Of all of the possible techniques and strategies that can lead us as a species to find a way to increase our size, the advent of stem cells is one of the most promising ideas.In this post, I wanted to give a very general and brief introduction to our journey into the subject of stem cells to search for a solution to our height increase endeavor. This first post will definitely wont be the last post on this subject since there is so much research currently being done in this subject to look for solutions to some of our biggest medical and cosmetic problems we face in our modern era.
If we remember from our high school or college biology classes, we might remember that we all came from the zygotic formation brought by the male gamete the sperm coming into fusion with the female gamete the egg. From this initial single organism zygote we are slowly developed into something resembling a human baby in our mothers uterus. The curous person would be asking the question Just how exactly does the zygote figure out how to grow and develop into the product of a human baby? That comes from the instructions in the cell called DNA. DNA stand for deoxyribonucleic acid, which is a double helix structure which has at its most basic level only 4 types of nucleotides bases being repeated and sorted in a certain order. From the way the nucleotide bases are set up, we get our codons, which organize themselves to form genes. the genes are really just segments of biological instruction ,or information. The information is what really tells the cells what to do. That is where almost all of genetics and the study of stem cells begins.
The stem cell is a type of cell which can differentiate itself and transform into another type of cell which has a specialized function as well as self generate more of itself. The ability of the stem cell to turn into so many different types of cells allows its application into the medical sciences to be nearly endless. If we can get certain stem cells to regrow into the tyep fo tissues and even organs that we wnat, we can essentially treat our body like a car, where if a specific part is damaged or not functioning, we can go into out body and replace the damaged tissue from the stem cell derived results.
If we look at the diagram to our left we can see just what types of diseases and pathologies stem cells therapy can potentially treat. Some of the possibilities can seem to come from science fiction.
Stroke, Baldness, Blindness, Learning Defects, Deafness Alzheimers disease, Parkinsons Disease, Missing Teeth, Teeth cavitations, Wond healing, Brain Injuries, Amyotrophic lateral sclerosis, Myocardial Infarction, Muscular Dystrophy, Diabetes, Bone marrow transplantation, Spinal cord injury, Multiple types of cancer, Osteoarthiritis, Crohns Disease.
It would seem from this list that our desire to use stem cells to increase our height seems almost insignificant when we consider what other applications stem cell therapies can be used for. It is a real shame the the US government and scientific community has been slow or even against the research of stem cell therapy. What often has to happen is that if a person suffering from a specific pathology wanted to use stem cell therapy as treatment, they have to leave the US and get it somewhere else.I dont have a Ph. D so I dont feel like I am qualified to explain to you all the most important aspects of stem cells so I will leave most of the instructioning to Wikiepdia.
From the Wikipedia Article on Stem Cells found HERE, I wanted to post a few of the main points about the unique cells.
Stem cellsarebiological cellsfound in all multicellularorganisms, that candivide(throughmitosis) anddifferentiateinto diverse specialized cell types and can self-renew to produce more stem cells. In mammals, there are two broad types of stem cells:embryonic stem cells, which are isolated from theinner cell massofblastocysts, andadult stem cells, which are found in various tissues. Inadultorganisms, stem cells andprogenitor cellsact as a repair system for the body, replenishing adult tissues. In a developing embryo, stem cells can differentiate into all the specialized cells (these are called pluripotent cells), but also maintain the normal turnover of regenerative organs, such as blood, skin, or intestinal tissues.
There are three accessible sources ofautologousadult stem cells in humans:
Stem cells can also be taken fromumbilical cord bloodjust after birth. Of all stem cell types, autologous harvesting involves the least risk. By definition, autologous cells are obtained from ones own body, just as one may bank his or her own blood for elective surgical procedures.
Highly plastic adult stem cells are routinely used in medical therapies, for example inbone marrow transplantation. Stem cells can now be artificially grown and transformed (differentiated) into specialized cell types with characteristics consistent with cells of various tissues such as muscles or nerves throughcell culture. Embryoniccell linesandautologousembryonic stem cells generated throughtherapeutic cloninghave also been proposed as promising candidates for futuretherapies.
