Torre, L. A. et al. Global cancer statistics, 2012. CA Cancer J. Clin. 65(2), 87108 (2015).
Article Google Scholar
Finnish Cancer Registry. Cancer Statistics Application (Finnish Cancer Registry, 2020).
Google Scholar
Nagy, R., Sweet, K. & Eng, C. Highly penetrant hereditary cancer syndromes. Oncogene 23(38), 64456470. https://doi.org/10.1038/sj.onc.1207714 (2004).
CAS Article PubMed Google Scholar
Wendt, C. & Margolin, S. Identifying breast cancer susceptibility genesA review of the genetic background in familial breast cancer. Acta Oncol. 58(2), 135146. https://doi.org/10.1080/0284186X.2018.1529428 (2019).
CAS Article PubMed Google Scholar
Melchor, L. & Bentez, J. The complex genetic landscape of familial breast cancer. Hum. Genet. 132(8), 845863. https://doi.org/10.1007/s00439-013-1299-y (2013).
CAS Article PubMed Google Scholar
Vahteristo, P., Eerola, H., Tamminen, A., Blomqvist, C. & Nevanlinna, H. A probability model for predicting BRCA1 and BRCA2 mutations in breast and breast-ovarian cancer families. Br. J. Cancer 84(5), 704708 (2001).
CAS Article Google Scholar
Eerola, H., Aittomki, K. & Nevanlinna, H. Genetic susceptibility to breast cancer. Finnish Med. J. 46, 46954701 (2002).
Google Scholar
Li, J. et al. Prevalence of BRCA1 and BRCA2 pathogenic variants in a large, unselected breast cancer cohort. Int. J. Cancer 144(5), 11951204. https://doi.org/10.1002/ijc.31841 (2019).
CAS Article PubMed Google Scholar
Syrjkoski, K. et al. Population-based study of BRCA1 and BRCA2 mutations in 1035 unselected Finnish breast cancer patients. J. Natl. Cancer Inst. 92(18), 15291531. https://doi.org/10.1093/jnci/92.18.1529 (2000).
Article PubMed Google Scholar
Buys, S. S. et al. A study of over 35,000 women with breast cancer tested with a 25-gene panel of hereditary cancer genes. Cancer 123(10), 17211730. https://doi.org/10.1002/cncr.30498 (2017).
CAS Article PubMed Google Scholar
Kuchenbaecker, K. B. et al. Risks of breast, ovarian, and contralateral breast cancer for BRCA1 and BRCA2 mutation carriers. JAMA 317(23), 24022416. https://doi.org/10.1001/jama.2017.7112 (2017).
CAS Article PubMed Google Scholar
Chen, S. & Parmigiani, G. Meta-analysis of BRCA1 and BRCA2 penetrance. J. Clin. Oncol. 25(11), 13291333. https://doi.org/10.1200/JCO.2006.09.1066 (2007).
Article PubMed Google Scholar
Tai, Y. C., Domchek, S., Parmigiani, G. & Chen, S. Breast cancer risk among male BRCA1 and BRCA2 mutation carriers. J. Natl. Cancer Inst. 99(23), 18111814. https://doi.org/10.1093/jnci/djm203 (2007).
CAS Article PubMed Google Scholar
Mersch, J. et al. Cancers associated with BRCA1 and BRCA2 mutations other than breast and ovarian. Cancer 121(2), 269275. https://doi.org/10.1002/cncr.29041 (2015).
CAS Article PubMed Google Scholar
Rebbeck, T. R. et al. Association of type and location of BRCA1 and BRCA2 mutations with risk of breast and ovarian cancer. JAMA 313(13), 13471361. https://doi.org/10.1001/jama.2014.5985 (2015).
CAS Article PubMed PubMed Central Google Scholar
GeneReviews. BRCA1- and BRCA2-Associated Hereditary Breast and Ovarian Cancer. https://www.ncbi.nlm.nih.gov/books/NBK1247/ (Accessed 20 June 2020).
Metcalfe, K. et al. International trends in the uptake of cancer risk reduction strategies in women with a BRCA1 or BRCA2 mutation. Br. J. Cancer 121(1), 1521. https://doi.org/10.1038/s41416-019-0446-1 (2019).
Article PubMed PubMed Central Google Scholar
Tschernichovsky, R. & Goodman, A. Risk-reducing strategies for ovarian cancer in BRCA mutation carriers: A balancing act. Oncologist 22(4), 450459. https://doi.org/10.1634/theoncologist.2016-0444 (2017).
