Genetics is a discipline of biology.[1] It is the science of heredity. This includes the study of genes, and the inheritance of variation and traits of living organisms.[2][3][4] In the laboratory, genetics proceeds by mating carefully selected organisms, and analysing their offspring. More informally, genetics is the study of how parents pass some of their characteristics to their children. It is an important part of biology, and gives the basic rules on which evolution acts.
The fact that living things inherit traits from their parents has been known since prehistoric times, and used to improve crop plants and animals through selective breeding. However, the modern science of genetics, which seeks to understand the process of inheritance, only began with the work of Gregor Mendel in the mid-nineteenth century.[5] Although he did not know the physical basis for heredity, Mendel observed that organisms inherit traits via discrete units of inheritance, which are now called genes.
Living things are made of millions of tiny self-contained components called cells. Inside of each cell are long and complex molecules called DNA.[6]DNA stores information that tells the cells how to create that living thing. Parts of this information that tell how to make one small part or characteristic of the living thing red hair, or blue eyes, or a tendency to be tall are known as genes.
Every cell in the same living thing has the same DNA, but only some of it is used in each cell. For instance, some genes that tell how to make parts of the liver are switched off in the brain. What genes are used can also change over time. For instance, a lot of genes are used by a child early in pregnancy that are not used later.
A living thing has two copies of each gene, one from its mother, and one from its father.[7] There can be multiple types of each gene, which give different instructions: one version might cause a person to have blue eyes, another might cause them to have brown. These different versions are known as alleles of the gene.
Since a living thing has two copies of each gene, it can have two different alleles of it at the same time. Often, one allele will be dominant, meaning that the living thing looks and acts as if it had only that one allele. The unexpressed allele is called recessive. In other cases, you end up with something in between the two possibilities. In that case, the two alleles are called co-dominant.
Most of the characteristics that you can see in a living thing have multiple genes that influence them. And many genes have multiple effects on the body, because their function will not have the same effect in each tissue. The multiple effects of a single gene is called pleiotropism. The whole set of genes is called the genotype, and the total effect of genes on the body is called the phenotype. These are key terms in genetics.
We know that man started breeding domestic animals from early times, probably before the invention of agriculture. We do not know when heredity was first appreciated as a scientific problem. The Greeks, and most obviously Aristotle, studied living things, and proposed ideas about reproduction and heredity.[8]
Probably the most important idea before Mendel was that of Charles Darwin, whose idea of pangenesis had two parts. The first, that persistent hereditary units were passed on from one generation to another, was quite right. The second was his idea that they were replenished by 'gemmules' from the somatic (body) tissues. This was entirely wrong, and plays no part in science today.[9] Darwin was right about one thing: whatever happens in evolution must happen by means of heredity, and so an accurate science of genetics is fundamental to the theory of evolution. This 'mating' between genetics and evolution took many years to organise. It resulted in the Modern evolutionary synthesis.
The basic rules of genetics were first discovered by a monk named Gregor Mendel in around 1865. For thousands of years, people had already studied how traits are inherited from parents to their children. However, Mendel's work was different because he designed his experiments very carefully.
In his experiments, Mendel studied how traits were passed on in pea plants. He started his crosses with plants that bred true, and counted characters that were either/or in nature (either tall or short). He bred large numbers of plants, and expressed his results numerically. He used test crosses to reveal the presence and proportion of recessive characters.
Mendel explained the results of his experiment using two scientific laws:
Mendel's laws helped explain the results he observed in his pea plants. Later, geneticists discovered that his laws were also true for other living things, even humans. Mendel's findings from his work on the garden pea plants helped to establish the field of genetics. His contributions were not limited to the basic rules that he discovered. Mendel's care towards controlling experiment conditions along with his attention to his numerical results set a standard for future experiments. Over the years, scientists have changed and improved Mendel's ideas. However, the science of genetics would not be possible today without the early work of Gregor Mendel.
In the years between Mendel's work and 1900 the foundations of cytology, the study of cells, was developed. The facts discovered about the nucleus and cell division were essential for Mendel's work to be properly understood.[10]
At this point, discoveries in cytology merged with the rediscovered ideas of Mendel to make a fusion called cytogenetics, (cyto = cell; genetics = heredity) which has continued to the present day.
