Taiwan researchers sort through eggs used for the cultivation of swine flu vaccine, in a plant in ... [+] Taichung, on June 18, 2009. Taiwan is set to mass produce swine flu vaccine in October, as the island's confirmed cases rose to 58 as of June 17. AFP PHOTO/PATRICK LIN (Photo credit should read PATRICK LIN/AFP via Getty Images)
This is a short series about a recent breakthrough on the road to developing a much sought-after broadly neutralizing vaccine against all influenza A viruses. If successful, it may act as a precursor to a truly universal flu vaccine, one that protects against all types, subtypes, and lineages of the virus. The breakthrough may also provide a blueprint for developing a Covid-19 vaccine that retains its efficacy in the face of new variants.
In the first part of this series, I gave a brief overview of the history and nature of influenza viruses, including why it has been so difficult to develop successful vaccines. The next few articles discuss some of the attempts that have been made to overcome these challenges, including their shortcomings. And in the last installments, I will offer a detailed analysis of the latest and most promising advances in the field.
The Seasonal Approach
Picking up where we left off in the previous article, any successful influenza vaccine has to account for the ability of influenza viruses to mutate. Genetic mutations to vital proteins can lead to antigenic variation changes to parts of the virus that our immune system relies on to stimulate its memory. Although various different parts of the virus serve as antigens, the surface proteins that help it enter and exit host cells are some of the most important. Changes to these proteins can prevent our antibodies from recognizing the virus, rendering them unable to block its spread. Antigenic variation is responsible for influenza reinfections, leading to seasonal flu outbreaks.
In an attempt to circumvent the issue of antigenic variation, vaccine manufacturers update the flu shot each year based on the latest circulating influenza strains. The idea is to expose our immune system to the antigens it is most likely to encounter during flu season, helping it to build up its antigen-specific defenses in advance once our immune system has built up its memory, it can jump into action straight away should we become infected.
Which influenza strains ultimately get used to make the yearly flu shot is decided on the basis of data collected throughout the year by the World Health Organizations (WHO) Global Influenza Surveillance and Response System (GISRS). This surveillance and response system is made up of roughly 150 different laboratories spread across the globe, each of which gathers thousands of influenza samples from sick patients. The most prevalent viral strains are then shared with five WHO Collaborating Centers for Influenza, which perform further analysis. Two times a year once in preparation for flu season in the Northern Hemisphere, and another in preparation for flu season in the Southern Hemisphere Directors of the WHO Collaborating Centers, Essential Regulatory Laboratories, and representatives of a few of the smaller national laboratories come together to: review the results of surveillance, laboratory, and clinical studies, and the availability of flu vaccine viruses and make recommendations on the composition of flu vaccines. Once the WHO vaccine composition committee has made its recommendations, each country makes a final decision on which viruses they will choose to use in their flu vaccines.
In the United States, all influenza vaccines are quadrivalent, meaning they contain four different influenza viruses. This is done to broaden protection against the various influenza subtypes and lineages known to drive seasonal outbreaks: influenza A (H1N1), influenza A (H3N2), influenza B/Victoria, and influenza B/Yamagata. Quadrivalent vaccines will also protect against any other influenza viruses that are antigenically similar.
Although this may seem like a relatively reliable process, there is one glaring drawback to the seasonal vaccination approach: vaccines produced in this way are nowhere near as effective as we might hope. At best, they protect 60% of people from illness, but this number can, and often does, drop much lower. For the influenza A (H3N2) subtype, vaccine effectiveness hovers around 33%. Of course, any protection is better than no protection, but it is still suboptimal remember, these numbers represent best case scenarios, years where the viruses selected for use in vaccines are well matched to those that actually end up circulating during the flu season. So, where are things going wrong?
