Overview of Biotechnology
Biotechnology is the use of biological techniques and engineered organisms to make products or plants and animals that have desired traits.
Describe the historical development of biotechnology
Biotechnology: Brewing (fermentation of beer) was an early application of biotechnology.
People have used biotechnology processes, such as selectively breeding animals and fermentation, for thousands of years. Late 19th and early 20th century discoveries of how microorganisms carry out commercially useful processes and how they cause disease led to the commercial production of vaccines and antibiotics. Improved methods for animal breeding have also resulted from these efforts. Scientists in the San Francisco Bay Area took a giant step forward with the discovery and development of recombinant DNA techniques in the 1970s. The field of biotechnology continues to accelerate with new discoveries and new applications expected to benefit the economy throughout the 21st century.
In its broadest definition, biotechnology is the application of biological techniques and engineered organisms to make products or modify plants and animals to carry desired traits. This definition also extends to the use of various human cells and other body parts to produce desirable products. Bioindustry refers to the cluster of companies that produce engineered biological products and their supporting businesses. Biotechnology refers to the use of the biological sciences (such as gene manipulation), often in combination with other sciences (such as materials sciences, nanotechnology, and computer software), to discover, evaluate and develop products for bioindustry. Biotechnology products have made it easier to detect and diagnose illnesses. Many of these new techniques are easier to use and some, such as pregnancy testing, can even be used at home. More than 400 clinical diagnostic devices using biotechnology products are in use today. The most important are screening techniques to protect the blood supply against contamination by AIDS and the hepatitis B and C viruses.
Genetic engineering means the manipulation of organisms to make useful products and it has broad applications.
Describe the major applications of genetic engineering
Genetic engineering, also called genetic modification, is the direct manipulation of an organisms genome using biotechnology.
New DNA may be inserted in the host genome by first isolating and copying the genetic material of interest, using molecular-cloning methods to generate a DNA sequence; or by synthesizing the DNA, and then inserting this construct into the host organism. Genes may be removed, or knocked out, using a nuclease.
Genetically manipulated mice: Laboratory mice are genetically manipulated by deleting a gene for use in biomedical research.
Gene targeting is a different technique that uses homologous recombination to change an endogenous gene, and can be used to delete a gene, remove exons, add a gene, or introduce point mutations. Genetic engineering has applications in medicine, research, industry and agriculture and can be used on a wide range of plants, animals and microorganisms.
Genetic engineering has produced a variety of drugs and hormones for medical use. For example, one of its earliest uses in pharmaceuticals was gene splicing to manufacture large amounts of insulin, made using cells of E. coli bacteria. Interferon, which is used to eliminate certain viruses and kill cancer cells, also is a product of genetic engineering, as are tissue plasminogen activator and urokinase, which are used to dissolve blood clots.
Another byproduct is a type of human growth hormone; its used to treat dwarfism and is produced through genetically-engineered bacteria and yeasts. The evolving field of gene therapy involves manipulating human genes to treat or cure genetic diseases and disorders. Modified plasmids or viruses often are the messengers to deliver genetic material to the bodys cells, resulting in the production of substances that should correct the illness. Sometimes cells are genetically altered inside the body; other times scientists modify them in the laboratory and return them to the patients body.
Since the 1990s, gene therapy has been used in clinical trials to treat diseases and conditions such as AIDS, cystic fibrosis, cancer, and high cholesterol. Drawbacks of gene therapy are that sometimes the persons immune system destroys the cells that have been genetically altered, and also that it is hard to get the genetic material into enough cells to have the desired effect.
Many practical applications of recombinant DNA are found in human and veterinary medicine, in agriculture, and in bioengineering.
Describe the advances made possible by recombinant DNA technology
Recombinant DNA technology is the latest biochemical analysis that came about to satisfy the need for specific DNA segments. In this process, surrounding DNA from an existing cell is clipped in the desired amount of segments so that it can be copied millions of times.
Construction of recombinant DNA: A foreign DNA fragment is inserted into a plasmid vector. In this example, the gene indicated by the white color is inactivated upon insertion of the foreign DNA fragment.