CAS Article PubMed PubMed Central Google Scholar
Terry, M., Daly, M. & Phillips, K. Y. Risk-reducing oophorectomy and breast cancer risk across the spectrum of familial risk. J. Natl. Cancer Inst. 111(3), 331334 (2019).
Article Google Scholar
Auranen, A. Perinnllisen sypalttiuden tunnistamisella on merkityst mys gynekologisten sypien ehkisyss. Duodecim 134, 12621264 (2018).
Google Scholar
Kotsopoulos, J. BRCA mutations and breast cancer prevention. Cancers (Basel) 10(12), 524. https://doi.org/10.3390/cancers10120524 (2018).
CAS Article Google Scholar
Li, X. et al. Effectiveness of prophylactic surgeries in BRCA1 or BRCA2 mutation carriers: A meta-analysis and systematic review. Clin. Cancer Res. 22(15), 39713981. https://doi.org/10.1158/1078-0432.CCR-15-1465 (2016).
CAS Article PubMed Google Scholar
Pierce, L. J. et al. Ten-year multi-institutional results of breast-conserving surgery and radiotherapy in BRCA1/2-associated stage I/II breast cancer. J. Clin. Oncol. 24(16), 24372443. https://doi.org/10.1200/JCO.2005.02.7888 (2006).
Article PubMed Google Scholar
George, A., Kaye, S. & Banerjee, S. Delivering widespread BRCA testing and PARP inhibition to patients with ovarian cancer. Nat. Rev. Clin. Oncol. 14(5), 284296. https://doi.org/10.1038/nrclinonc.2016.191 (2017).
CAS Article PubMed Google Scholar
Robson, M. E. et al. American Society of Clinical Oncology policy statement update: Genetic and genomic testing for cancer susceptibility. J. Clin. Oncol. 33(31), 36603667. https://doi.org/10.1200/JCO.2015.63.0996 (2015).
CAS Article PubMed Google Scholar
Manchanda, R., Sun, S. & Patel, S. Economic evaluation of population-based BRCA1/BRCA2 mutation testing across multiple countries and health. Cancer 12(7), 1929. https://doi.org/10.3390/cancers12071929 (2020).
CAS Article Google Scholar
Yang, X. et al. Cancer risks associated with germline PALB2 pathogenic variants: An international study of 524 families. J. Clin. Oncol. 38(7), 674685. https://doi.org/10.1200/JCO.19.01907 (2020).
CAS Article PubMed Google Scholar
Kankuri-Tammilehto, M., Vihinen, P. & Schleutker, J. Heredity of cancer. Finnish Med. J. 14, 880886 (2019).
Google Scholar
Kiiski, J. I. et al. FANCM mutation c.5791C>T is a risk factor for triple-negative breast cancer in the Finnish population. Breast Cancer Res. Treat. 166(1), 217226. https://doi.org/10.1007/s10549-017-4388-0 (2017).
CAS Article PubMed PubMed Central Google Scholar
Mavaddat, N., Antoniou, A. C., Easton, D. F. & Garcia-Closas, M. Genetic susceptibility to breast cancer. Mol. Oncol. 4(3), 174191. https://doi.org/10.1016/j.molonc.2010.04.011 (2010).
CAS Article PubMed PubMed Central Google Scholar
Barkardottir, R. et al. Haplotype analysis in Icelandic and Finnish BRCA2 999del5 breast cancer families. Eur. J. Hum. Genet. 9(10), 773779 (2001).
CAS Article Google Scholar
Vehmanen, P. et al. Low proportion of BRCA1 and BRCA2 mutations in Finnish breast cancer families: evidence for additional susceptibility genes. Hum. Mol. Genet. 6, 2309 (1997).
CAS Article Google Scholar
Huusko, P. et al. Evidence of founder mutations in Finnish BRCA1 and BRCA2 families. Am. J. Hum. Genet. 62, 1544 (1998).
CAS Article Google Scholar
Sarantaus, L. et al. Multiple founder effects and geographical clustering of BRCA1 and BRCA2 families in Finland. Eur. J. Hum. Genet. 8(10), 757763 (2000).
CAS Article Google Scholar
Thomassen, M. et al. BRCA1 and BRCA2 mutations in Danish families with hereditary breast and/or ovarian cancer. Actancology 47, 772777 (2008).
CAS Google Scholar
Moller, P. et al. Genetic epidemiology of BRCA mutationsFamily history detects less than 50% of the mutation carriers. Eur. J. Cancer 43, 17131717 (2007).