Missing the Target: Egg-based Vaccines
Selection of candidate vaccine viruses (CVVs) is only one part of the equation, growing them is another. This is no simple feat considering they need to be available in bulk, enough to make millions of vaccines. For the past 70 years, the majority of manufacturers have turned to chicken eggs in order to achieve the necessary growth (Figure 1). The candidate vaccine viruses are injected into fertilized hens eggs and left to incubate for a few days. During this period, the viruses are able to replicate. The fluid in the eggs is then extracted and the viruses are killed (inactivated). Finally, the antigen of choice usually the hemagglutinin surface protein is isolated from the killed viruses and purified, making it ready for use in vaccines. Even now, most flu vaccines continue to be egg-based.
FIGURE 1. An overview of the steps involved in producing egg-based vaccines.
But there are two issues with this approach. First, growing the viruses in eggs is a fairly slow process. This means the selection of candidate vaccine viruses has to happen far in advance of flu season, to make sure manufacturers have enough time to produce the amounts needed. In the six to nine months it takes to grow and purify enough virus, the wild type influenza strains continue to mutate and change. If these changes impact the antigen, the wild type viruses may escape the immunity that the vaccines provide us, reducing their effectiveness. When this happens, the viruses are referred to as escape mutants.
A growing body of research suggests that a second factor may be even more important: egg-adapted changes. Because the candidate vaccine viruses are human influenza viruses, growing them in chicken eggs carries the risk that they adapt to the new immune niche while replicating. The immune niche of chickens is different to that of humans, so adaptations that improve viral fitness in chickens may result in genetic and antigenic changes to the viruses. As before, these changes can lead to a drop in vaccine effectiveness, since the vaccine strains no longer resemble the circulating wild type strains; the egg-adapted vaccines end up training our immune system to recognize the wrong viruses, thus hampering its ability to respond efficiently come flu season.
Egg Substitutes: New Ways of Growing Candidate Viruses
In response to these issues, manufacturers have tried to develop new production methods that avoid using chicken eggs to culture candidate viruses. This search has led to a cell-based approach and a recombinant approach (Figure 2).
FIGURE 2. Timeline of current influenza vaccine production methods. Schematic overview of egg-based, ... [+] cell-based and protein-based (recombinant) influenza vaccine production.
Cell-based vaccines are produced using candidate viruses grown in mammalian cells rather than chicken eggs. Aside from this, the manufacturing process between the two is virtually identical: candidate vaccine viruses are grown in mammalian cell cultures by the CDC, these are then handed over to private manufacturers who inoculate the viruses into mammalian cells, the viruses are left to replicate for a few days before being harvested, and finally, purified. Although approved in 2012, it wasnt until this past 2021-2022 flu season that fully egg-free, cell-based vaccines were produced previously, the initial production of candidate vaccine viruses by the CDC was still done using fertilized hens eggs, and only after being handed over to the private sector were the viruses mass-produced in mammalian cells.
Using the cell-based approach eliminates egg-adapted changes in candidate viruses, keeping the viruses as close as possible to the wild type influenza strains predicted to circulate during flu season. An added benefit of cell-based vaccines is that the production process can be scaled up more quickly; mammalian cells can be frozen in advance to ensure steady supply, which could prove especially useful during pandemic outbreaks.
In theory, the lack of egg-adapted changes should improve vaccine effectiveness. But what about in practice? Although there still hasnt been enough research for a clear consensus to develop, initial findings suggest the difference in effectiveness is modest at best, and statistically insignificant at worst. This hints that egg-adapted changes might not play as important of a role as initially suspected; low vaccine efficacy can occur even when eggs are not used in the manufacturing process. That said, the 2021-2022 flu season marks the first time truly egg-free cell-based vaccines in which all four viruses are derived entirely through cell-based methods were used, so perhaps future research will yield different results. For now, things dont look too promising.