During the 1890s several biologists began doing experiments on breeding. and soon Mendel's results were duplicated, even before his papers were read. Carl Correns and Hugo de Vries were the main rediscovers of Mendel's writings and laws. Both acknowledged Mendel's priority, although it is probable that de Vries did not understand his own results until after reading Mendel.[19] Though Erich von Tschermak was originally also credited with rediscovery, this is no longer accepted because he did not understand Mendel's laws.[20] Though de Vries later lost interest in Mendelism, other biologists built genetics into a science.[19]
Mendel's results were replicated, and genetic linkage soon worked out. William Bateson perhaps did the most in the early days to publicise Mendel's theory. The word genetics, and other terminology, originated with Bateson.
Mendel's experimental results have later been the object of some debate. Fisher analyzed the results of the F2 (second filial) ratio and found them to be implausibly close to the exact ratio of 3 to 1.[21] It is sometimes suggested that Mendel may have censored his results, and that his seven traits each occur on a separate chromosome pair, an extremely unlikely occurrence if they were chosen at random. In fact, the genes Mendel studied occurred in only four linkage groups, and only one gene pair (out of 21 possible) is close enough to show deviation from independent assortment; this is not a pair that Mendel studied.[22]
During the process of DNA replication, errors sometimes occur. These errors, called mutations, can have an effect on the phenotype of an organism. In turn, that usually has an effect on the organism's fitness, its ability to live and reproduce successfully.
Error rates are usually very low1 error in every 10100million basesdue to the "proofreading" ability of DNA polymerases.[23][24] Error rates are a thousandfold higher in many viruses. Because they rely on DNA and RNA polymerases which lack proofreading ability, they get higher mutation rates.
Processes that increase the rate of changes in DNA are called mutagenic. Mutagenic chemicals increase errors in DNA replication, often by interfering with the structure of base-pairing, while UV radiation induces mutations by causing damage to the DNA structure.[23] Chemical damage to DNA occurs naturally as well, and cells use DNA repair mechanisms to repair mismatches and breaks in DNAnevertheless, the repair sometimes fails to return the DNA to its original sequence.
In organisms which use chromosomal crossovers to exchange DNA and recombine genes, errors in alignment during meiosis can also cause mutations.[23] Errors in crossover are especially likely when similar sequences cause partner chromosomes to adopt a mistaken alignment; this makes some regions in genomes more prone to mutating in this way. These errors create large structural changes in DNA sequenceduplications, inversions or deletions of entire regions, or the accidental exchanging of whole parts between different chromosomes (called translocation).
Developed by Reginald Punnett, Punnett squares are used by biologists to determine the probability of offspring to having a particular genotype.
If B represents the allele for having black hair and b represents the allele for having white hair, the offspring of two Bb parents would have a 25% probability of having two white hair alleles (bb), 50% of having one of each (Bb), and 25% of having only black hair alleles (BB).
Geneticists (biologists who study genetics) use pedigree charts to record traits of people in a family. Using these charts, geneticists can study how a trait is inherited from person to person.
Geneticists can also use pedigree charts to predict how traits will be passed to future children in a family. For instance, genetic counselors are professionals who work with families who might be affected by genetic diseases. As part of their job, they create pedigree charts for the family, which can be used to study how the disease might be inherited.
Since human beings are not bred experimentally, human genetics must be studied by other means. One recent way is by studying the human genome. Another way, older by many years, is to study twins. Identical twins are natural clones. They carry the same genes, they may be used to investigate how much heredity contributes to individual people. Studies with twins have been quite interesting. If we make a list of characteristic traits, we find that they vary in how much they owe to heredity. For example:
The way the studies are done is like this. Take a group of identical twins and a group of fraternal twins. Measure them for various traits. Do a statistical analysis (such as analysis of variance). This tells you to what extent the trait is inherited. Those traits which are partly inherited will be significantly more similar in identical twins. Studies like this may be carried further, by comparing identical twins brought up together with identical twins brought up in different circumstances. That gives a handle on how much circumstances can alter the outcomes of genetically identical people.
The person who first did twin studies was Francis Galton, Darwin's half-cousin, who was a founder of statistics. His method was to trace twins through their life-history, making many kinds of measurement. Unfortunately, though he knew about mono and dizygotic twins, he did not appreciate the real genetic difference.[25][26] Twin studies of the modern kind did not appear until the 1920s.