Article Google Scholar
Rebbeck, T. et al. Mutational spectrum in a worldwide study of 29,700 families with BRCA1 or BRCA2 mutations. Hum. Mutat. 35, 593 (2018).
Article Google Scholar
Li, J. et al. Cancer therapy and prevention open access prevalence of BRCA1 and BRCA2 pathogenic variants in a large, unselected breast cancer cohort. Int. J. Cancer 144(5), 11951204 (2019).
CAS Article Google Scholar
Kremeyer, B. et al. The BRCA1 exon 13 duplication in the Swedish population. Fam. Cancer 4, 191194 (2005).
Article Google Scholar
Tonin, P. et al. Frequency of recurrent BRCA1 and BRCA2 mutations in Ashkenazi Jewish breast cancer families. Nat. Med. 2, 11791183 (1996).
CAS Article Google Scholar
Iyevleva, A. G. et al. Non-founder BRCA1 mutations in Russian breast cancer patients. Cancer Lett. 298, 258263 (2010).
CAS Article Google Scholar
Ghadirian, P. et al. The contribution of founder mutations to earlyonset breast cancer in French-Canadian women. Clin. Genet. 76, 421426 (2009).
CAS Article Google Scholar
Daly, M. B. et al. NCCN guidelines insights: Genetic/familial high-risk assessment: Breast and ovarian, version 2.2017. J. Natl. Compr. Cancer Netw. 15(1), 920. https://doi.org/10.6004/jnccn.2017.0003 (2017).
CAS Article Google Scholar
Yang, X. et al. Evaluation of polygenic risk scores for ovarian cancer risk prediction in a prospective cohort study. J. Med. Genet. 55(8), 546554. https://doi.org/10.1136/jmedgenet-2018-105313 (2018).
CAS Article PubMed Google Scholar
Mars, N. et al. The role of polygenic risk and susceptibility genes in breast cancer over the course of life. Nat. Commun. 11(1), 6383. https://doi.org/10.1038/s41467-020-19966-5 (2020).
ADS CAS Article PubMed PubMed Central Google Scholar
Finnish Breast Cancer Group. Rintasyvn valtakunnallinen diagnostiikka- ja hoitosuositus 2019. (Accessed 20 June).
Phi, X. A. et al. Magnetic resonance imaging improves breast screening sensitivity in BRCA mutation carriers age 50 years: Evidence from an individual patient data meta-analysis. J. Clin. Oncol. 33(4), 349356. https://doi.org/10.1200/JCO.2014.56.6232 (2015).
Article PubMed Google Scholar
Paluch-Shimon, S. et al. Prevention and screening in BRCA mutation carriers and other breast/ovarian hereditary cancer syndromes: ESMO Clinical Practice Guidelines for cancer prevention and screening. Ann. Oncol. 27(suppl 5), 103110. https://doi.org/10.1093/annonc/mdw327 (2016).
Article Google Scholar
Boyle, P. Triple-negative breast cancer: Epidemiological considerations and recommendations. Ann. Oncol. 23(Suppl 6), 712. https://doi.org/10.1093/annonc/mds187 (2012).
Article Google Scholar
Foulces, W. D., Smith, I. E. & Reis-Filho, J. S. Triple-negative breast cancer. N. Engl. J. Med. 363, 19381948. https://doi.org/10.1056/NEJMra1001389 (2010).
Article Google Scholar
Schaapveld, M. et al. The impact of adjuvant therapy on contralateral breast cancer risk and the prognostic significance of contralateral breast cancer: A population based study in the Netherlands. Breast Cancer Res. Treat. 110(1), 189197. https://doi.org/10.1007/s10549-007-9709-2 (2008).
CAS Article PubMed Google Scholar
Originally posted here:
Genetic, clinic and histopathologic characterization of BRCA-associated hereditary breast and ovarian cancer in southwestern Finland | Scientific...
