Experimental breeding
Genetically diverse lines of organisms can be crossed in such a way to produce different combinations of alleles in one line. For example, parental lines are crossed, producing an F1 generation, which is then allowed to undergo random mating to produce offspring that have purebreeding genotypes (i.e., AA, bb, cc, or DD). This type of experimental breeding is the origin of new plant and animal lines, which are an important part of making laboratory stocks for basic research. When applied to commerce, transgenic commercial lines produced experimentally are called genetically modified organisms (GMOs). Many of the plants and animals used by humans today (e.g., cows, pigs, chickens, sheep, wheat, corn (maize), potatoes, and rice) have been bred in this way.
Britannica Quiz
Branches of Genetics
Which is the study of the influence that genes and traits have on habits and actions?
Cytogenetics focuses on the microscopic examination of genetic components of the cell, including chromosomes, genes, and gene products. Older cytogenetic techniques involve placing cells in paraffin wax, slicing thin sections, and preparing them for microscopic study. The newer and faster squash technique involves squashing entire cells and studying their contents. Dyes that selectively stain various parts of the cell are used; the genes, for example, may be located by selectively staining the DNA of which they are composed. Radioactive and fluorescent tags are valuable in determining the location of various genes and gene products in the cell. Tissue-culture techniques may be used to grow cells before squashing; white blood cells can be grown from samples of human blood and studied with the squash technique. One major application of cytogenetics in humans is in diagnosing abnormal chromosomal complements such as Down syndrome (caused by an extra copy of chromosome 21) and Klinefelter syndrome (occurring in males with an extra X chromosome). Some diagnosis is prenatal, performed on cell samples from amniotic fluid or the placenta.
Biochemistry is carried out at the cellular or subcellular level, generally on cell extracts. Biochemical methods are applied to the main chemical compounds of geneticsnotably DNA, RNA, and protein. Biochemical techniques are used to determine the activities of genes within cells and to analyze substrates and products of gene-controlled reactions. In one approach, cells are ground up and the substituent chemicals are fractionated for further analysis. Special techniques (e.g., chromatography and electrophoresis) are used to separate the components of proteins so that inherited differences in their structures can be revealed. For example, more than 100 different kinds of human hemoglobin molecules have been identified. Radioactively tagged compounds are valuable in studying the biochemistry of whole cells. For example, thymine is a compound found only in DNA; if radioactive thymine is placed in a tissue-culture medium in which cells are growing, genes use it to duplicate themselves. When cells containing radioactive thymine are analyzed, the results show that, during duplication, the DNA molecule splits in half, and each half synthesizes its missing components.
Chemical tests are used to distinguish certain inherited conditions of humans; e.g., urinalysis and blood analysis reveal the presence of certain inherited abnormalitiesphenylketonuria (PKU), cystinuria, alkaptonuria, gout, and galactosemia. Genomics has provided a battery of diagnostic tests that can be carried out on an individuals DNA. Some of these tests can be applied to fetuses in utero.
Physiological techniques, directed at exploring functional properties or organisms, are also used in genetic investigations. In microorganisms, most genetic variations involve some important cell function. Some strains of one bacterium (Escherichia coli), for example, are able to synthesize the vitamin thiamin from simple compounds; others, which lack an enzyme necessary for this synthesis, cannot survive unless thiamin is already present. The two strains can be distinguished by placing them on a thiamin-free mixture: those that grow have the gene for the enzyme, those that fail to grow do not. The technique also is applied to human cells, since many inherited human abnormalities are caused by a faulty gene that fails to produce a vital enzyme; albinism, which results from an inability to produce the pigment melanin in the skin, hair, or iris of the eyes, is an example of an enzyme deficiency in man.
