Taiwan researchers sort through eggs used for the cultivation of swine flu vaccine, in a plant in ... [+] Taichung, on June 18, 2009. Taiwan is set to mass produce swine flu vaccine in October, as the island's confirmed cases rose to 58 as of June 17. AFP PHOTO/PATRICK LIN (Photo credit should read PATRICK LIN/AFP via Getty Images)
This is a short series about a recent breakthrough on the road to developing a much sought-after broadly neutralizing vaccine against all influenza A viruses. If successful, it may act as a precursor to a truly universal flu vaccine, one that protects against all types, subtypes, and lineages of the virus. The breakthrough may also provide a blueprint for developing a Covid-19 vaccine that retains its efficacy in the face of new variants.
In the first part of this series, I gave a brief overview of the history and nature of influenza viruses, including why it has been so difficult to develop successful vaccines. The next few articles discuss some of the attempts that have been made to overcome these challenges, including their shortcomings. And in the last installments, I will offer a detailed analysis of the latest and most promising advances in the field.
The Seasonal Approach
Picking up where we left off in the previous article, any successful influenza vaccine has to account for the ability of influenza viruses to mutate. Genetic mutations to vital proteins can lead to antigenic variation changes to parts of the virus that our immune system relies on to stimulate its memory. Although various different parts of the virus serve as antigens, the surface proteins that help it enter and exit host cells are some of the most important. Changes to these proteins can prevent our antibodies from recognizing the virus, rendering them unable to block its spread. Antigenic variation is responsible for influenza reinfections, leading to seasonal flu outbreaks.
In an attempt to circumvent the issue of antigenic variation, vaccine manufacturers update the flu shot each year based on the latest circulating influenza strains. The idea is to expose our immune system to the antigens it is most likely to encounter during flu season, helping it to build up its antigen-specific defenses in advance once our immune system has built up its memory, it can jump into action straight away should we become infected.
Which influenza strains ultimately get used to make the yearly flu shot is decided on the basis of data collected throughout the year by the World Health Organizations (WHO) Global Influenza Surveillance and Response System (GISRS). This surveillance and response system is made up of roughly 150 different laboratories spread across the globe, each of which gathers thousands of influenza samples from sick patients. The most prevalent viral strains are then shared with five WHO Collaborating Centers for Influenza, which perform further analysis. Two times a year once in preparation for flu season in the Northern Hemisphere, and another in preparation for flu season in the Southern Hemisphere Directors of the WHO Collaborating Centers, Essential Regulatory Laboratories, and representatives of a few of the smaller national laboratories come together to: review the results of surveillance, laboratory, and clinical studies, and the availability of flu vaccine viruses and make recommendations on the composition of flu vaccines. Once the WHO vaccine composition committee has made its recommendations, each country makes a final decision on which viruses they will choose to use in their flu vaccines.
In the United States, all influenza vaccines are quadrivalent, meaning they contain four different influenza viruses. This is done to broaden protection against the various influenza subtypes and lineages known to drive seasonal outbreaks: influenza A (H1N1), influenza A (H3N2), influenza B/Victoria, and influenza B/Yamagata. Quadrivalent vaccines will also protect against any other influenza viruses that are antigenically similar.
Although this may seem like a relatively reliable process, there is one glaring drawback to the seasonal vaccination approach: vaccines produced in this way are nowhere near as effective as we might hope. At best, they protect 60% of people from illness, but this number can, and often does, drop much lower. For the influenza A (H3N2) subtype, vaccine effectiveness hovers around 33%. Of course, any protection is better than no protection, but it is still suboptimal remember, these numbers represent best case scenarios, years where the viruses selected for use in vaccines are well matched to those that actually end up circulating during the flu season. So, where are things going wrong?
Missing the Target: Egg-based Vaccines
Selection of candidate vaccine viruses (CVVs) is only one part of the equation, growing them is another. This is no simple feat considering they need to be available in bulk, enough to make millions of vaccines. For the past 70 years, the majority of manufacturers have turned to chicken eggs in order to achieve the necessary growth (Figure 1). The candidate vaccine viruses are injected into fertilized hens eggs and left to incubate for a few days. During this period, the viruses are able to replicate. The fluid in the eggs is then extracted and the viruses are killed (inactivated). Finally, the antigen of choice usually the hemagglutinin surface protein is isolated from the killed viruses and purified, making it ready for use in vaccines. Even now, most flu vaccines continue to be egg-based.
FIGURE 1. An overview of the steps involved in producing egg-based vaccines.
