header logo image

Genetics – Wikipedia, the free encyclopedia

May 19th, 2015 6:50 pm

This article is about the general scientific term. For the scientific journal, see Genetics (journal).

Genetics is the study of genes, heredity, and genetic variation in living organisms.[1][2] It is generally considered a field of biology, but it intersects frequently with many of the life sciences and is strongly linked with the study of information systems.

The father of genetics is Gregor Mendel, a late 19th-century scientist and Augustinian friar. Mendel studied 'trait inheritance', patterns in the way traits were handed down from parents to offspring. He observed that organisms (pea plants) inherit traits by way of discrete "units of inheritance". This term, still used today, is a somewhat ambiguous definition of what is referred to as a gene.

Trait inheritance and molecular inheritance mechanisms of genes are still a primary principle of genetics in the 21st century, but modern genetics has expanded beyond inheritance to studying the function and behavior of genes. Gene structure and function, variation, and distribution are studied within the context of the cell, the organism (e.g. dominance) and within the context of a population. Genetics has given rise to a number of sub-fields including epigenetics and population genetics. Organisms studied within the broad field span the domain of life, including bacteria, plants, animals, and humans.

Genetic processes work in combination with an organism's environment and experiences to influence development and behavior, often referred to as nature versus nurture. The intra- or extra-cellular environment of a cell or organism may switch gene transcription on or off. A classic example is two seeds of genetically identical corn, one placed in a temperate climate and one in an arid climate. While the average height of the two corn stalks may be genetically determined to be equal, the one in the arid climate only grows to half the height of the one in the temperate climate, due to lack of water and nutrients in its environment.

The word genetics stems from the Ancient Greek genetikos meaning "genitive"/"generative", which in turn derives from genesis meaning "origin".[3][4][5]

The modern working definition of a gene is a portion (or sequence) of DNA that codes for a known cellular function or process (e.g. the function "make melanin molecules"). A single 'gene' is most similar to a single 'word' in the English language. The nucleotides (molecules) that make up genes can be seen as 'letters' in the English language. Nucleotides are named according to which of the four nitrogenous bases they contain. The four bases are cytosine, guanine, adenine, and thymine. A single gene may have a small number of nucleotides or a large number of nucleotides, in the same way that a word may be small or large (e.g. 'cell' vs. 'electrophysiology'). A single gene often interacts with neighboring genes to produce a cellular function and can even be ineffectual without those neighboring genes. This can be seen in the same way that a 'word' may have meaning only in the context of a 'sentence.' A series of nucleotides can be put together without forming a gene (non coding regions of DNA), like a string of letters can be put together without forming a word (e.g. udkslk). Nonetheless, all words have letters, like all genes must have nucleotides.

A quick heuristic that is often used (but not always true) is "one gene, one protein" meaning a singular gene codes for a singular protein type in a cell (enzyme, transcription factor, etc.)

The sequence of nucleotides in a gene is read and translated by a cell to produce a chain of amino acids which in turn folds into a protein. The order of amino acids in a protein corresponds to the order of nucleotides in the gene. This relationship between nucleotide sequence and amino acid sequence is known as the genetic code. The amino acids in a protein determine how it folds into its unique three-dimensional shape, a structure that is ultimately responsible for the protein's function. Proteins carry out many of the functions needed for cells to live. A change to the DNA in a gene can alter a protein's amino acid sequence, thereby changing its shape and function and rendering the protein ineffective or even malignant (e.g. sickle cell anemia). Changes to genes are called mutations.

The observation that living things inherit traits from their parents has been used since prehistoric times to improve crop plants and animals through selective breeding.[6] The modern science of genetics, seeking to understand this process, began with the work of Gregor Mendel in the mid-19th century.[7]

See more here:
Genetics - Wikipedia, the free encyclopedia

Related Post

Comments are closed.


2025 © StemCell Therapy is proudly powered by WordPress
Entries (RSS) Comments (RSS) | Violinesth by Patrick