- Age-related genetic changes in the blood associated with poor cancer prognosis - Medical Xpress - April 24th, 2025
- Parts of our DNA may evolve much faster than previously thought - The University of Utah - April 24th, 2025
- It runs in the family: the importance of genetics in pneumothorax - The BMJ - April 24th, 2025
- Inferring past demography and genetic adaptation in Spain using the GCAT cohort - Nature - April 24th, 2025
- Answers to a 160-year-old riddle about the genetics of Mendels pea traits - Nature - April 24th, 2025
- Towards a genetic obesity risk score in a single-center study of children and adolescents with obesity - Nature - April 24th, 2025
- Pan-genomic analysis highlights genes associated with agronomic traits and enhances genomics-assisted breeding in alfalfa - Nature - April 24th, 2025
- Study highlights critical diversity gap in psychiatric genomics research - Medical Xpress - April 24th, 2025
- Daily briefing: Potato pangenome reveals the complex genetics of the humble spud - Nature - April 24th, 2025
- Genetic diversity and adaptability of native sheep breeds from different climatic zones - Nature - April 24th, 2025
- Ginkgo Automation Partners with Aura Genetics to Accelerate Direct-to-Consumer Testing and Innovation - PR Newswire - April 24th, 2025
- Why Sarepta Therapeutics And Other Genetics Stocks Just Got A Sizable Boost - Investor's Business Daily - April 24th, 2025
- Why White Blood Cells were used to study genetic past and future of Indians - India Today - April 24th, 2025
- Association between plausible genetic factors and weight loss from GLP1-RA and bariatric surgery - Nature - April 24th, 2025
- Recent habitat modification of a tropical dry forest hotspot drives population genetic divergence in the Mexican leaf frog: a landscape genetics... - April 24th, 2025
- Barney's Farm Partners with Backpackboyz on Groundbreaking Cannabis Genetics Project - Ganjapreneur - Ganjapreneur - April 24th, 2025
- U.S. Preimplantation Genetic Testing Market Witness the Highest Growth Globally in Coming Years 2025-2034 - openPR.com - April 24th, 2025
- Exploring the implications of case selection methods for psychiatric molecular genetic studies - Nature - April 24th, 2025
- Genetic susceptibility to schizophrenia through neuroinflammatory pathways associated with retinal thinness - Nature - April 24th, 2025
- Who Were the Carthaginians? Ancient DNA Study Reveals a Stunning Answer - Haaretz - April 24th, 2025
- Genetics - National Geographic Society - March 28th, 2025
- Genetics: Introduction, law of inheritance and Sex Determination - BYJU'S - March 28th, 2025
- Genetics, ecology and evolution of phage satellites - Nature.com - March 28th, 2025
- As a geneticist, I will not mourn 23andMe and its jumble of useless health information | Adam Rutherford - The Guardian - March 28th, 2025
- Rare loss-of-function variants in HECTD2 and AKAP11 confer risk of bipolar disorder - Nature.com - March 28th, 2025
- With 23andMe filing for bankruptcy, what happens to consumers genetic data? - The Conversation Indonesia - March 28th, 2025
- A genetic tree as a movie: Moving beyond the still portrait of ancestry - Phys.org - March 28th, 2025
- Genetic mutations linked to Marek's disease in chickens identified - Phys.org - March 28th, 2025
- 23andMe is looking to sell customers genetic data. Heres how to delete it - CNN - March 28th, 2025
- Horses Pulled Off a Genetic Trick Only Viruses Were Thought to Use - SciTechDaily - March 28th, 2025
- CONSUMER ALERT: Warning 23AndMe Customers That Their Private Genetic Data May Be at Risk - Office of the Attorney General for the District of Columbia - March 28th, 2025
- A new study reveals the genetic change that made horses so athletic - KUOW News and Information - March 28th, 2025
- "Mystery ancestors" gave humans 20% of our current DNA, but who were they? - Earth.com - March 28th, 2025
- Correcting the Mutation Behind a Genetic Eye Disease - The Scientist - March 28th, 2025
- Your DNA is safe here: The AncestryDNA Genetic Test Kit is only $39 now - New York Post - March 28th, 2025
- 23andMe Is Bankrupt. Heres What You Need to Know About Your Genetic Data. - The Wall Street Journal - March 28th, 2025
- Commentary: 23andMe files for bankruptcy, putting its hoard of personal health information at risk - Los Angeles Times - March 28th, 2025
- DNA Microscopy Creates 3D Maps of Life From the Inside Out - SciTechDaily - March 28th, 2025
- Eugenics Must Be Included in Genetics Curriculum: Prof - Mirage News - March 28th, 2025
- 11-minute video on human genetics can make people more accepting of others, reveals new study - Hindustan Times - February 24th, 2025
- Advancing Cancer Genetic Testing to Improve Prevention and Patient Treatment - The Scientist - February 24th, 2025