Recombinant DNA technology engineers microbial cells for producing foreign proteins, and its success solely depends on the precise reading of equivalent genes made with the help of bacterial cell machinery. This process has been responsible for fueling many advances related to modern molecular biology. The last two decades of cloned-DNA sequence studies have revealed detailed knowledge about gene structure as well as its organization. It has provided hints to regulatory pathways with the aid of which gene expression in myriad cell types is controlled by the cells, especially in those organisms having body plan with basic vertebrae structure.
Recombinant DNA technology, apart from being an important tool of scientific research, has also played a vital role in the diagnosis and treatment of various diseases, especially those belonging to genetic disorders.
Some of the recent advances made possible by recombinant DNA technology are:
1. Isolating proteins in large quantities: many recombinant products are now available, including follicle stimulating hormone (FSH), Follistim AQ vial, growth hormone, insulin and some other proteins.
2. Making possible mutation identification: due to this technology, people can be easily tested for mutated protein presence that can lead to breast cancer, neurofibromatosis, and retinoblastoma.
3. Hereditary diseases carrier diagnosis: tests now available to determine if a person is carrying the gene for cystic fibrosis, the Tay-Sachs diseases, Huntingtons disease or Duchenne muscular dystrophy.
4. Gene transfer from one organism to other: the advanced gene therapy can benefit people with cystic fibrosis, vascular disease, rheumatoid arthritis and specific types of cancers.
Bacterial genetics can be manipulated to allow for mammalian gene expression systems established in bacteria.
Describe the sequence of events in a genetically engineered expression system
Gene expression is the process by which information from a gene is used in the synthesis of a functional gene product. These products are often proteins and are produced after the process of translation. An expression system that is categorized as a genetic engineering product is a system specifically designed for the production of a gene product of choice. This is normally a protein, although may also be RNA, such as tRNA or a ribozyme.
The genetically engineered expression system contains the appropriate DNA sequence for the gene of choice which is engineered into a plasmid that is introduced into a bacteria host. The molecular machinery that is required to transcribe the DNA is derived from the innate and naturally occurring machinery in the host. The DNA is then transcribed into mRNA and then translated into protein products.
In a genetically engineered system, this entire process of gene expression may be induced depending on the plasmid used. In the broadest sense, mammalian gene expression includes every living cell but the term is more normally used to refer to expression as a laboratory tool. An expression system is therefore often artificial in some manner. Viruses and bacteria are an excellent example of expression systems.
The oldest and most widely used expression systems are cell-based. Expression is often done to a very high level and therefore referred to as overexpression. There are many ways to introduce foreign DNA to a cell for expression, and there are many different host cells which may be used for expression. Each expression system also has distinct advantages and liabilities.
Expression systems are normally referred to by the host and the DNA source or the delivery mechanism for the genetic material. For example, common bacterial hosts are E.coli and B. subtilis. With E. coli, DNA is normally introduced in a plasmid expression vector. The techniques for overexpression in E. coli work by increasing the number of copies of the gene or increasing the binding strength of the promoter region so as to assist transcription.
Bacterial Flora: E. coli is one of the most popular hosts for artificial gene expression.
Genetic engineering enables scientists to create plants, animals, and microorganisms by manipulating genes.
Explain the advantages and disadvantages of producing genetically engineered proteins in bacteria
The first successful products of genetic engineering were protein drugs like insulin, which is used to treat diabetes, and growth hormone somatotropin. These proteins are made in large quantities by genetically engineered bacteria or yeast in large bioreactors. Some drugs are also made in transgenic plants, such as tobacco. Other human proteins that are used as drugs require biological modifications that only the cells of mammals, such as cows, goats, and sheep, can provide. For these drugs, production in transgenic animals is a good option. Using farm animals for drug production has many advantages because they are reproducible, have flexible production, are easily maintained, and have a great delivery method (e.g. milk).
Synthetic Insulin: human insulin produced by recombinant DNA technology.
