The ODAC discussions were based on the supplemental Biologics License Application (sBLA), currently under priority review at the FDA, seeking approval of KEYTRUDA monotherapy for the treatment of patients with Bacillus Calmette-Guerin (BCG)-unresponsive, high-risk, NMIBC with carcinoma in-situ (CIS) with or without papillary tumors who are ineligible for or have elected not to undergo cystectomy (removal of bladder). This application is based on results from the Phase 2 KEYNOTE-057 trial.
The positive vote from todays ODAC meeting supports the potential for KEYTRUDA in certain patients with high-risk, non-muscle invasive bladder cancer, who currently have limited non-surgical treatment options approved by the FDA, said Dr. Roy Baynes, senior vice president and head of global clinical development, chief medical officer, Merck Research Laboratories. We are encouraged by todays productive discussion and look forward to working with the FDA as they continue their review of our supplemental application for KEYTRUDA in this patient population.
The ODAC provides the FDA with independent, expert advice and recommendations on marketed and investigational medicines for use in the treatment of cancer. The FDA is not bound by the committees guidance but takes its advice into consideration. Merck anticipates a Prescription Drug User Fee Act (PDUFA), or target action date, in January 2020, based on priority review.
About Bladder Cancer
Bladder cancer begins when cells in the urinary bladder start to grow uncontrollably. As more cancer cells develop, they can form a tumor and spread to other areas of the body. Bladder cancers are described based on how far they have invaded into the wall of the bladder. NMIBC occurs when the cancer has not grown into the main muscle layer of the bladder. It is estimated that more than 80,000 new cases of bladder cancer will be diagnosed in 2019 in the United States. Approximately 75% of patients with bladder cancer are diagnosed with non-muscle invasive bladder cancer (NMIBC). For high-risk NMIBC patients who are BCG-unresponsive with persistent or recurrent disease, treatment guidelines recommend radical cystectomy, a surgery to remove the entire bladder that often requires removal of other surrounding organs and tissues. In men, removal of the prostate is common, and in women, surgeons may also remove the uterus, fallopian tubes, ovaries and cervix, and occasionally a portion of the vagina.
About KEYNOTE-057
The filing was based on data from KEYNOTE-057 (NCT02625961), a Phase 2, multicenter, open-label, single-arm trial in 102 patients with Bacillus Calmette-Guerin (BCG)-unresponsive, high-risk, non-muscle invasive bladder cancer (NMIBC) with carcinoma in-situ (CIS) with or without papillary tumors who were ineligible for or had elected not to undergo cystectomy (Cohort A). In this study, BCG-unresponsive high-risk NMIBC is defined as persistent disease despite adequate BCG therapy, disease recurrence after an initial tumor-free state following adequate BCG therapy, or T1 disease following a single induction course of BCG. Patients received KEYTRUDA 200 mg every three weeks until unacceptable toxicity, persistent or recurrent high-risk NMIBC or progressive disease. Assessment of tumor status was performed every 12 weeks, and patients without disease progression could be treated for up to 24 months. The major efficacy outcome measures were complete response (as defined by negative results for cystoscopy [with transurethral resection of bladder tumor (TURBT)/biopsies as applicable], urine cytology, and computed tomography urography [CTU] imaging) and duration of response.
About KEYTRUDA (pembrolizumab) Injection, 100mg
KEYTRUDA is an anti-PD-1 therapy that works by increasing the ability of the bodys immune system to help detect and fight tumor cells. KEYTRUDA is a humanized monoclonal antibody that blocks the interaction between PD-1 and its ligands, PD-L1 and PD-L2, thereby activating T lymphocytes which may affect both tumor cells and healthy cells.
Merck has the industrys largest immuno-oncology clinical research program. There are currently more than 1,000 trials studying KEYTRUDA across a wide variety of cancers and treatment settings. The KEYTRUDA clinical program seeks to understand the role of KEYTRUDA across cancers and the factors that may predict a patients likelihood of benefitting from treatment with KEYTRUDA, including exploring several different biomarkers.
Selected KEYTRUDA (pembrolizumab) Indications
Melanoma
KEYTRUDA is indicated for the treatment of patients with unresectable or metastatic melanoma.
KEYTRUDA is indicated for the adjuvant treatment of patients with melanoma with involvement of lymph node(s) following complete resection.
Non-Small Cell Lung Cancer
KEYTRUDA, in combination with pemetrexed and platinum chemotherapy, is indicated for the first-line treatment of patients with metastatic nonsquamous non-small cell lung cancer (NSCLC), with no EGFR or ALK genomic tumor aberrations.
KEYTRUDA, in combination with carboplatin and either paclitaxel or paclitaxel protein-bound, is indicated for the first-line treatment of patients with metastatic squamous NSCLC.
KEYTRUDA, as a single agent, is indicated for the first-line treatment of patients with NSCLC expressing PD-L1 [tumor proportion score (TPS) 1%] as determined by an FDA-approved test, with no EGFR or ALK genomic tumor aberrations, and is stage III where patients are not candidates for surgical resection or definitive chemoradiation, or metastatic.