Although overlapping with biochemical techniques, molecular genetics techniques are deeply involved with the direct study of DNA. This field has been revolutionized by the invention of recombinant DNA technology. The DNA of any gene of interest from a donor organism (such as a human) can be cut out of a chromosome and inserted into a vector to make recombinant DNA, which can then be amplified and manipulated, studied, or used to modify the genomes of other organisms by transgenesis. A fundamental step in recombinant DNA technology is amplification. This is carried out by inserting the recombinant DNA molecule into a bacterial cell, which replicates and produces many copies of the bacterial genome and the recombinant DNA molecule (constituting a DNA clone). A collection of large numbers of clones of recombinant donor DNA molecules is called a genomic library. Such libraries are the starting point for sequencing entire genomes such as the human genome. Today genomes can be scanned for small molecular variants called single nucleotide polymorphisms, or SNPs (snips), which act as chromosomal tags to associated specific regions of DNA that have a property of interest and may be involved in a human disease or disorder.
Many substances (e.g., proteins) are antigenic; i.e., when introduced into a vertebrate body, they stimulate the production of specific proteins called antibodies. Various antigens exist in red blood cells, including those that make up the major blood groups of man (A, B, AB, O). These and other antigens are genetically determined; their study constitutes immunogenetics. Blood antigens of man include inherited variations, and the particular combination of antigens in an individual is almost as unique as fingerprints and has been used in such areas as paternity testing (although this approach has been largely supplanted by DNA-based techniques).
Immunological techniques are used in blood group determinations in blood transfusions, in organ transplants, and in determining Rhesus incompatibility in childbirth. Specific antigens of the human leukocyte antigen (HLA) genes are correlated with human diseases and disease predispositions. Antibodies also have a genetic basis, and their seemingly endless ability to match any antigen presented is based on special types of DNA shuffling processes between antibody genes. Immunology is also useful in identifying specific recombinant DNA clones that synthesize a specific protein of interest.
Because much of genetics is based on quantitative data, mathematical techniques are used extensively in genetics. The laws of probability are applicable to crossbreeding and are used to predict frequencies of specific genetic constitutions in offspring. Geneticists also use statistical methods to determine the significance of deviations from expected results in experimental analyses. In addition, population genetics is based largely on mathematical logicfor example, the Hardy-Weinberg equilibrium and its derivatives (see above).
Bioinformatics uses computer-centred statistical techniques to handle and analyze the vast amounts of information accumulating from genome sequencing projects. The computer program scans the DNA looking for genes, determining their probable function based on other similar genes, and comparing different DNA molecules for evolutionary analysis. Bioinformatics has made possible the discipline of systems biology, treating and analyzing the genes and gene products of cells as a complete and integrated system.
Visit link:
Genetics - Methods in genetics | Britannica
- Age-related genetic changes in the blood associated with poor cancer prognosis - Medical Xpress - April 24th, 2025
- Parts of our DNA may evolve much faster than previously thought - The University of Utah - April 24th, 2025
- It runs in the family: the importance of genetics in pneumothorax - The BMJ - April 24th, 2025
- Inferring past demography and genetic adaptation in Spain using the GCAT cohort - Nature - April 24th, 2025
- Answers to a 160-year-old riddle about the genetics of Mendels pea traits - Nature - April 24th, 2025
- Towards a genetic obesity risk score in a single-center study of children and adolescents with obesity - Nature - April 24th, 2025
- Pan-genomic analysis highlights genes associated with agronomic traits and enhances genomics-assisted breeding in alfalfa - Nature - April 24th, 2025
