header logo image

Gene Therapy Technology Explanied

December 5th, 2016 10:46 am

Virtually all cells in the human body contain genes, making them potential targets for gene therapy. However, these cells can be divided into two major categories: somatic cells (most cells of the body) or cells of the germline (eggs or sperm). In theory it is possible to transform either somatic cells or germ cells.

Gene therapy using germ line cells results in permanent changes that are passed down to subsequent generations. If done early in embryologic development, such as during preimplantation diagnosis and in vitro fertilization, the gene transfer could also occur in all cells of the developing embryo. The appeal of germ line gene therapy is its potential for offering a permanent therapeutic effect for all who inherit the target gene. Successful germ line therapies introduce the possibility of eliminating some diseases from a particular family, and ultimately from the population, forever. However, this also raises controversy. Some people view this type of therapy as unnatural, and liken it to "playing God." Others have concerns about the technical aspects. They worry that the genetic change propagated by germ line gene therapy may actually be deleterious and harmful, with the potential for unforeseen negative effects on future generations.

Somatic cells are nonreproductive. Somatic cell therapy is viewed as a more conservative, safer approach because it affects only the targeted cells in the patient, and is not passed on to future generations. In other words, the therapeutic effect ends with the individual who receives the therapy. However, this type of therapy presents unique problems of its own. Often the effects of somatic cell therapy are short-lived. Because the cells of most tissues ultimately die and are replaced by new cells, repeated treatments over the course of the individual's life span are required to maintain the therapeutic effect. Transporting the gene to the target cells or tissue is also problematic. Regardless of these difficulties, however, somatic cell gene therapy is appropriate and acceptable for many disorders, including cystic fibrosis, muscular dystrophy, cancer, and certain infectious diseases. Clinicians can even perform this therapy in utero, potentially correcting or treating a life-threatening disorder that may significantly impair a baby's health or development if not treated before birth.

In summary, the distinction is that the results of any somatic gene therapy are restricted to the actual patient and are not passed on to his or her children. All gene therapy to date on humans has been directed at somatic cells, whereas germline engineering in humans remains controversial and prohibited in for instance the European Union.

Somatic gene therapy can be broadly split into two categories:

More here:
Gene Therapy Technology Explanied

Related Post

Comments are closed.


2025 © StemCell Therapy is proudly powered by WordPress
Entries (RSS) Comments (RSS) | Violinesth by Patrick