Recombinant DNA technology not only allows therapeutic proteins to be produced on a large scale but using the same methodology protein molecules may be purposefully engineered. Genetic modifications introduced to a protein have many advantages over chemical modifications. Genetically engineered entities are biocompatible and biodegradable. The changes are introduced in 100% of the molecules with the exclusion of rare errors in gene transcription or translation. The preparations do not contain residual amounts of harsh chemicals used in the conjugation process. Bacterial expression systems, due to their simplicity, are often not able to produce a recombinant human protein identical to the naturally occurring wild type. Bacteria did not develop sophisticated mechanisms for performing post-translational modifications that are present in higher organisms. As a consequence, an increasing number of protein therapeutics is expressed in mammalian cells. However the low cost and simplicity of cultivating bacteria is an unbeatable advantage over any other expression system and therefore E. coli is always a preferable choice both on a lab scale and in industry.
Many mammalian proteins are produced by genetic engineering. These include, in particular, an assortment of hormones and proteins for blood clotting and other blood processes. For example, tissue plasminogen activator (TPA) is a blood protein that scavenges and dissolves blood clots that may form in the nal stages of the healing process. TPA is primarily used in heart patients or others suffering from poor circulation to prevent the development of clots that can be life-threatening. Heart disease is a leading cause of death in many developed countries, especially in the United States, so microbially produced TPA is in high demand. In contrast to TPA, the blood clotting factors VII, VIII, and IX are critically important for the formation of blood clots. Hemophiliacs suffer from a deciency of one or more clotting factors and can therefore be treated with microbially produced clotting factors. In the past hemophiliacs have been treated with clotting factor extracts from pooled human blood, some of which was contaminated with viruses such as HIV and hepatitis C, putting hemophiliacs at high risk for contracting these diseases. Recombinant clotting factors have eliminated this problem.
Go here to see the original:
Genetic Engineering Products | Boundless Microbiology
- genetic engineering summary | Britannica - September 13th, 2024
- The great gene editing debate: can it be safe and ethical? - BBC.com - September 13th, 2024
- Anti-biotechnology campaigners embrace classic crops, are suspicious of hybrid varieties and claim genetic modification violates nature. Heres a... - September 13th, 2024
- Will IL-11 Control Extend Human Life One Day? Early Results are Tantalizing - Securities.io - September 13th, 2024
- Viewpoint: As New Zealand edges toward relaxing its ban on gene edited foods, experts weigh in - Genetic Literacy Project - September 13th, 2024
- Farmers in Brazil and Argentina ramp up growing of genetically-modified drought tolerant wheat that can grow in subtropical regions - Genetic Literacy... - September 13th, 2024
- Scientist explains why we'll never have a real Jurassic Park - and people are crestfallen - indy100 - September 13th, 2024
- Genetic engineering techniques - Wikipedia - January 9th, 2024
- 20.3: Genetic Engineering - Biology LibreTexts - January 9th, 2024
- Genetic engineering - DNA Modification, Cloning, Gene Splicing - December 13th, 2023
- Global Gene Editing Market Poised for Significant Growth, Projected to Reach $14.28 Billion by 2027 - EIN News - December 13th, 2023
- Principles of Genetic Engineering - PMC - National Center for ... - May 17th, 2023
- Quitting: A Life Strategy: The Myth of Perseveranceand How the New Science of Giving Up Can Set You Free - Next Big Idea Club Magazine - May 17th, 2023
- 18 Human Genetic Engineering - Clemson University - March 29th, 2023