- Study highlights critical diversity gap in psychiatric genomics research - Medical Xpress - April 24th, 2025
- Daily briefing: Potato pangenome reveals the complex genetics of the humble spud - Nature - April 24th, 2025
- Genetic diversity and adaptability of native sheep breeds from different climatic zones - Nature - April 24th, 2025
- Ginkgo Automation Partners with Aura Genetics to Accelerate Direct-to-Consumer Testing and Innovation - PR Newswire - April 24th, 2025
- Why Sarepta Therapeutics And Other Genetics Stocks Just Got A Sizable Boost - Investor's Business Daily - April 24th, 2025
- Why White Blood Cells were used to study genetic past and future of Indians - India Today - April 24th, 2025
- Association between plausible genetic factors and weight loss from GLP1-RA and bariatric surgery - Nature - April 24th, 2025
- Recent habitat modification of a tropical dry forest hotspot drives population genetic divergence in the Mexican leaf frog: a landscape genetics... - April 24th, 2025
- Barney's Farm Partners with Backpackboyz on Groundbreaking Cannabis Genetics Project - Ganjapreneur - Ganjapreneur - April 24th, 2025
- U.S. Preimplantation Genetic Testing Market Witness the Highest Growth Globally in Coming Years 2025-2034 - openPR.com - April 24th, 2025
- Exploring the implications of case selection methods for psychiatric molecular genetic studies - Nature - April 24th, 2025
- Genetic susceptibility to schizophrenia through neuroinflammatory pathways associated with retinal thinness - Nature - April 24th, 2025
- Who Were the Carthaginians? Ancient DNA Study Reveals a Stunning Answer - Haaretz - April 24th, 2025
- Genetics - National Geographic Society - March 28th, 2025
- Genetics: Introduction, law of inheritance and Sex Determination - BYJU'S - March 28th, 2025
- Genetics, ecology and evolution of phage satellites - Nature.com - March 28th, 2025
- As a geneticist, I will not mourn 23andMe and its jumble of useless health information | Adam Rutherford - The Guardian - March 28th, 2025
- Rare loss-of-function variants in HECTD2 and AKAP11 confer risk of bipolar disorder - Nature.com - March 28th, 2025
- With 23andMe filing for bankruptcy, what happens to consumers genetic data? - The Conversation Indonesia - March 28th, 2025
- A genetic tree as a movie: Moving beyond the still portrait of ancestry - Phys.org - March 28th, 2025
- Genetic mutations linked to Marek's disease in chickens identified - Phys.org - March 28th, 2025
- 23andMe is looking to sell customers genetic data. Heres how to delete it - CNN - March 28th, 2025
- Horses Pulled Off a Genetic Trick Only Viruses Were Thought to Use - SciTechDaily - March 28th, 2025
- CONSUMER ALERT: Warning 23AndMe Customers That Their Private Genetic Data May Be at Risk - Office of the Attorney General for the District of Columbia - March 28th, 2025
- A new study reveals the genetic change that made horses so athletic - KUOW News and Information - March 28th, 2025
- "Mystery ancestors" gave humans 20% of our current DNA, but who were they? - Earth.com - March 28th, 2025
- Correcting the Mutation Behind a Genetic Eye Disease - The Scientist - March 28th, 2025
- Your DNA is safe here: The AncestryDNA Genetic Test Kit is only $39 now - New York Post - March 28th, 2025
- 23andMe Is Bankrupt. Heres What You Need to Know About Your Genetic Data. - The Wall Street Journal - March 28th, 2025
- Commentary: 23andMe files for bankruptcy, putting its hoard of personal health information at risk - Los Angeles Times - March 28th, 2025
- DNA Microscopy Creates 3D Maps of Life From the Inside Out - SciTechDaily - March 28th, 2025
- Eugenics Must Be Included in Genetics Curriculum: Prof - Mirage News - March 28th, 2025
- 11-minute video on human genetics can make people more accepting of others, reveals new study - Hindustan Times - February 24th, 2025
- Advancing Cancer Genetic Testing to Improve Prevention and Patient Treatment - The Scientist - February 24th, 2025
- Environmental factors, lifestyle choices have greater impact on health than genes, study finds - ABC News - February 24th, 2025
- Study finds lifestyle, environment have greater impact on lifespan than genetics - CBS Boston - February 24th, 2025
- Safeguard repressor locks hepatocyte identity and blocks liver cancer - Nature.com - February 24th, 2025
- Mass spectrometry-based mapping of plasma protein QTLs in children and adolescents - Nature.com - February 24th, 2025