But there are two issues with this approach. First, growing the viruses in eggs is a fairly slow process. This means the selection of candidate vaccine viruses has to happen far in advance of flu season, to make sure manufacturers have enough time to produce the amounts needed. In the six to nine months it takes to grow and purify enough virus, the wild type influenza strains continue to mutate and change. If these changes impact the antigen, the wild type viruses may escape the immunity that the vaccines provide us, reducing their effectiveness. When this happens, the viruses are referred to as escape mutants.
A growing body of research suggests that a second factor may be even more important: egg-adapted changes. Because the candidate vaccine viruses are human influenza viruses, growing them in chicken eggs carries the risk that they adapt to the new immune niche while replicating. The immune niche of chickens is different to that of humans, so adaptations that improve viral fitness in chickens may result in genetic and antigenic changes to the viruses. As before, these changes can lead to a drop in vaccine effectiveness, since the vaccine strains no longer resemble the circulating wild type strains; the egg-adapted vaccines end up training our immune system to recognize the wrong viruses, thus hampering its ability to respond efficiently come flu season.
Egg Substitutes: New Ways of Growing Candidate Viruses
In response to these issues, manufacturers have tried to develop new production methods that avoid using chicken eggs to culture candidate viruses. This search has led to a cell-based approach and a recombinant approach (Figure 2).
FIGURE 2. Timeline of current influenza vaccine production methods. Schematic overview of egg-based, ... [+] cell-based and protein-based (recombinant) influenza vaccine production.
Cell-based vaccines are produced using candidate viruses grown in mammalian cells rather than chicken eggs. Aside from this, the manufacturing process between the two is virtually identical: candidate vaccine viruses are grown in mammalian cell cultures by the CDC, these are then handed over to private manufacturers who inoculate the viruses into mammalian cells, the viruses are left to replicate for a few days before being harvested, and finally, purified. Although approved in 2012, it wasnt until this past 2021-2022 flu season that fully egg-free, cell-based vaccines were produced previously, the initial production of candidate vaccine viruses by the CDC was still done using fertilized hens eggs, and only after being handed over to the private sector were the viruses mass-produced in mammalian cells.
Using the cell-based approach eliminates egg-adapted changes in candidate viruses, keeping the viruses as close as possible to the wild type influenza strains predicted to circulate during flu season. An added benefit of cell-based vaccines is that the production process can be scaled up more quickly; mammalian cells can be frozen in advance to ensure steady supply, which could prove especially useful during pandemic outbreaks.
In theory, the lack of egg-adapted changes should improve vaccine effectiveness. But what about in practice? Although there still hasnt been enough research for a clear consensus to develop, initial findings suggest the difference in effectiveness is modest at best, and statistically insignificant at worst. This hints that egg-adapted changes might not play as important of a role as initially suspected; low vaccine efficacy can occur even when eggs are not used in the manufacturing process. That said, the 2021-2022 flu season marks the first time truly egg-free cell-based vaccines in which all four viruses are derived entirely through cell-based methods were used, so perhaps future research will yield different results. For now, things dont look too promising.
Recombinant vaccines provide a third option, and manage to overcome a crucial issue faced by the other two options: the lengthy, tedious virus production process. Whereas egg- and cell-based vaccines depend on candidate virus samples, recombinant manufacturing skips this step. Instead, recombinant vaccines are made by isolating the gene that makes the hemagglutinin surface protein from a wild type influenza virus. Once isolated, this gene is combined with a different kind of virus, called baculovirus. The new virus is known as a recombinant baculovirus and it is used to ferry the gene that makes the hemagglutinin antigen into a host cell line. As soon as the gene enters the cells, they begin to mass produce the hemagglutinin antigen. The antigen can then be extracted and purified before being assembled into a vaccine.
Given that they are entirely egg-free and dont require candidate virus samples, recombinant vaccines bypass the issue of egg-dependent changes. Due to the speed of production, there is also a decreased risk of escape mutants developing. As before, there is a paucity of comparative research, making it difficult to draw any firm conclusions, but early findings suggest recombinant vaccines may be more effective than traditional egg-based and cell-based vaccines, including improved antibody production.
Takeaway
Developing consistently protective influenza vaccines has proven difficult, with effectiveness frequently hovering somewhere between 40 and 60%. Too low, considering the threat posed by influenza.
A big part of the challenge is the mutability of the virus; it is constantly changing, making it hard for our immune system to keep up and retain useful memories of previous encounters. In response, public health agencies and scientists around the world develop new vaccines every year that prime our immune systems for the latest circulating strains. Sometimes scientists miss the mark with their predictions, in which case the circulating influenza strains do not match up with those in the vaccine, undermining vaccine effectiveness. At other times predictions are right on the money, but the vaccine production process impairs effectiveness either by being too slow and giving the wild type viruses time to mutate again, or because of mutations to the candidate vaccine strains during mass-production in chicken eggs.