- Environmental factors, lifestyle choices have greater impact on health than genes, study finds - ABC News - February 24th, 2025
- Study finds lifestyle, environment have greater impact on lifespan than genetics - CBS Boston - February 24th, 2025
- Safeguard repressor locks hepatocyte identity and blocks liver cancer - Nature.com - February 24th, 2025
- Mass spectrometry-based mapping of plasma protein QTLs in children and adolescents - Nature.com - February 24th, 2025
- The Avestagenome Project and TIGS Sign Strategic Alliance to Advance Research in Rare Genetic Disorders - The Tribune India - February 24th, 2025
- Researchers make breakthrough discovery after studying genetics of trees: 'There is a need for proactive conservation' - MSN - February 24th, 2025
- iPSCs and iPSC-derived cells as a model of human genetic and epigenetic variation - Nature.com - February 24th, 2025
- Beyond genetics: The biggest factors that influence health and aging - Earth.com - February 24th, 2025
- Genetic diversity and dietary adaptations of the Central Plains Han Chinese population in East Asia - Nature.com - February 24th, 2025
- How a uniquely human genetic tweak changed the voices of mice - NPR - February 24th, 2025
- Genetic evidence identifies a causal relationship between EBV infection and multiple myeloma risk - Nature.com - February 24th, 2025
- Genetic markers of early response to lurasidone in acute schizophrenia - Nature.com - February 24th, 2025
- Bupa to offer first genetic test for disease prediction in UK - The Times - February 24th, 2025
- Advancing Therapeutic Knowledge of Genetic Influence in ALS: Matthew B. Harms, MD - Neurology Live - February 24th, 2025
- Association of dietary carbohydrate ratio, caloric restriction, and genetic factors with breast cancer risk in a cohort study - Nature.com - February 24th, 2025
- Evaluation of polygenic scores for hypertrophic cardiomyopathy in the general population and across clinical settings - Nature.com - February 24th, 2025
- Familiar autism-linked genes emerge from first analysis of Latin American cohort - The Transmitter: Neuroscience News and Perspectives - February 24th, 2025
- Almost 90% of people would agree to genetic testing to tailor medication use, survey finds - Medical Xpress - February 24th, 2025
- Largest Genetic Study of Bipolar Disorder Identifies 298 Regions of the Genome That Increase Risk for the Condition - Mount Sinai - January 27th, 2025
- Study Sheds Light On The Origin Of Earth Lifes Genetic Code - Astrobiology News - January 27th, 2025
- Largest study on the genetics of bipolar disorder to date gives new insights into the underlying biology - Medical Xpress - January 27th, 2025
- Genetic Swiss Army Knife: New Tool For Gene Editing And Therapy - Forbes - January 27th, 2025
- Uhm Ji-won says the power of genetics is undeniable with Hyun Bin and Son Ye-jin's son - - January 27th, 2025
- Integrative proteogenomic analysis identifies COL6A3-derived endotrophin as a mediator of the effect of obesity on coronary artery disease -... - January 27th, 2025
- Genetic analysis reveals the genetic diversity and zoonotic potential of Streptococcus dysgalactiae isolates from sheep - Nature.com - January 27th, 2025
- Eight psychiatric disorders share the same genetic causes, study says - Medical Xpress - January 27th, 2025
- Exploring genetic associations and drug targets for mitochondrial proteins and schizophrenia risk - Nature.com - January 27th, 2025
- Predictive Genetic Testing and Consumer Genomics Market - GlobeNewswire - January 27th, 2025
- Evolution without sex: How mites have survived for millions of years - EurekAlert - January 27th, 2025
- Our Understanding of Rules that Produce Lifes Genetic Code May Require a Revision - DISCOVER Magazine - January 27th, 2025
- Personalized therapy for rare genetic diseases: Patient-derived organoids offer new hope - Medical Xpress - January 27th, 2025
- The One Thing That's More Important for Longevity Than Your Genes - Parade Magazine - January 27th, 2025
- Complete recombination map of the human genome created - Medical Xpress - January 27th, 2025
- Evidence of genetic determination of annual movement strategies in medium-sized raptors - Nature.com - January 27th, 2025
- Genetic study of Alaska red king crabs suggests species is more diverse and resilient to climate change - Global Seafood Alliance - January 27th, 2025
- Smartwatches reveal insights into psychiatric illnesses and genetic links - Medical Xpress - January 27th, 2025
- Unlocking the Blueprint of Human Life With a Revolutionary DNA Map - SciTechDaily - January 27th, 2025
- Largest Genetic Study of Bipolar Disorder Identifies Nearly 300 Risk-Associated Genome Regions - Inside Precision Medicine - January 27th, 2025
- Genetic Discrimination Is Coming for Us All - The Atlantic - November 16th, 2024