- The Avestagenome Project and TIGS Sign Strategic Alliance to Advance Research in Rare Genetic Disorders - The Tribune India - February 24th, 2025
- Researchers make breakthrough discovery after studying genetics of trees: 'There is a need for proactive conservation' - MSN - February 24th, 2025
- iPSCs and iPSC-derived cells as a model of human genetic and epigenetic variation - Nature.com - February 24th, 2025
- Beyond genetics: The biggest factors that influence health and aging - Earth.com - February 24th, 2025
- Genetic diversity and dietary adaptations of the Central Plains Han Chinese population in East Asia - Nature.com - February 24th, 2025
- How a uniquely human genetic tweak changed the voices of mice - NPR - February 24th, 2025
- Genetic evidence identifies a causal relationship between EBV infection and multiple myeloma risk - Nature.com - February 24th, 2025
- Genetic markers of early response to lurasidone in acute schizophrenia - Nature.com - February 24th, 2025
- Bupa to offer first genetic test for disease prediction in UK - The Times - February 24th, 2025
- Advancing Therapeutic Knowledge of Genetic Influence in ALS: Matthew B. Harms, MD - Neurology Live - February 24th, 2025
- Association of dietary carbohydrate ratio, caloric restriction, and genetic factors with breast cancer risk in a cohort study - Nature.com - February 24th, 2025
- Evaluation of polygenic scores for hypertrophic cardiomyopathy in the general population and across clinical settings - Nature.com - February 24th, 2025
- Familiar autism-linked genes emerge from first analysis of Latin American cohort - The Transmitter: Neuroscience News and Perspectives - February 24th, 2025
- Almost 90% of people would agree to genetic testing to tailor medication use, survey finds - Medical Xpress - February 24th, 2025
- Largest Genetic Study of Bipolar Disorder Identifies 298 Regions of the Genome That Increase Risk for the Condition - Mount Sinai - January 27th, 2025
- Study Sheds Light On The Origin Of Earth Lifes Genetic Code - Astrobiology News - January 27th, 2025
- Largest study on the genetics of bipolar disorder to date gives new insights into the underlying biology - Medical Xpress - January 27th, 2025
- Genetic Swiss Army Knife: New Tool For Gene Editing And Therapy - Forbes - January 27th, 2025
- Uhm Ji-won says the power of genetics is undeniable with Hyun Bin and Son Ye-jin's son - - January 27th, 2025
- Integrative proteogenomic analysis identifies COL6A3-derived endotrophin as a mediator of the effect of obesity on coronary artery disease -... - January 27th, 2025
- Genetic analysis reveals the genetic diversity and zoonotic potential of Streptococcus dysgalactiae isolates from sheep - Nature.com - January 27th, 2025
- Eight psychiatric disorders share the same genetic causes, study says - Medical Xpress - January 27th, 2025
- Exploring genetic associations and drug targets for mitochondrial proteins and schizophrenia risk - Nature.com - January 27th, 2025
- Predictive Genetic Testing and Consumer Genomics Market - GlobeNewswire - January 27th, 2025
- Evolution without sex: How mites have survived for millions of years - EurekAlert - January 27th, 2025
- Our Understanding of Rules that Produce Lifes Genetic Code May Require a Revision - DISCOVER Magazine - January 27th, 2025
- Personalized therapy for rare genetic diseases: Patient-derived organoids offer new hope - Medical Xpress - January 27th, 2025
- The One Thing That's More Important for Longevity Than Your Genes - Parade Magazine - January 27th, 2025
- Complete recombination map of the human genome created - Medical Xpress - January 27th, 2025
- Evidence of genetic determination of annual movement strategies in medium-sized raptors - Nature.com - January 27th, 2025
- Genetic study of Alaska red king crabs suggests species is more diverse and resilient to climate change - Global Seafood Alliance - January 27th, 2025
- Smartwatches reveal insights into psychiatric illnesses and genetic links - Medical Xpress - January 27th, 2025
- Unlocking the Blueprint of Human Life With a Revolutionary DNA Map - SciTechDaily - January 27th, 2025
- Largest Genetic Study of Bipolar Disorder Identifies Nearly 300 Risk-Associated Genome Regions - Inside Precision Medicine - January 27th, 2025
- Genetic Discrimination Is Coming for Us All - The Atlantic - November 16th, 2024