KEYTRUDA, as a single agent, is indicated for the treatment of patients with metastatic NSCLC whose tumors express PD-L1 (TPS 1%) as determined by an FDA-approved test, with disease progression on or after platinum-containing chemotherapy. Patients with EGFR or ALK genomic tumor aberrations should have disease progression on FDA-approved therapy for these aberrations prior to receiving KEYTRUDA.
Small Cell Lung Cancer
KEYTRUDA is indicated for the treatment of patients with metastatic small cell lung cancer (SCLC) with disease progression on or after platinum-based chemotherapy and at least one other prior line of therapy. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials.
Head and Neck Squamous Cell Cancer
KEYTRUDA, in combination with platinum and fluorouracil (FU), is indicated for the first-line treatment of patients with metastatic or with unresectable, recurrent head and neck squamous cell carcinoma (HNSCC).
KEYTRUDA, as a single agent, is indicated for the first-line treatment of patients with metastatic or with unresectable, recurrent HNSCC whose tumors express PD-L1 [combined positive score (CPS) 1] as determined by an FDA-approved test.
KEYTRUDA, as a single agent, is indicated for the treatment of patients with recurrent or metastatic head and neck squamous cell carcinoma (HNSCC) with disease progression on or after platinum-containing chemotherapy.
Classical Hodgkin Lymphoma
KEYTRUDA is indicated for the treatment of adult and pediatric patients with refractory classical Hodgkin lymphoma (cHL), or who have relapsed after 3 or more prior lines of therapy. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.
Primary Mediastinal Large B-Cell Lymphoma
KEYTRUDA is indicated for the treatment of adult and pediatric patients with refractory primary mediastinal large B-cell lymphoma (PMBCL), or who have relapsed after 2 or more prior lines of therapy. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials. KEYTRUDA is not recommended for treatment of patients with PMBCL who require urgent cytoreductive therapy.
Urothelial Carcinoma
KEYTRUDA is indicated for the treatment of patients with locally advanced or metastatic urothelial carcinoma (mUC) who are not eligible for cisplatin-containing chemotherapy and whose tumors express PD-L1 [combined positive score (CPS) 10] as determined by an FDA-approved test, or in patients who are not eligible for any platinum-containing chemotherapy regardless of PD-L1 status. This indication is approved under accelerated approval based on tumor response rate and duration of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials.
KEYTRUDA is indicated for the treatment of patients with locally advanced or metastatic urothelial carcinoma (mUC) who have disease progression during or following platinum-containing chemotherapy or within 12 months of neoadjuvant or adjuvant treatment with platinum-containing chemotherapy.
Microsatellite Instability-High (MSI-H) Cancer
KEYTRUDA is indicated for the treatment of adult and pediatric patients with unresectable or metastatic microsatellite instability-high (MSI-H) or mismatch repair deficient (dMMR)
This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials. The safety and effectiveness of KEYTRUDA in pediatric patients with MSI-H central nervous system cancers have not been established.
Gastric Cancer
KEYTRUDA is indicated for the treatment of patients with recurrent locally advanced or metastatic gastric or gastroesophageal junction (GEJ) adenocarcinoma whose tumors express PD-L1 (CPS 1) as determined by an FDA-approved test, with disease progression on or after two or more prior lines of therapy including fluoropyrimidine- and platinum-containing chemotherapy and if appropriate, HER2/neu-targeted therapy. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.
Esophageal Cancer
KEYTRUDA is indicated for the treatment of patients with recurrent locally advanced or metastatic squamous cell carcinoma of the esophagus whose tumors express PD-L1 (CPS 10) as determined by an FDA-approved test, with disease progression after one or more prior lines of systemic therapy.
Cervical Cancer
KEYTRUDA is indicated for the treatment of patients with recurrent or metastatic cervical cancer with disease progression on or after chemotherapy whose tumors express PD-L1 (CPS 1) as determined by an FDA-approved test. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.
Hepatocellular Carcinoma
KEYTRUDA is indicated for the treatment of patients with hepatocellular carcinoma (HCC) who have been previously treated with sorafenib. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.
Merkel Cell Carcinoma
KEYTRUDA is indicated for the treatment of adult and pediatric patients with recurrent locally advanced or metastatic Merkel cell carcinoma (MCC). This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.
Renal Cell Carcinoma
KEYTRUDA, in combination with axitinib, is indicated for the first-line treatment of patients with advanced renal cell carcinoma (RCC).
Selected Important Safety Information for KEYTRUDA
Immune-Mediated Pneumonitis
KEYTRUDA can cause immune-mediated pneumonitis, including fatal cases. Pneumonitis occurred in 3.4% (94/2799) of patients with various cancers receiving KEYTRUDA, including Grade 1 (0.8%), 2 (1.3%), 3 (0.9%), 4 (0.3%), and 5 (0.1%). Pneumonitis occurred in 8.2% (65/790) of NSCLC patients receiving KEYTRUDA as a single agent, including Grades 3-4 in 3.2% of patients, and occurred more frequently in patients with a history of prior thoracic radiation (17%) compared to those without (7.7%). Pneumonitis occurred in 6% (18/300) of HNSCC patients receiving KEYTRUDA as a single agent, including Grades 3-5 in 1.6% of patients, and occurred in 5.4% (15/276) of patients receiving KEYTRUDA in combination with platinum and FU as first-line therapy for advanced disease, including Grades 3-5 in 1.5% of patients.