Recombinant vaccines provide a third option, and manage to overcome a crucial issue faced by the other two options: the lengthy, tedious virus production process. Whereas egg- and cell-based vaccines depend on candidate virus samples, recombinant manufacturing skips this step. Instead, recombinant vaccines are made by isolating the gene that makes the hemagglutinin surface protein from a wild type influenza virus. Once isolated, this gene is combined with a different kind of virus, called baculovirus. The new virus is known as a recombinant baculovirus and it is used to ferry the gene that makes the hemagglutinin antigen into a host cell line. As soon as the gene enters the cells, they begin to mass produce the hemagglutinin antigen. The antigen can then be extracted and purified before being assembled into a vaccine.
Given that they are entirely egg-free and dont require candidate virus samples, recombinant vaccines bypass the issue of egg-dependent changes. Due to the speed of production, there is also a decreased risk of escape mutants developing. As before, there is a paucity of comparative research, making it difficult to draw any firm conclusions, but early findings suggest recombinant vaccines may be more effective than traditional egg-based and cell-based vaccines, including improved antibody production.
Takeaway
Developing consistently protective influenza vaccines has proven difficult, with effectiveness frequently hovering somewhere between 40 and 60%. Too low, considering the threat posed by influenza.
A big part of the challenge is the mutability of the virus; it is constantly changing, making it hard for our immune system to keep up and retain useful memories of previous encounters. In response, public health agencies and scientists around the world develop new vaccines every year that prime our immune systems for the latest circulating strains. Sometimes scientists miss the mark with their predictions, in which case the circulating influenza strains do not match up with those in the vaccine, undermining vaccine effectiveness. At other times predictions are right on the money, but the vaccine production process impairs effectiveness either by being too slow and giving the wild type viruses time to mutate again, or because of mutations to the candidate vaccine strains during mass-production in chicken eggs.
Cell-based and recombinant vaccines aim to resolve the issues on the production side of things. The former by skipping the need for eggs, and by extension, the threat of egg-adapted changes. The latter by skipping the need for eggs as well as cutting down the time it takes to produce the vaccines, reducing the risk of escape mutants. Despite these advances, vaccine effectiveness has not yet seen the boost it needs.
The below table gives a summary of the advantages and disadvantages associated with these three production processes.
FIGURE 3. Advantages and disadvantages of strategies for influenza virus vaccine production.
The next article in this series will look at two additional technologies: intranasal vaccines and mRNA vaccines. Might they succeed where the more traditional strategies have wavered?
Continue reading here:
Getting A Grip On Influenza: The Pursuit Of A Universal Vaccine (Part 2) - Forbes
- Neutrophil diversity and function in health and disease - Nature.com - December 6th, 2024
- Harnessing the Power of the Immune System for Breast Cancer Treatment - Breast Cancer Research Foundation - December 6th, 2024
- Study Examines Neoantigen Landscapes and Their Role in Immunotherapy Efficacy - Consult QD - December 6th, 2024
- The 5 Best Teas to Support Your Immune System This Cold & Flu Season - EatingWell - December 6th, 2024
- Engineered immune cells may be able to tame inflammation - Medical Xpress - December 6th, 2024
- Hybrid model of tumor growth, angiogenesis and immune response yields strategies to improve antiangiogenic therapy - Nature.com - December 6th, 2024
- Opioids interfere with cancer immunotherapy, but another type of drug could help - Medical Xpress - December 6th, 2024
- RANKL cytokine restores thymus cells in old mice, reducing tumor growth and improving T cell immune response - Fierce Biotech - December 6th, 2024