- Pros and Cons of Genetic Engineering - Benefits and Risks - March 29th, 2023
- How artificial skin is made and its uses, from treating burns to skin cancer - South China Morning Post - March 29th, 2023
- Genetic Engineering - Meaning, Applications, Advantages and Challenges ... - March 13th, 2023
- Revolutionary Specialty Enzymes Transform Industries, Projected to Reach $2.2 Billion by 2031 - Billion-Dollar - EIN News - March 5th, 2023
- Explained: What is genome editing technology and how is it different from GM technology? - The Indian Express - April 2nd, 2022
- Scribe Therapeutics to Participate in Upcoming Goldman Sachs The New Guard: Privates Leading the Disruption in Healthcare Investor Conference - Yahoo... - April 2nd, 2022
- San Antonio Zoo In Discussions on Woolly Mammoth Project - iHeart - April 2nd, 2022
- Xenotransplantation trials will require adjusting expectations, experts say - STAT - April 2nd, 2022
- 5 Interesting Startup Deals You May Have Missed In March: Restoring The Woolly Mammoth, Faux Seafood And Lots Of Bees - Crunchbase News - April 2nd, 2022
- Synlogic to Present Data on Phenylketonuria and Homocystinuria Programs at the Society for ... - KULR-TV - April 2nd, 2022
- The Bay Area food tech industry is creating more than vegan burgers. Heres whats next - San Francisco Chronicle - April 2nd, 2022
- Student Startup Teams to Compete For $110000 Cash Prize Pool in U of A's Heartland Challenge - University of Arkansas Newswire - April 2nd, 2022
- Should we test for differences in allergen content between varieties of crops and animal species? - Open Access Government - April 2nd, 2022
- Genetic Engineering - Courses, Subjects, Eligibility ... - December 22nd, 2021
- Scientists Used CRISPR Gene Editing to Choose the Sex of Mouse Pups - Singularity Hub - December 22nd, 2021
- Report calls for broad public deliberation on releasing gene-edited species in the wild - EurekAlert - December 22nd, 2021
- RNA and DNA Extraction Kit Market Study | Know the Post-Pandemic Scenario of the Industry - BioSpace - December 22nd, 2021
- Opinion: Allow Golden Rice to save lives - pnas.org - December 22nd, 2021
- It's time for an alliance of democracies | TheHill - The Hill - December 22nd, 2021
- Aridis Pharmaceuticals Announces a Pan-Coronavirus Monoclonal Antibody Cocktail That Retains Effectiveness Against the Omicron variant, other COVID-19... - December 22nd, 2021
- 2021: when the link between the climate and biodiversity crises became clear - The Guardian - December 22nd, 2021
- Wuhan lab leak now the most likely cause of Covid pandemic and the truth WILL come out, experts tell MPs... - The US Sun - December 22nd, 2021
- Biotech ETFs That Outperformed Last Week - Yahoo Finance - December 22nd, 2021
- Human genetic enhancement - Wikipedia - October 5th, 2021
- Viewpoint: Part 1 Opposition stirred by anti-GMO advocacy group propaganda fading in the developing world, as more countries embrace crop... - October 5th, 2021
- Amyris Partners with Inscripta to Enhance Development of Sustainable Ingredients Using the Onyx Genome Engineering Platform - WWNY - October 5th, 2021
- Kingdom Supercultures raises $25m to expand Non GMO suite of microbes to unlock new flavors, textures, and functionalities in food & beverage -... - October 5th, 2021
- Fact check: Genetically engineering your salad with the COVID-19 vaccines? We're not there yet. - USA TODAY - October 5th, 2021
- Making the Transition from an Academic to a Biobusiness Entrepreneur - Genetic Engineering & Biotechnology News - October 5th, 2021
- Is The New York Times Finally 'Learning To Love GMOS'? - American Council on Science and Health - October 5th, 2021
- Gene editing, joke theft and manifesting - The Week UK - October 5th, 2021
- Opinion: Saving lives through real social justice - Agri-Pulse - October 5th, 2021
- Science, business and the humanities: CP Snow's 'Two Cultures' sixty years on - TheArticle - October 5th, 2021
- Probiotic Yeast Engineered To Produce Beta-Carotene - Technology Networks - April 17th, 2021