The genetics of bacteria, archaea and viruses is a major field or research. Bacterial mostly divide by asexual cell division, but do have a kind of sex by horizontal gene transfer. Bacterial conjugation, transduction and transformation are their methods. In addition, the complete DNA sequence of many bacteria, archaea and viruses is now known.
Although many bacteria were given generic and specific names, like Staphylococcus aureus, the whole idea of a species is rather meaningless for an organism which does not have sexes and crossing-over of chromosomes.[27] Instead, these organisms have strains, and that is how they are identified in the laboratory.
Gene expression is the process by which the heritable information in a gene, the sequence of DNA base pairs, is made into a functional gene product, such as protein or RNA. The basic idea is that DNA is transcribed into RNA, which is then translated into proteins. Proteins make many of the structures and all the enzymes in a cell or organism.
Several steps in the gene expression process may be modulated (tuned). This includes both the transcription and translation stages, and the final folded state of a protein. Gene regulation switches genes on and off, and so controls cell differentiation, and morphogenesis. Gene regulation may also serve as a basis for evolutionary change: control of the timing, location, and amount of gene expression can have a profound effect on the development of the organism. The expression of a gene may vary a lot in different tissues. This is called pleiotropism, a widespread phenomenon in genetics.
Alternative splicing is a modern discovery of great importance. It is a process where from a single gene a large number of variant proteins can be assembled. One particular Drosophila gene (DSCAM) can be alternatively spliced into 38,000 different mRNA.[28]
Epigenetics is the study of changes in gene activity which are not caused by changes in the DNA sequence.[29] It is the study of gene expression, the way genes bring about their phenotypic effects.[30]
These changes in gene activity may stay for the remainder of the cell's life and may also last for many generations of cells, through cell divisions. However, there is no change in the underlying DNA sequence of the organism.[31] Instead, non-hereditary factors cause the organism's genes to behave (express themselves) differently.[32]
Hox genes are a complex of genes whose proteins bind to the regulatory regions of target genes. The target genes then activate or repress cell processes to direct the final development of the organism.[33][34]
There are some kinds of heredity which happen outside the cell nucleus. Normal inheritance is from both parents via the chromosomes in the nucleus of a fertilised egg cell. There are some kinds of inheritance other than this.[35]
Mitochondria and chloroplasts carry some DNA of their own. Their make-up is decided by genes in the chromosomes and genes in the organelle. Carl Correns discovered an example in 1908. The four o'clock plant, Mirabilis jalapa, has leaves which may be white, green or variegated. Correns discovered the pollen had no influence on this inheritance. The colour is decided by genes in the chloroplasts.
This is caused by a symbiotic or parasitic relationship with a microorganism.
In this case nuclear genes in the female gamete are transcribed. The products accumulate in the egg cytoplasm, and have an effect on the early development of the fertilised egg. The coiling of a snail, Limnaea peregra, is determined like this. Right-handed shells are genotypes Dd or dd, while left-handed shells are dd.
The most important example of maternal effect is in Drosophila melanogaster. The protein product maternal-effect genes activate other genes, which in turn activate still more genes. This work won the Nobel Prize in Physiology or Medicine for 1995.[36]
Much modern research uses a mixture of genetics, cell biology and molecular biology. Topics which have been the subject of Nobel Prizes in either chemistry or physiology include:
Many well-known disorders of human behaviour have a genetic component. This means that their inheritance partly causes the behavour, or makes it more likely the problem would occur. Examples include: [37]
Also, normal behaviour is also heavily influenced by heredity:
Originally posted here:
Genetics - Simple English Wikipedia, the free encyclopedia
- Largest Genetic Study of Bipolar Disorder Identifies 298 Regions of the Genome That Increase Risk for the Condition - Mount Sinai - January 27th, 2025
