharing their insights into T-cell biology as they work towards developing different therapeutic modalities". How will you continue to share insights here?NM: Antibodies and cells represent complementary approaches to realizing the potential of T cell activity for patients with solid and haematological malignancies.
The two companies will work together in areas of common interest in the biology of these fascinating cells, such as understanding the phenotype and behavior of T cells in tumors and mechanisms of cell regulation as well as the effects of antibody on the T cells.
We have deliberately established a contractual framework that allows efficient collaboration between scientists of both the companies via formal and informal meetings.
MC: What are your hopes for the future of Adaptate Biotherapeutics?NM: This is a remarkable time in the development of new immune therapies, and the role of "non-conventional" cell types of the immune system is coming to the fore as we recognize the successes achieved to date and the needs of patients and related scientific challenges that remain.
Both GammaDelta Therapeutics and Adaptate Biotherapeutics are at the lead of translating our increasing understanding of T cell biology and its potential into therapies to address these unmet needs.
Adaptate Biotherapeutics has a fantastic opportunity to build and accelerate a portfolio of antibody-based approaches in this novel area and I look forward to the successful translation of this science into therapies with the support of our investors at Abingworth and Takeda Pharmaceuticals.
Dr Natalie Mount, CEO of Adaptate Biotherapeutics was speaking with Molly Campbell, Science Writer, Technology Networks.
Read more here:
Harnessing Gamma T Cells To Bring Effective Therapies to Patients - Technology Networks
- Breast Cancer Is Most Common Cancer In India, 1.38 Million Cases Diagnosed Annually. Know Estimated Incidence By 2030 - ABP Live - November 26th, 2023
- What Is Amyloidosis? All About The Rare Disease That Pervez Musharraf Suffered From - ABP Live - February 8th, 2023
- Autophagic death of neural stem cells mediates chronic stress-induced ... - November 7th, 2022
- Programmed cell death - Wikipedia - November 7th, 2022
- Hematopoietic Stem Cells | Hematopoiesis | Properties & Functions - September 4th, 2022
- Canadian Blood Services Stem Cells for Life - September 4th, 2022
- Devastation over death of schoolgirl, 11, who hoped she was beating cancer - Leicestershire Live - September 4th, 2022
- From optimized stem cell transplants to CAR T cell therapy: Advancing options for cancer, HIV and more - City of Hope - September 4th, 2022
- Scientists unlock the key to immortality in jellyfish - Syfy - September 4th, 2022
- Forge Biologics Reports Positive Clinical Data on Brain Development and Motor Function from the RESKUE Novel Phase 1/2 Gene Therapy Trial in Patients... - September 4th, 2022
- Menin Inhibitors Have Potential to Become the Next Class of Targeted Therapy in AML - Targeted Oncology - September 4th, 2022
- Wanted murder suspect John Belfield believed to still be in the UK as two more arrested over death of Thomas Campbell - The Manc - September 4th, 2022
- Next-day manufacture of a novel anti-CD19 CAR-T therapy for B-cell acute lymphoblastic leukemia: first-in-human clinical study | Blood Cancer Journal... - July 8th, 2022
- Can minds persist when they are cut off from the world? - Livescience.com - July 8th, 2022
- Black Adolescent Young Adults With AML Have Worse Outcomes Vs White Population - Cancer Network - July 8th, 2022
- Akari Therapeutics Announces First Patient to Complete Course of Treatment in the Phase III Part A Clinical Trial of Investigational Nomacopan in... - July 8th, 2022
- How abortion ruling could affect IVF and embryonic research - The Almanac Online - July 8th, 2022