Cell-based and recombinant vaccines aim to resolve the issues on the production side of things. The former by skipping the need for eggs, and by extension, the threat of egg-adapted changes. The latter by skipping the need for eggs as well as cutting down the time it takes to produce the vaccines, reducing the risk of escape mutants. Despite these advances, vaccine effectiveness has not yet seen the boost it needs.
The below table gives a summary of the advantages and disadvantages associated with these three production processes.
FIGURE 3. Advantages and disadvantages of strategies for influenza virus vaccine production.
The next article in this series will look at two additional technologies: intranasal vaccines and mRNA vaccines. Might they succeed where the more traditional strategies have wavered?
Continue reading here:
Getting A Grip On Influenza: The Pursuit Of A Universal Vaccine (Part 2) - Forbes
- 001 Cells of the Immune System - Video [Last Updated On: October 18th, 2011] [Originally Added On: October 18th, 2011]
- 002 Can immune cells from healthy people pulverize cancer? [Last Updated On: February 4th, 2012] [Originally Added On: February 4th, 2012]
- 003 Seg_2 - Suhaasini: Immune System Boosters - 21 Feb - Suvarnanews - Video [Last Updated On: February 22nd, 2012] [Originally Added On: February 22nd, 2012]
- 004 Seg_1 - Suhaasini: Immune System Boosters - 21 Feb - Suvarnanews - Video [Last Updated On: February 22nd, 2012] [Originally Added On: February 22nd, 2012]
- 005 Researchers Find Sarcoma Tumor Immune Response With Combination Therapy [Last Updated On: March 1st, 2012] [Originally Added On: March 1st, 2012]
- 006 Transplant Procedure Creates 'Hybrid' Immune System to Combat Rejection [Last Updated On: March 8th, 2012] [Originally Added On: March 8th, 2012]
- 007 Radiation Blast May Turbocharge Bristol-Myers Melanoma Drug, Report Shows [Last Updated On: March 8th, 2012] [Originally Added On: March 8th, 2012]
- 008 Vaccination strategy may hold key to ridding HIV infection from immune system [Last Updated On: March 9th, 2012] [Originally Added On: March 9th, 2012]
- 009 Stem cell treatment tricks immune system into accepting donor organs, study shows [Last Updated On: March 9th, 2012] [Originally Added On: March 9th, 2012]
- 010 Bite-Sized Biochemistry #53 - Immune System [Last Updated On: March 9th, 2012] [Originally Added On: March 9th, 2012]
- 011 Progress, no big breakthrough, in hunt for HIV cure [Last Updated On: March 12th, 2012] [Originally Added On: March 12th, 2012]
- 012 Could the immune system help recovery from stroke? [Last Updated On: March 14th, 2012] [Originally Added On: March 14th, 2012]
- 013 'Personalized immune' mouse offers new tool for studying autoimmune diseases [Last Updated On: March 15th, 2012] [Originally Added On: March 15th, 2012]
- 014 "Personalized Immune" Mouse Offers New Tool for Studying Autoimmune Diseases Model May Allow Development of ... [Last Updated On: March 15th, 2012] [Originally Added On: March 15th, 2012]
- 015 Peoples' immune systems can now be duplicated in mice [Last Updated On: March 17th, 2012] [Originally Added On: March 17th, 2012]
- 016 Immune Role in Brain Disorder? [Last Updated On: March 19th, 2012] [Originally Added On: March 19th, 2012]
- 017 Kidney Transplant Patients Seek Life Without Immune-Suppressing Drugs [Last Updated On: March 20th, 2012] [Originally Added On: March 20th, 2012]
- 018 A Chimeric Immune System: Fixing the Problem With Organ Transplant [Last Updated On: March 20th, 2012] [Originally Added On: March 20th, 2012]
- 019 Key to immune system disease could lie inside the cheek [Last Updated On: March 21st, 2012] [Originally Added On: March 21st, 2012]
- 020 Powerful new cells cloned: Key to immune system disease could lie inside the cheek [Last Updated On: March 23rd, 2012] [Originally Added On: March 23rd, 2012]
- 021 Powerful cheek cells offer promise for combating immune system diseases [Last Updated On: March 23rd, 2012] [Originally Added On: March 23rd, 2012]
- 022 Cancer research targets a key cell protein [Last Updated On: March 27th, 2012] [Originally Added On: March 27th, 2012]