The classical definition of a stem cell requires that it possess two properties:
Two mechanisms to ensure that a stem cell population is maintained exist:
Pluripotent, embryonic stem cells originate as inner cell mass (ICM) cells within a blastocyst. These stem cells can become any tissue in the body, excluding a placenta. Only cells from an earlier stage of the embryo, known as themorula, are totipotent, able to become all tissues in the body and the extraembryonic placenta.
Humanembryonicstem cellsA: Cell colonies that are not yet differentiated.B:Nervecell
Main article:Cell potency
Potencyspecifies the differentiation potential (the potential to differentiate into different cell types) of the stem cell.
The practical definition of a stem cell is the functional definitiona cell that has the potential to regenerate tissue over a lifetime. For example, the defining test for a bone marrow or hematopoietic stem cell (HSC) is the ability to transplant one cell and save an individual without HSCs. In this case, a stem cell must be able to produce new blood cells and immune cells over a long term, demonstrating potency. It should also be possible to isolate stem cells from the transplanted individual, which can themselves be transplanted into another individual without HSCs, demonstrating that the stem cell was able to self-renew.
Properties of stem cells can be illustratedin vitro, using methods such asclonogenic assays, in which single cells are assessed for their ability to differentiate and self-renew.Stem cells can also be isolated by their possession of a distinctive set of cell surface markers. However,in vitroculture conditions can alter the behavior of cells, making it unclear whether the cells will behave in a similar mannerin vivo. There is considerable debate as to whether some proposed adult cell populations are truly stem cells.
Embryonic stem (ES) cell lines are cultures of cells derived from theepiblasttissue of theinner cell mass(ICM) of ablastocystor earliermorulastage embryos.[9]A blastocyst is an early stageembryoapproximately four to five days old in humans and consisting of 50150 cells. ES cells arepluripotentand give rise during development to all derivatives of the three primarygerm layers: ectoderm, endoderm and mesoderm. In other words, they can develop into each of the more than 200 cell types of the adultbodywhen given sufficient and necessary stimulation for a specific cell type. They do not contribute to the extra-embryonic membranes or theplacenta. The endoderm is composed of the entire gut tube and the lungs, the ectoderm gives rise to the nervous system and skin, and the mesoderm gives rise to muscle, bone, bloodin essence, everything else that connects the endoderm to the ectoderm.
Stem cell division and differentiation. A: stem cell; B: progenitor cell; C: differentiated cell; 1: symmetric stem cell division; 2: asymmetric stem cell division; 3: progenitor division; 4: terminal differentiation
Also known assomatic(from Greek , of the body) stem cells and germline (giving rise to gametes) stem cells, they can be found in children, as well as adults.
Pluripotent adult stem cells are rare and generally small in number but can be found in a number of tissues including umbilical cord blood.A great deal of adult stem cell research to date has had the aim of characterizing the capacity of the cells to divide or self-renew indefinitely and their differentiation potential.In mice, pluripotent stem cells are directly generated from adult fibroblast cultures. Unfortunately, many mice do not live long with stem cell organs.
Most adult stem cells are lineage-restricted (multipotent) and are generally referred to by their tissue origin (mesenchymal stem cell, adipose-derived stem cell,endothelial stem cell,dental pulp stem cell, etc.).
Adult stem cell treatments have been successfully used for many years to treat leukemia and related bone/blood cancers through bone marrow transplants.
Multipotent stem cells are also found inamniotic fluid. These stem cells are very active, expand extensively without feeders and are not tumorigenic.Amniotic stem cellsare multipotent and can differentiate in cells of adipogenic, osteogenic, myogenic, endothelial, hepatic and also neuronal lines.[29]All over the world, universities and research institutes are studyingamniotic fluidto discover all the qualities of amniotic stem cells
These are not adult stem cells, but rather adult cells (e.g. epithelial cells) reprogrammed to give rise to pluripotent capabilities. Using genetic reprogramming with proteintranscription factors, pluripotent stem cells equivalent toembryonic stem cellshave been derived from human adult skin tissue
To ensure self-renewal, stem cells undergo two types of cell division (seeStem cell division and differentiationdiagram). Symmetric division gives rise to two identical daughter cells both endowed with stem cell properties. Asymmetric division, on the other hand, produces only one stem cell and aprogenitor cellwith limited self-renewal potential. Progenitors can go through several rounds of cell division before terminallydifferentiatinginto a mature cell. It is possible that the molecular distinction between symmetric and asymmetric divisions lies in differential segregation of cell membrane proteins (such asreceptors) between the daughter cells.