- Study Sheds Light On The Origin Of Earth Lifes Genetic Code - Astrobiology News - January 27th, 2025
- Largest study on the genetics of bipolar disorder to date gives new insights into the underlying biology - Medical Xpress - January 27th, 2025
- Genetic Swiss Army Knife: New Tool For Gene Editing And Therapy - Forbes - January 27th, 2025
- Uhm Ji-won says the power of genetics is undeniable with Hyun Bin and Son Ye-jin's son - - January 27th, 2025
- Integrative proteogenomic analysis identifies COL6A3-derived endotrophin as a mediator of the effect of obesity on coronary artery disease -... - January 27th, 2025
- Genetic analysis reveals the genetic diversity and zoonotic potential of Streptococcus dysgalactiae isolates from sheep - Nature.com - January 27th, 2025
- Eight psychiatric disorders share the same genetic causes, study says - Medical Xpress - January 27th, 2025
- Exploring genetic associations and drug targets for mitochondrial proteins and schizophrenia risk - Nature.com - January 27th, 2025
- Predictive Genetic Testing and Consumer Genomics Market - GlobeNewswire - January 27th, 2025
- Evolution without sex: How mites have survived for millions of years - EurekAlert - January 27th, 2025
- Our Understanding of Rules that Produce Lifes Genetic Code May Require a Revision - DISCOVER Magazine - January 27th, 2025
- Personalized therapy for rare genetic diseases: Patient-derived organoids offer new hope - Medical Xpress - January 27th, 2025
- The One Thing That's More Important for Longevity Than Your Genes - Parade Magazine - January 27th, 2025
- Complete recombination map of the human genome created - Medical Xpress - January 27th, 2025
- Evidence of genetic determination of annual movement strategies in medium-sized raptors - Nature.com - January 27th, 2025
- Genetic study of Alaska red king crabs suggests species is more diverse and resilient to climate change - Global Seafood Alliance - January 27th, 2025
- Smartwatches reveal insights into psychiatric illnesses and genetic links - Medical Xpress - January 27th, 2025
- Unlocking the Blueprint of Human Life With a Revolutionary DNA Map - SciTechDaily - January 27th, 2025
- Largest Genetic Study of Bipolar Disorder Identifies Nearly 300 Risk-Associated Genome Regions - Inside Precision Medicine - January 27th, 2025
- Genetic Discrimination Is Coming for Us All - The Atlantic - November 16th, 2024
- Family connection: Genetics of suicide - WNEM - November 16th, 2024
- Study links heart shape to genetic risk of cardiovascular diseases - News-Medical.Net - November 16th, 2024
- Genetic architecture of cerebrospinal fluid and brain metabolite levels and the genetic colocalization of metabolites with human traits - Nature.com - November 16th, 2024
- Genetic connectivity of wolverines in western North America - Nature.com - November 16th, 2024
- Toward GDPR compliance with the Helmholtz Munich genotype imputation server - Nature.com - November 16th, 2024
- Leveraging genetic variations for more effective cancer therapies - News-Medical.Net - November 16th, 2024
- Bringing precision to the murky debate on fish oil - University of Arizona News - November 16th, 2024
- International experts gathered in Tashkent to tackle rare disease for Uzbekistan - EurekAlert - November 16th, 2024
- Mercys Story: Living life with 22q, a genetic condition - WECT - November 16th, 2024
- Cold case with ties to Houghton County solved through genetic genealogy after 65 years - WLUC - November 16th, 2024
- 23andMe customer? Here's what to know about the privacy of your genetic data. - CBS News - November 16th, 2024
- Single-cell RNA analysis finds possible genetic drivers of bone cancer - Illumina - November 16th, 2024
- Multi-trait association analysis reveals shared genetic loci between Alzheimers disease and cardiovascular traits - Nature.com - November 16th, 2024
- With 23andMe Struck by Layoffs, Can You Delete Genetic Data? Here's What We Know - CNET - November 16th, 2024
- Genetic testing firm 23andMe cuts 40% of its workforce amid financial struggles - The Guardian - November 16th, 2024
- Genetic study solves the mystery of 'selfish' B chromosomes in rye - Phys.org - November 16th, 2024
- Genetic changes linked to testicular cancer offer fresh insights into the disease - Medical Xpress - November 16th, 2024
- Eating less and genetics help you to live longer, but which factor carries the most weight? - Surinenglish.com - November 16th, 2024