- 023 Your Gut Is Good For You: Benevolent Belly Fat Modulates Immune System, Helps Repair Tissue Damage [Last Updated On: June 7th, 2012] [Originally Added On: June 7th, 2012]
- 024 Trudeau Institute announces $9 Million Translational Research Award [Last Updated On: June 14th, 2012] [Originally Added On: June 14th, 2012]
- 025 Immune system molecule weaves cobweb-like nanonets to snag Salmonella, other intestinal microbes [Last Updated On: June 21st, 2012] [Originally Added On: June 21st, 2012]
- 026 Immune Design Corp. Announces Appointment of Dr. Roger Perlmutter as a Member of Its Board of Directors [Last Updated On: June 26th, 2012] [Originally Added On: June 26th, 2012]
- 027 Hope for Leukemia and Myelodysplasia Patients from Rabbits' Antibodies [Last Updated On: July 8th, 2012] [Originally Added On: July 8th, 2012]
- 028 Mix of Immune Cells Detects Cancer [Last Updated On: July 16th, 2012] [Originally Added On: July 16th, 2012]
- 029 New evidence links immune irregularities to autism, mouse study suggests [Last Updated On: July 18th, 2012] [Originally Added On: July 18th, 2012]
- 030 Mouse with human immune system may revolutionize HIV vaccine research [Last Updated On: July 19th, 2012] [Originally Added On: July 19th, 2012]
- 031 New Clinical Trial Seeks to Cure Advanced Crohn's Disease by Replacing a Diseased Immune System with a Healthy One [Last Updated On: July 24th, 2012] [Originally Added On: July 24th, 2012]
- 032 Clinical trial seeks to cure advanced Crohn's disease using bone marrow transplant [Last Updated On: July 24th, 2012] [Originally Added On: July 24th, 2012]
- 033 Replacing Diseased Immune System With A Healthy One To Cure Chrohn's Disease [Last Updated On: July 26th, 2012] [Originally Added On: July 26th, 2012]
- 034 Dormant HIV gets rude awakening [Last Updated On: July 28th, 2012] [Originally Added On: July 28th, 2012]
- 035 Cancer Drug Unmasks HIV in Immune Cells [Last Updated On: July 28th, 2012] [Originally Added On: July 28th, 2012]
- 036 Unexpected variation in immune genes poses difficulties for transplantation [Last Updated On: August 3rd, 2012] [Originally Added On: August 3rd, 2012]
- 037 UCLA Researchers Discover "Missing Link" Between Stem Cells and the Immune System [Last Updated On: September 1st, 2012] [Originally Added On: September 1st, 2012]
- 038 'Missing link' between stem cells and the immune system [Last Updated On: September 2nd, 2012] [Originally Added On: September 2nd, 2012]
- 039 UCLA researchers discover missing link between stem cells and immune system [Last Updated On: September 2nd, 2012] [Originally Added On: September 2nd, 2012]
- 040 'Missing link' ties blood stem cells, immune system [Last Updated On: September 6th, 2012] [Originally Added On: September 6th, 2012]
- 041 Stem Cells & Immune System: "Missing Link" Found [Last Updated On: September 7th, 2012] [Originally Added On: September 7th, 2012]
- 042 Immune system molecule affects our weight [Last Updated On: September 24th, 2012] [Originally Added On: September 24th, 2012]
- 043 Immune system harnessed to improve stem cell transplant outcomes [Last Updated On: October 2nd, 2012] [Originally Added On: October 2nd, 2012]
- 044 Researchers harness the immune system to improve stem cell transplant outcomes [Last Updated On: October 2nd, 2012] [Originally Added On: October 2nd, 2012]
- 045 Vaccine to treat cervical cancer shows early promise [Last Updated On: October 11th, 2012] [Originally Added On: October 11th, 2012]
- 046 Technique shields immune system from chemo effects [Last Updated On: November 1st, 2012] [Originally Added On: November 1st, 2012]
- 047 Immunice Recommendations - Video [Last Updated On: November 9th, 2012] [Originally Added On: November 9th, 2012]
- 048 Caiden's Story - A 4-year-old's epic battle - Video [Last Updated On: November 27th, 2012] [Originally Added On: November 27th, 2012]
- 049 SU2C-CRI Cancer Immunology Translational Research Dream Team - Video [Last Updated On: December 12th, 2012] [Originally Added On: December 12th, 2012]