Stem cell treatmentsare a type of intervention strategy that introduces new adult stem cells into damaged tissue in order to treat disease or injury. Manymedical researchersbelieve that stem cell treatments have the potential to change the face of human disease and alleviate suffering.The ability ofstem cellsto self-renew and give rise to subsequent generations with variable degrees of differentiation capacities,offers significant potential for generation of tissues that can potentially replace diseased and damaged areas in the body, with minimal risk of rejection and side effects
Me: I wanted to add for this last part that the list of pathologies that stem cell therapy can be used to treat for is really long and amazing. If you wanted to read up on all the types of things stem cells can be use to be treated for, click on the Wikipedia article on Stem Cell Treatments located HERE.
Original post:
Grow Taller Using Stem Cells , Part I - Natural Height Growth
- 4 Reasons To Save Baby Teeth And Ways To Preserve Them - MomJunction - October 6th, 2024
- Stem Cells May Help In Treatment of Tuberculosis, But Challenges Remain: Study - News18 - April 23rd, 2023
- Buccal Fat Pad as a Potential Source of Stem Cells for Bone ... - Hindawi - December 20th, 2022
- Difference Between Adult and Embryonic Stem Cells - December 20th, 2022
- Nicklas Brendborg: Keeping your mouth clean is one of the few easy things you can do to extend your life - EL PAS USA - November 17th, 2022
- A Breakthrough in the Era of Calcium Silicate-Based Cements: A Critical Review - Cureus - September 4th, 2022
- Effect of Puerarin on New Bone Formation In Vivo | DDDT - Dove Medical Press - August 27th, 2022
- The Tokyo Medical and Dental University (TMDU) team succeeded with the world's first Mini Organ transplantation to a patient with Ulcerative Colitis... - August 27th, 2022
- Stem cell-based biological tooth repair and regeneration - PMC - June 26th, 2022
- Where Stem Cells Are Found, & the Difference That Makes | Cryo-Cell - June 26th, 2022
- Stem Cells International | Hindawi - June 26th, 2022
- The surprising science of breast milk - BBC - June 26th, 2022
- Plug-and-Play Human Organ-on-a-Chip Can Be Customized to the Patient - SciTechDaily - May 8th, 2022
- Twelve Rutgers Professors Named Fellows of the American Association for the Advancement of Science - Rutgers Today - January 30th, 2022
- Mouth Sores from Chemo: Symptoms, Causes, and Treatments - Healthline - February 19th, 2021
- Tooth Regeneration Market to Exhibit Steadfast Expansion by 2027 | Unilever, Ocata Therapeutics, Integra LifeSciences, CryoLife, BioMimetic... - February 14th, 2021
- Using 3D Printing to Develop Bone-Like Structures that Contain Living Cells - AZoM - February 14th, 2021
- Fear of Covid keeps patients away from dental clinics resulting in an increased need of treatment. - ETHealthworld.com - February 9th, 2021
- 3D medical printing making strides, and helping patients do the same - MedCity News - February 9th, 2021
- Global Cord Blood Banking Industry Report 2021: Industry Trends, Expansion Technologies, Profiles of Select Cord Blood Banks and Companies -... - January 14th, 2021
- Bone Therapeutics and Rigenerand sign partnership for cell therapy process development - GlobeNewswire - January 14th, 2021
- Europe Prescription Spectacles Market to Exhibit a 5.2% CAGR and Reach USD 31.89 Billion by 2027; Increasing Incidence of Ocular Disorders to Favor... - January 14th, 2021
- Priming the Immune System to Fight Cancer - PRNewswire - December 17th, 2020
- Girl gets her smile back - and a new jaw - thanks to innovative tissue engineering procedure - Newswise - December 17th, 2020