- Predictive role of neutrophil percentage-to-albumin ratio, neutrophil-to-lymphocyte ratio, and systemic immune-inflammation index for mortality in... - December 6th, 2024
- Immuno-Oncology Strategic Industry Research Report 2023-2024 & 2030: Approval of Pembrolizumab (Keytruda) and Nivolumab (Opdivo), which Target... - December 6th, 2024
- Study cracks the cold case of immunotherapy resistance - News-Medical.Net - December 6th, 2024
- New immune therapy improves survival and reduces tumor burden in glioblastoma - News-Medical.Net - December 6th, 2024
- Identification of immune-related hub genes and potential molecular mechanisms involved in COVID-19 via integrated bioinformatics analysis - Nature.com - December 6th, 2024
- Immune Cell Breakthrough: Scientists Discover a Hidden Ally in the Fight Against Cancer - SciTechDaily - December 6th, 2024
- Rising temperatures impact the immune system of wild monkeys - Earth.com - December 6th, 2024
- Study declaring Alzheimer's to be a "brain disease" proven to be fabricated - Earth.com - December 6th, 2024
- Warming temperatures impact immune performance of wild monkeys, U-M study shows - University of Michigan News - December 6th, 2024
- New study explores heart risks of cancer immunotherapy - News-Medical.Net - December 6th, 2024
- 'Incredible' way to boost your immune system naturally and ward of colds and flu this winter - The Mirror - December 6th, 2024
- Tis the Season to Boost Your Immune System - Mix93.3 - December 6th, 2024
- A mathematical model simulating the adaptive immune response in various vaccines and vaccination strategies - Nature.com - October 14th, 2024
- Fox Chase Cancer Center Researchers Find Gene That Triggers Immune Response in Treatment-Resistant Small-Cell Lung Cancer - Fox Chase Cancer Center - October 14th, 2024
- What Does It Mean to Be Immunocompromised? - The New York Times - October 14th, 2024
- Scientist hopes to cure Type 1 diabetes by disguising stem cells - The University of Arizona - October 14th, 2024
- Watching an infection unfold with a sphingolipid probe - Drug Discovery News - October 14th, 2024
- The cells that protect your brain against infection could also be behind some chronic diseases - BBC.com - October 14th, 2024
- On Nutrition: Foods that help strengthen the immune system - LimaOhio.com - October 14th, 2024
- An integral T cell pathway has implications for understanding sex-based immune response - Medical Xpress - October 14th, 2024
- Immune Response Linked to Lewy Body Formation - Neuroscience News - October 14th, 2024
- Are vaccines the future of cancer prevention? - Genetic Literacy Project - October 14th, 2024
- The Gut Microbiome and Autoimmunity - Inside Precision Medicine - October 14th, 2024
- Researchers discover how oral cancer cells may block the body's immune response - News-Medical.Net - September 21st, 2024
- Are Vaccines More Effective When You Believe in Them? - Greater Good Science Center at UC Berkeley - September 21st, 2024
- Researchers discover immune response to dengue can predict risk of severe reinfections - Medical Xpress - September 21st, 2024
- Texas Researchers Find Acid Walls That Shield Cancer Tumors from Bodys Immune System Response - DARKDaily.com - Laboratory News - September 21st, 2024
- Lysosomes in the immunometabolic reprogramming of immune cells in atherosclerosis - Nature.com - September 21st, 2024
- A new way to reprogram immune cells and direct them toward anti-tumor immunity - MIT News - September 21st, 2024
- Unravelling the many mysteries of the immune system - Cosmos - September 21st, 2024
- Long COVID patients maintain robust immune memory two years after infection - News-Medical.Net - September 21st, 2024
- Nutraceuticals and pharmacological to balance the transitional microbiome to extend immunity during COVID-19 and other viral infections - Journal of... - September 21st, 2024
- Which adults benefit from the pneumococcal vaccine? - Mayo Clinic Press - September 21st, 2024
- UAMS receives $2.2 million grant to study immune response to eye disease - talkbusiness.net - September 21st, 2024
- Low oxygen levels in tumors could enhance some of the body's immune responses against cancer - Medical Xpress - September 21st, 2024
- Overview of the Immune System - The Merck Manuals - March 18th, 2024