- We must use genetic technologies now to avert the coming food crisis - New Scientist - November 16th, 2024
- NHS England to screen 100,000 babies for more than 200 genetic conditions - The Guardian - October 6th, 2024
- Largest-ever genetic study of epilepsy finds possible therapeutic targets - Medical Xpress - October 6th, 2024
- 23andMe is on the brink. What happens to all its DNA data? - NPR - October 6th, 2024
- The mountains where Neanderthals forever changed human genetics - Big Think - October 6th, 2024
- Gene Activity in Depression Linked to Immune System and Inflammation - Neuroscience News - October 6th, 2024
- Integrative multi-omics analysis reveals genetic and heterotic contributions to male fertility and yield in potato - Nature.com - October 6th, 2024
- Genetic and non-genetic HLA disruption is widespread in lung and breast tumors - Nature.com - October 6th, 2024
- Aneuploidy as a driver of human cancer - Nature.com - October 6th, 2024
- Myriad Genetics and Ultima Genomics to Explore the UG - GlobeNewswire - October 6th, 2024
- Biallelic and monoallelic variants in EFEMP1 can cause a severe and distinct subtype of heritable connective tissue disorder - Nature.com - October 6th, 2024
- Genetic and clinical correlates of two neuroanatomical AI dimensions in the Alzheimers disease continuum - Nature.com - October 6th, 2024
- Cracking the Genetic Code on Facial Features - DISCOVER Magazine - October 6th, 2024
- Ancestry vs. 23andMe: How to Pick the Best DNA Testing Kit for You - CNET - October 6th, 2024
- The Mercedes-AMG C63 is bold, but beholden to its genetics - Newsweek - October 6th, 2024
- The Austin Chronic: Texas A&Ms Hemp Breeding Program Adds Drought-Resistant Genetics to the National Collection - Austin Chronicle - October 6th, 2024
- Genetics and AI Help Patients with Early Detection of Breast Cancer Risk - Adventist Review - October 6th, 2024
- 23andMe Is Sinking Fast. Can the Company Survive? - WIRED - October 6th, 2024
- Genetic variations in remote UK regions linked to higher disease risk - Medical Xpress - October 6th, 2024
- Comprehensive mapping of genetic activity brings hope to patients with chronic pain - Medical Xpress - October 6th, 2024
- Genetics - Definition, History and Impact | Biology Dictionary - June 2nd, 2024
- Gene | Definition, Structure, Expression, & Facts | Britannica - June 2nd, 2024
- Raha Kapoor's blue eyes remind fans of her great-grandfather, Raj Kapoor; here's what genetics says - IndiaTimes - December 30th, 2023
- Human genetics | Description, Chromosomes, & Inheritance - December 13th, 2023
- BASIC GENETICS INFORMATION - Understanding Genetics - NCBI Bookshelf - December 13th, 2023
- Introduction to Genetics - Open Textbook Library - December 13th, 2023
- "When them genetics kick in its all over" - NBA fans send in rib-tickling reactions as LeBron James attends Zhuri James' volleyball game -... - October 16th, 2023
- David Liu, chemist: We now have the technology to correct misspellings in our DNA that cause known genetic diseases - EL PAS USA - April 7th, 2023
- World Health Day 2023: Understanding the science of Epi-genetics and how to apply it in our daily lives - Free Press Journal - April 7th, 2023
- Genetics - National Institute of General Medical Sciences (NIGMS) - March 29th, 2023
- GENETICS 101 - Understanding Genetics - NCBI Bookshelf - March 29th, 2023
- People always think Im skinny because of good genetics theyre shocked when they see what I used to lo... - The US Sun - March 29th, 2023
- Forensics expert explains 'genetic genealogy' process believed to be used in Kohberger's arrest - KTVB.com - January 6th, 2023
- Idaho student murders: What is genetic genealogy, a tool reportedly used to help capture the suspect? - FOX 10 News Phoenix - January 6th, 2023
- What is a Genetic Counselor and How Can They Help You Navigate Your Healthcare Journey? - ABC4.com - December 3rd, 2022
- Ancient Art and Genetics Reveal Origin of World's Most Expensive Spice - The Wire Science - June 26th, 2022
- Myriad Genetics Teams Up with Epic to Make Genetic Testing Accessible to More Patients with Electronic Health Record (EHR) Integration - GlobeNewswire - June 26th, 2022
- Obesity and genetics: Expert shares insights - Hindustan Times - June 26th, 2022
- Researchers discover genetic variants that increase Alzheimer's risk - WCVB Boston - June 26th, 2022
- Where science meets fiction: the dark history of eugenics - The Guardian - June 26th, 2022
- Clinical Conference: A Discussion with BASE10 Genetics - Skilled Nursing News - June 26th, 2022