- Bone Regeneration Material Market: Cell-based Segment to Expand Significantly - BioSpace - December 17th, 2020
- Stem Cell Therapy Market is estimated to be worth USD 8.5 Billion by 2030, claims Roots Analysis - Cheshire Media - November 28th, 2020
- Global Regenerative Medicine Market 2020-2025: Opportunities with the Implementation of the 21st Century Cures Act - Stockhouse - November 28th, 2020
- Molecular Diagnostics Market to Record over 7% Growth Rate and Hit USD 13873.6 Million by 2025; Advancements in this Field to Increase Productivity... - November 28th, 2020
- North America Tissue Engineering Market Report 2020: Market is Expected to Reach US$12.23 Billion by 2027 from US$4.45 Billion in 2019 -... - November 22nd, 2020
- Latest Study explores the Stem Cell Banking Market Witness Highest Growth in nea - GroundAlerts.com - November 5th, 2020
- Stem Cell Therapy Market is estimated to be worth USD 8.5 Billion by 2030 - PRnews Leader - November 5th, 2020
- Canine Stem Cell Therapy Market Size, Share Analysis by Manufacturers, Regions, Type and Application to 2026 - PRnews Leader - November 5th, 2020
- Stem Cell Banking Market to witness an impressive growth during the forecast pe - News by aeresearch - November 2nd, 2020
- Global Tooth Regeneration Market: Industry Analysis and Forecast (2020-2027)-by Type, Application, Population Demographics and Region - re:Jerusalem - October 10th, 2020
- The global regenerative medicine market is projected to reach USD 17.9 billion by 2025 from USD 8.5 billion in 2020, at a CAGR of 15.9% - Yahoo... - October 10th, 2020
- The end-use Industries to Help the Tooth Regenerations market stand in a good stead between 2018 and 2026 - The Daily Chronicle - September 18th, 2020
- Increase in Frequency of Product Innovations to Drive the Tooth Regenerations Market from 2018 to 2026 - Lake Shore Gazette - September 15th, 2020
- Incremental Sales to Drive the Tooth Regenerations Market from 2018 to 2026 - Lake Shore Gazette - September 15th, 2020
- Parents plea for stem cell help to save life of daughter with rare blood disorder - Mirror Online - September 2nd, 2020
- Unraveling the use of CBD in veterinary medicine - Jill Lopez - September 2nd, 2020
- Global Stem Cell Banking Market with Covid-19 Effect Analysis, Growth, Research Findings, Type, Application, Element Global Trends and Forecast to... - September 2nd, 2020
- Plasma Therapy Market Overview with Detailed Analysis, Competitive landscape, Forecast to 2025 - StartupNG - September 2nd, 2020
- Active Data Warehousing Market to Witness Robust Expansion Throughout the Forecast Period 2020 2025 - The Daily Chronicle - August 20th, 2020
- 3D bioprinting spatiotemporally defined patterns of growth factors to tightly control tissue regeneration - Science Advances - August 20th, 2020
- NIH names Dr. Rena D'Souza as director of the National Institute of Dental and Craniofacial Research - National Institutes of Health - August 13th, 2020
- Global Cell Theraputics Market Value Estimated To Grow With A Healthy CAGR Rate During 2020-2025: Cell Theraputics Bristol-Myers Squibb Company... - July 10th, 2020
- Global Tissue-Replacement Products Market to Witness Rapid Development During the Period 2017 2025 - Lake Shore Gazette - July 10th, 2020
- Job interviews zoom without leaving the house | What's Working - The Union Leader - July 6th, 2020
- Citius Receives FDA Response on Pre-Investigational New Drug (PIND) Application for its Induced Mesenchymal Stem Cells (iMSCs) to Treat Acute... - June 30th, 2020
- Medical Professionals in the Ozarks - 417mag - June 30th, 2020