- In the US, Imminent Release of Genetically Modified Mosquitoes To Fight Dengue - The Wire Science - April 17th, 2021
- CRISPRoff: A New Addition to the CRISPR Toolbox - Technology Networks - April 17th, 2021
- A Massive New Gene Editing Project Is Out to Crush Alzheimer's - Singularity Hub - April 17th, 2021
- Grammar of the Genome: Reading the Influence of DNA on Disease - Baylor University - April 17th, 2021
- We cannot let China set the standards for 21st century technologies | TheHill - The Hill - April 17th, 2021
- First GMO Mosquitoes to Be Released in the Florida Keys - Singularity Hub - April 17th, 2021
- Novavax to Participate in University of Oxford Com-COV2 Study Comparing Mixed COVID-19 Vaccine Combinations - BioSpace - April 17th, 2021
- AmunBio and NorthShore University to Advance Cancer Immunotherapy with Engineered Oncolytic Viruses - OncoZine - April 17th, 2021
- StrideBio Announces a Multi-technology License and Master SRA with Duke University to Advance Next-generation Gene Therapies - BioSpace - April 17th, 2021
- ThermoGenesis : The History of Cell and Gene Therapy - marketscreener.com - April 17th, 2021
- EU's refusal to permit GMO crops led to millions of tonnes of additional CO2, scientists reveal - Alliance for Science - Alliance for Science - February 14th, 2021
- New species of fly named after Singanallur Tank - The Hindu - February 14th, 2021
- Son of Monarchs Pays Homage to the Beauty of Migration - Sierra Magazine - February 14th, 2021
- Podcast: TIME's 2020 Kid of the Year, Gitanjali Rao - All Together - Society of Women Engineers - February 14th, 2021
- Geoengineering: What could possibly go wrong? Elizabeth Kolbert's take, in her new book - Bulletin of the Atomic Scientists - February 14th, 2021
- An Introduction to PCR - Technology Networks - February 14th, 2021
- Science Talk - Evolution, cancer and coronavirus how biology's 'Theory of Everything' is key to fighting cancer and global pandemics - The Institute... - February 14th, 2021
- 22nd Century Group and KeyGene Launch Advanced Cannabis Technology Platform for Accelerated Development of New Varieties of Hemp/Cannabis Plants with... - February 14th, 2021
- Aleph Farms and The Technion Reveal World's First Cultivated Ribeye Steak - PRNewswire - February 9th, 2021
- Researchers create rice that captures more CO2 with 30 percent more yield - FoodIngredientsFirst - February 9th, 2021
- Interview: Elizabeth Kolbert on why well never stop messing with nature - Grist - February 9th, 2021
- Is Biotechnology the Answer to a More Sustainable Beauty Industry? - Fashionista - February 9th, 2021
- New Jersey arts and entertainment news, features, and event previews. - New Jersey Stage - February 9th, 2021
- CollPlant Announces Development and Global Commercialization Agreement with Allergan Aesthetics, an AbbVie company, for rhCollagen in Dermal and Soft... - February 9th, 2021
- Taysha Gene Therapies Announces Collaborations to Advance Next-Generation Mini-Gene Payloads for AAV Gene Therapies for the Treatment of Genetic... - February 9th, 2021
- A new tool to investigate bacteria behind hospital infections - MIT News - February 9th, 2021
- Outlook on the CRISPR Gene Editing Global Market to 2030 - Analysis and Forecasts - GlobeNewswire - February 9th, 2021
- Novavax Announces Start of Rolling Review by Multiple Regulatory Authorities for COVID-19 Vaccine Authorization - GlobeNewswire - February 9th, 2021
- Global Lab-On-A-Chip Market Industry Perspective, Comprehensive Analysis, and Forecast 2027||Players-Perkin Elmer Corporation, IDEX, Thermo Fisher... - February 9th, 2021
- Freeline Presents Data on its Gaucher Disease and Fabry Disease AAV-Based Gene Therapies at the 17th Annual WORLDSymposium - PharmiWeb.com - February 9th, 2021
- Global Bacterial and Plasmid Vectors Market Report 2020: Market is Expected to Recover and Reach $0520 Million in 2023 at a CAGR of 15.48% - Forecast... - January 12th, 2021
- mRNA Technology Gave Us the First COVID-19 Vaccines. It Could Also Upend the Drug Industry - TIME - January 12th, 2021