- This Morning viewers 'in tears' after boy meets donor who saved his life - Devon Live - July 8th, 2022
- Alpena detective: 'Good people out there' | News, Sports, Jobs - Alpena News - July 8th, 2022
- 'I miss my best friend': Five-year-old runs 10k to honour girl who died from rare brain tumour - Teesside Live - July 8th, 2022
- Humanigen Announces Peer-Reviewed Publication in Thorax Supporting Early Treatment of Hospitalized COVID-19 Patients with Lenzilumab Guided by... - July 8th, 2022
- Novartis AG, AstraZeneca Plc, and Pfizer Inc Among Leading Companies in the Thyroid Cancer Pipeline Products Market | Globaldata Plc - Yahoo Finance - July 8th, 2022
- A New Strategy Could Turn the Tide in Stem Cell GVHD - Medical Device and Diagnostics Industry - January 17th, 2022
- Vertex type 1 diabetes vs stem cell therapy - The Boar - January 17th, 2022
- Two-Year OS Doubles for Patients With Philadelphia-Positive Relapsed ALL After HSCT - AJMC.com Managed Markets Network - January 17th, 2022
- Nowakowski Considers CD19 Therapy in Transplant-Ineligible DLBCL - Targeted Oncology - January 17th, 2022
- Psaki demolishes Doocy with stats as he tries to claim covid now an illness of the vaccinated - newsconcerns - January 17th, 2022
- Doctors and Researchers Probe How COVID-19 Attacks the Heart - The Scientist - January 17th, 2022
- Who does donated blood that's direly needed help? - WTOP - January 17th, 2022
- Places Where Omicron is Most Contagious Eat This Not That - Eat This, Not That - January 17th, 2022
- UHN and U of T receive $24-million federal grant for transplant research - News@UofT - January 17th, 2022
- Glycyrrhizic acid ameliorates submandibular gland oxidative stress, autophagy and vascular dysfunction in rat model of type 1 diabetes | Scientific... - January 17th, 2022
- Stem cells in cancer therapy: opportunities and challenges - January 1st, 2022
- Life After Brain Death: Is the Body Still 'Alive'? | Live ... - January 1st, 2022
- Autologous Adult Stem Cells in the Treatment of Stroke | SCCAA - Dove Medical Press - January 1st, 2022
- Stem Cell Mimicking Nanoencapsulation for Targeting Arthrit | IJN - Dove Medical Press - January 1st, 2022
- Cellular Therapies Fill Unmet Needs in R/R Multiple Myeloma - Targeted Oncology - January 1st, 2022
- Upregulated expression of actin-like 6A is a risk factor | CMAR - Dove Medical Press - January 1st, 2022
- COVID-19 Takes a Toll on People with Blood Cancers and Disorders - Cancer Health Treatment News - January 1st, 2022
- Mental health disorders and heart diseases - Rising Kashmir - January 1st, 2022
- Research breakthrough could mean better treatment for patients with most deadly form of brain tumor - EurekAlert - October 26th, 2021
- European Commission Approves Merck's KEYTRUDA (pembrolizumab) Plus Chemotherapy as Treatment for Certain Patients With Locally Recurrent Unresectable... - October 26th, 2021
- European Commission Selects Humanigen's Lenzilumab as One of the 10 Most Promising Treatments for COVID-19 - Galveston County Daily News - October 26th, 2021
- Everything You Need To Know About COVID Booster Shots - Colorado Times Recorder - October 26th, 2021
- Stem cells and their role in lung transplant rejection - Michigan Medicine - October 5th, 2021
- Losing Your Hair? You Might Blame the Great Stem Cell Escape. - The New York Times - October 5th, 2021
- Will humans ever be immortal? - Livescience.com - October 5th, 2021
- Healthcare Researchers Are Putting HUMAN Immune Systems In Pigs To Study Illnesses-Here's The Tech Behind It - Tech Times - October 5th, 2021
- Why Bezos, Musk, Page and other billionaires want to live forever - New York Post - October 5th, 2021
- Faster healing of wounds can decrease pain and suffering and save lives - ABC 12 News - October 5th, 2021