- 050 Immunotherapy Boosting the immune system to fight cancer - Video [Last Updated On: December 19th, 2012] [Originally Added On: December 19th, 2012]
- 051 Microgravity Affects The Immune System - The Daily Orbit - Video [Last Updated On: April 29th, 2013] [Originally Added On: April 29th, 2013]
- 052 Embryonic Stem Cells Generate Immune System - Video [Last Updated On: May 21st, 2013] [Originally Added On: May 21st, 2013]
- 053 Repairing a Damaged Immune System - Video [Last Updated On: June 28th, 2013] [Originally Added On: June 28th, 2013]
- 054 Stem Cells and the Immune System - Anastasia Filomeno - Video [Last Updated On: October 11th, 2013] [Originally Added On: October 11th, 2013]
- 055 3 - day fast might reboot your immune system - Video [Last Updated On: June 23rd, 2014] [Originally Added On: June 23rd, 2014]
- 056 WHD Murings Apak Apak Magnetic Healing Mat ( The Immune System & Stem Cell Activator ) - Video [Last Updated On: October 11th, 2014] [Originally Added On: October 11th, 2014]
- 057 A chronic lymphoblastic leukemia (CLL) patient's video diary: Immune system - Video [Last Updated On: November 22nd, 2014] [Originally Added On: November 22nd, 2014]
- 058 MS Stem Cell Medication Therapy Shows Promise - Video [Last Updated On: January 2nd, 2015] [Originally Added On: January 2nd, 2015]
- 059 Stress Weakens the Immune System [Last Updated On: May 19th, 2015] [Originally Added On: May 19th, 2015]
- 060 Your Immune System: Natural Born Killer - Crash Course ... [Last Updated On: May 19th, 2015] [Originally Added On: May 19th, 2015]
- 061 How to boost your immune system - Harvard Health [Last Updated On: May 19th, 2015] [Originally Added On: May 19th, 2015]
- 062 How Your Immune System Works - HowStuffWorks [Last Updated On: May 19th, 2015] [Originally Added On: May 19th, 2015]
- 063 Immune system - Wikipedia, the free encyclopedia [Last Updated On: May 19th, 2015] [Originally Added On: May 19th, 2015]
- 064 Immune response: MedlinePlus Medical Encyclopedia [Last Updated On: May 21st, 2015] [Originally Added On: May 21st, 2015]
- 065 Immune and Lymphatic Systems Anatomy Pictures and ... [Last Updated On: May 24th, 2015] [Originally Added On: May 24th, 2015]
- 066 Adaptive immune system - Wikipedia, the free encyclopedia [Last Updated On: May 24th, 2015] [Originally Added On: May 24th, 2015]
- 067 Immune System: Can Your Immune System ... - Biology of Aging [Last Updated On: May 29th, 2015] [Originally Added On: May 29th, 2015]
- 068 What Is the Immune System? (with pictures) [Last Updated On: June 1st, 2015] [Originally Added On: June 1st, 2015]
- 069 Immune System - KidsHealth [Last Updated On: June 3rd, 2015] [Originally Added On: June 3rd, 2015]
- 070 The Immune System | Health | Patient.co.uk [Last Updated On: June 8th, 2015] [Originally Added On: June 8th, 2015]
- 071 Immune System - Cancer Fighting Strategies [Last Updated On: June 27th, 2015] [Originally Added On: June 27th, 2015]
- 072 How Sleeping Can Affect Your Immune System - Mercola.com [Last Updated On: July 3rd, 2015] [Originally Added On: July 3rd, 2015]
- 073 14.00-Immune-Adult - Social Security Administration [Last Updated On: July 3rd, 2015] [Originally Added On: July 3rd, 2015]
- 074 Immune System: MedlinePlus - National Library of Medicine [Last Updated On: July 5th, 2015] [Originally Added On: July 5th, 2015]
- 075 Lack of Sleep and the Immune System - WebMD [Last Updated On: July 5th, 2015] [Originally Added On: July 5th, 2015]
- 076 Easy Immune System Health home page [Last Updated On: July 13th, 2015] [Originally Added On: July 13th, 2015]
- 077 Immune System News -- ScienceDaily [Last Updated On: July 24th, 2015] [Originally Added On: July 24th, 2015]
- 078 How Sleeping Can Affect Your Immune System [Last Updated On: August 5th, 2015] [Originally Added On: August 5th, 2015]
- 079 The immune system and cancer | Cancer Research UK [Last Updated On: August 19th, 2015] [Originally Added On: August 19th, 2015]
- 080 Innate immune system - Wikipedia, the free encyclopedia [Last Updated On: August 31st, 2015] [Originally Added On: August 31st, 2015]