- What are the organs of the immune system? - InformedHealth.org - NCBI ... - January 17th, 2024
- Mom who homeschools her children reveals she lets her one-year-old play in and EAT mud - but insists it is goo - Daily Mail - November 26th, 2023
- The limits of nutritional supplements: they dont cure or prevent ailments, nor are they harmless - EL PAS USA - November 26th, 2023
- Here's how your gut affects your mental health, immune function and even cardiovascular health - indulgexpress - November 18th, 2023
- From fear to freedom: Anchor Paul LaGrone shares his story of sudden hair loss & the disease that caused it - ABC Action News Tampa Bay - May 9th, 2023
- Strengthen Your Immune System With 4 Simple Strategies - May 1st, 2023
- Immunodeficiency Awareness Month: What Is The Science Behind These Diseases? Know Warning Signs - ABP Live - May 1st, 2023
- Nearly 90% of patients with rare skin cancer respond to therapy that prevents tumors from evading the immune - cleveland.com - April 23rd, 2023
- University of Cincinnati researchers helping develop 'vaccine' to fight aggressive cancer - WKRC TV Cincinnati - April 23rd, 2023
- Sana Biotechnology Highlights Preclinical Hypoimmune Data for its Allogeneic CAR T Platform and Advancements with its In Vivo Fusogen Platform with... - April 23rd, 2023
- Immune System: Parts & Common Problems - Cleveland Clinic - March 21st, 2023
- Disorders of the Immune System | Johns Hopkins Medicine - March 21st, 2023
- Sometimes 15 Minutes Are More Than Enough To Improve Immune System, Sleep Quality And Depression - Revyuh - March 13th, 2023
- People produce endocannabinoids similar to compounds found in marijuana that are critical to many bodily functions - The Conversation Indonesia - February 24th, 2023
- Spending more time with your kids, grandkidsand their germsmay lower risk of a severe outcome from Covid-19, recent studies show - CNBC - December 20th, 2022
- Published in Journal for Immunotherapy of Cancer: Using Single-Cell Analysis to Assess the Effects of an Anti-OX40 Monoclonal Antibody in Its... - November 17th, 2022
- Man who had COVID-19 for 400 days finally cured after getting treated with antibodies, study says - msnNOW - November 17th, 2022
- Social Distancing: The Impact on Your Health and Immune System - Healthline - October 7th, 2022
- Unraveling the Mysteries of the Immune System - Duke University School of Medicine - October 7th, 2022
- When Will ISR Immune System Regulation Holding AB (publ) (STO:ISR) Become Profitable? - Simply Wall St - October 7th, 2022
- VitaGaming Introduces Immune Support and Collagen to help Gamers boost immunity and fight stress - PR Web - October 7th, 2022
- Ohio reports third U.S. death of person with monkeypox who had underlying health conditions - CNBC - October 7th, 2022
- How a select few people have been cured of HIV - PBS - October 7th, 2022
- BeniCaros Wins Nutrition Industry Executive 2022 Immune Health Award - GlobeNewswire - October 7th, 2022
- Seasonal superfoods to give your immune system a boost this autumn - Yahoo Entertainment - October 7th, 2022
- Whats Going Around: Flu cases confirmed locally - ABC27 - October 7th, 2022
- Contributor: How to Fight the Cold and the Flu This Season - AJMC.com Managed Markets Network - October 7th, 2022
- Updated COVID-19 Bivalent Booster Released in Time for Fall and Winter Omicron Wave - Cornell University The Cornell Daily Sun - October 7th, 2022
- Oralair pill that retrains the immune system to reduce risk of thunderstorm asthma - 7NEWS - October 7th, 2022
- COVID immune reaction could affect brain mechanisms and induce neurological symptoms - Sky News - October 7th, 2022
- 7 Surprising Health Benefits of Pumpkins - AARP - October 7th, 2022
- Why Do Some Allergies Go Away While Others Dont? - The Atlantic - October 7th, 2022
- 15 foods to boost the immune system - Medical News Today - September 4th, 2022
- The powerful supplement that could enhance your immune response to bacteria and viruses - Express - September 4th, 2022
- New research: Cancer-fighting viruses can boost body's immune response - The Indian Express - September 4th, 2022
- Long COVID: How researchers are zeroing in on the self-targeted immune attacks that may lurk behind it - The Conversation Indonesia - September 4th, 2022