- U.S. FDA Approves Kite's Tecartus as the First and Only Car T for Adults With Relapsed or Refractory B-cell Acute Lymphoblastic Leukemia - Business... - October 5th, 2021
- Skeletons' broken clavicles tell a centuries-old tale of humans and horses - Massive Science - October 5th, 2021
- Environmental Factor - August 2021: Extramural Papers of the Month - Environmental Factor Newsletter - August 4th, 2021
- Role of traumatic brain injury in the development of glioma | JIR - Dove Medical Press - August 4th, 2021
- Targeted Therapeutics Market: Increase in Incidence of Cancer to Drive Global Market - BioSpace - August 4th, 2021
- Accumulation of Regulatory T Cells in Triple Negative Breast Cancer Ca | CMAR - Dove Medical Press - August 4th, 2021
- Novel CAR-T Cell Therapy Produces Early and Deep Responses in Certain Patients with Multiple Myeloma - Curetoday.com - June 7th, 2021
- Autophagy suppresses the formation of hepatocyte-derived cancer-initiating ductular progenitor cells in the liver - Science Advances - June 7th, 2021
- Cancer research: New advances and innovations - Medical News Today - June 7th, 2021
- Fulvestrant Alone Found to be Superior to Venetoclax/Fulvestrant Combo in ER+/HER2- Breast Cancer - Targeted Oncology - June 7th, 2021
- Merck's KEYTRUDA Given After Surgery Reduced the Risk of Disease Recurrence or Death by 32% Versus Placebo as Adjuvant Therapy in Patients With Renal... - June 7th, 2021
- Stem cell study illuminates the cause of an inherited heart disorder | Penn Today - Penn Today - February 14th, 2021
- The race to treat a rare, fatal syndrome may help others with common disorders like diabetes - Science Magazine - February 14th, 2021
- Jasper Therapeutics Announces Positive Data from Phase 1 Clinical Trial of JSP191 as Targeted Stem Cell Conditioning Agent in Patients with... - February 14th, 2021
- The Very First Signs of an Immune Response Have Been Filmed in a Developing Embryo - ScienceAlert - February 14th, 2021
- Arlo's Army needs stem cell donor as mum begs for help to save three-year-old's life - Glasgow Live - February 14th, 2021
- Astellas and Seagen Announce Phase 3 Trial Results Demonstrating Survival Advantage of PADCEV (enfortumab vedotin-ejfv) in Patients with Previously... - February 14th, 2021
- [Full text] Successful Use of Nivolumab in a Patient with Head and Neck Cancer Aft | OTT - Dove Medical Press - February 14th, 2021
- The drug treatments offering the best hope of a way out of the Covid crisis - Telegraph.co.uk - February 14th, 2021
- In the war against Covid, an arsenal of drugs is on the way - Telegraph.co.uk - February 14th, 2021
- Kat Wests husband, Jeff West, sentenced to 16 years in wifes death - AL.com - February 9th, 2021
- Harnessing the Potential of Cell and Gene Therapy - OncLive - February 9th, 2021
- I Survived Cancer, and Then I Needed to Remember How to Live - The Atlantic - February 9th, 2021
- [Full text] Higher Red Blood Cell Distribution Width is a Poor Prognostic Factor f | CMAR - Dove Medical Press - February 9th, 2021
- West Belfast woman to be remembered in special TV documentary - Belfast Live - January 29th, 2021
- UTV documentary tells of young Belfast woman's lasting legacy to promote stem cell donation - The Irish News - January 29th, 2021
- L-MIND Trial Results Show CD19 Antibody Is Reasonable in R/R DLBCL - Targeted Oncology - January 29th, 2021
- Vertex Announces FDA Clearance of Investigational New Drug (IND) Application for VX-880, a Novel Cell Therapy for the Treatment of Type 1 Diabetes... - January 29th, 2021
- If I Have Cancer, Dementia or MS, Should I Get the Covid Vaccine? - Kaiser Health News - January 29th, 2021
- Experimental taphonomy of organelles and the fossil record of early eukaryote evolution - Science Advances - January 29th, 2021