- Dental Fitting Market 2019 Break Down by Top Companies, Countries, Applications, Challenges, Opportunities and Forecast 2026 - Cole of Duty - June 10th, 2020
- Coronavirus daily news updates, June 9: What to know today about COVID-19 in the Seattle area, Washington state and the world - Seattle Times - June 10th, 2020
- Metal Fiducial Marks Market Emerging Trends, Strong Application Scope, Size, Status, Analysis and Forecast to 2025 - Cole of Duty - June 10th, 2020
- Impacts of COVID 19 on the Global Regenerative Medicine Market Size: Global Industry Analysis, Growth, Top Companies Revenue, MRFR Reveals Insights... - June 2nd, 2020
- Exceptional stem cell science on tap for ISSCR 2020 Virtual June 23-27, 2020 - 7thSpace Interactive - June 2nd, 2020
- Orthopedic Joint Replacement Market to Gain Traction; Rising Prevalence of Bone Diseases to Boost Growth, states Fortune Business Insights -... - June 2nd, 2020
- Coming Together to Solve COVID-19 Mysteries | University of Pennsylvania Almanac - UPENN Almanac - June 2nd, 2020
- Impact of Covid-19 on Stem Cell Banking Market 2020: Remarking Enormous Growth with Recent Trends | Cord Blood Registry (CBR) Systems (US), Cordlife... - May 27th, 2020
- Researchers develop nanoengineered bioink to 3D print functional bone tissue - 3D Printing Industry - May 27th, 2020
- Directional Osteo-Differentiation Effect of hADSCs on Nanotopographica | IJN - Dove Medical Press - May 8th, 2020
- Bone Therapeutics raises additional EUR 4.0 million, totalling EUR 15 million, providing runway into Q2 2021 - PharmiWeb.com - May 8th, 2020
- Coming together to solve the many scientific mysteries of COVID-19 - Penn: Office of University Communications - May 8th, 2020
- Bone Therapeutics secures EUR 11.0 million financing - PharmiWeb.com - April 30th, 2020
- GLOBAL TOOTH REGENERATION MARKET: INDUSTRY ANALYSIS AND FORECAST (2020-2027) - MR Invasion - April 28th, 2020
- Stromal Vascular Fraction Market to Register CAGR 4.5% Growth in Revenue During the Forecast Period 2019 to 2029 - Jewish Life News - April 28th, 2020
- UCLA scientists invent nanoparticle that could improve treatment for bone defects - UCLA Newsroom - April 27th, 2020
- Orthopedic Devices Market to Reach USD 71.67 Billion by 2026; Increasing Geriatric Population to Boost Growth, says Fortune Business Insights -... - April 10th, 2020
- A new way to study HIV's impact on the brain - Penn: Office of University Communications - March 28th, 2020
- Bone Therapeutics appoints Stefanos Theoharis as Chief Business Officer - OrthoSpineNews - March 28th, 2020
- Walking Sticks Stop, Drop and Clone to Survive - KQED - March 25th, 2020
- Hydrogel could be step forward in therapies to generate bones in head and neck - UCLA Newsroom - March 19th, 2020
- Cell Banking Outsourcing Market to Witness Surge in Demand Owing to Increasing End-use Adoption - Lake Shore Gazette - March 19th, 2020
- New evidence teeth can fill their own cavities - Big Think - March 16th, 2020
- These new stem cells have the ability to generate new bone - Tech Explorist - March 12th, 2020
- Bone Therapeutics announces 2019 full year results - OrthoSpineNews - March 12th, 2020
- Stem cells that can grow new bone discovered by researchers - Drug Target Review - March 6th, 2020
- Stem Cells that will aid new bone generation discovered as per latest research - Medical Herald - March 6th, 2020
- UConn Researchers Discover New Stem Cells That Can Generate New Bone - UConn Today - March 6th, 2020
- What's coming down the pike in the dental profession? - Dentistry IQ - February 26th, 2020
- On the Road to 3-D Printed Organs - The Scientist - February 26th, 2020