Monitor patients for signs and symptoms of pneumonitis. Evaluate suspected pneumonitis with radiographic imaging. Administer corticosteroids for Grade 2 or greater pneumonitis. Withhold KEYTRUDA for Grade 2; permanently discontinue KEYTRUDA for Grade 3 or 4 or recurrent Grade 2 pneumonitis.
Immune-Mediated Colitis
KEYTRUDA can cause immune-mediated colitis. Colitis occurred in 1.7% (48/2799) of patients receiving KEYTRUDA, including Grade 2 (0.4%), 3 (1.1%), and 4 (<0.1%). Monitor patients for signs and symptoms of colitis. Administer corticosteroids for Grade 2 or greater colitis. Withhold KEYTRUDA for Grade 2 or 3; permanently discontinue KEYTRUDA for Grade 4 colitis.
Immune-Mediated Hepatitis (KEYTRUDA) and Hepatotoxicity (KEYTRUDA in Combination With Axitinib)
Immune-Mediated Hepatitis
KEYTRUDA can cause immune-mediated hepatitis. Hepatitis occurred in 0.7% (19/2799) of patients receiving KEYTRUDA, including Grade 2 (0.1%), 3 (0.4%), and 4 (<0.1%). Monitor patients for changes in liver function. Administer corticosteroids for Grade 2 or greater hepatitis and, based on severity of liver enzyme elevations, withhold or discontinue KEYTRUDA.
Hepatotoxicity in Combination With Axitinib
KEYTRUDA in combination with axitinib can cause hepatic toxicity with higher than expected frequencies of Grades 3 and 4 ALT and AST elevations compared to KEYTRUDA alone. With the combination of KEYTRUDA and axitinib, Grades 3 and 4 increased ALT (20%) and increased AST (13%) were seen. Monitor liver enzymes before initiation of and periodically throughout treatment. Consider more frequent monitoring of liver enzymes as compared to when the drugs are administered as single agents. For elevated liver enzymes, interrupt KEYTRUDA and axitinib, and consider administering corticosteroids as needed.
Immune-Mediated Endocrinopathies
KEYTRUDA can cause hypophysitis, thyroid disorders, and type 1 diabetes mellitus. Hypophysitis occurred in 0.6% (17/2799) of patients, including Grade 2 (0.2%), 3 (0.3%), and 4 (<0.1%). Hypothyroidism occurred in 8.5% (237/2799) of patients, including Grade 2 (6.2%) and 3 (0.1%). The incidence of new or worsening hypothyroidism was higher in 1185 patients with HNSCC (16%) receiving KEYTRUDA, as a single agent or in combination with platinum and FU, including Grade 3 (0.3%) hypothyroidism. Hyperthyroidism occurred in 3.4% (96/2799) of patients, including Grade 2 (0.8%) and 3 (0.1%), and thyroiditis occurred in 0.6% (16/2799) of patients, including Grade 2 (0.3%). Type 1 diabetes mellitus, including diabetic ketoacidosis, occurred in 0.2% (6/2799) of patients.
Monitor patients for signs and symptoms of hypophysitis (including hypopituitarism and adrenal insufficiency), thyroid function (prior to and periodically during treatment), and hyperglycemia. For hypophysitis, administer corticosteroids and hormone replacement as clinically indicated. Withhold KEYTRUDA for Grade 2 and withhold or discontinue for Grade 3 or 4 hypophysitis. Administer hormone replacement for hypothyroidism and manage hyperthyroidism with thionamides and beta-blockers as appropriate. Withhold or discontinue KEYTRUDA for Grade 3 or 4 hyperthyroidism. Administer insulin for type 1 diabetes, and withhold KEYTRUDA and administer antihyperglycemics in patients with severe hyperglycemia.
Immune-Mediated Nephritis and Renal Dysfunction
KEYTRUDA can cause immune-mediated nephritis. Nephritis occurred in 0.3% (9/2799) of patients receiving KEYTRUDA, including Grade 2 (0.1%), 3 (0.1%), and 4 (<0.1%) nephritis. Nephritis occurred in 1.7% (7/405) of patients receiving KEYTRUDA in combination with pemetrexed and platinum chemotherapy. Monitor patients for changes in renal function. Administer corticosteroids for Grade 2 or greater nephritis. Withhold KEYTRUDA for Grade 2; permanently discontinue for Grade 3 or 4 nephritis.
Immune-Mediated Skin Reactions
Immune-mediated rashes, including Stevens-Johnson syndrome (SJS), toxic epidermal necrolysis (TEN) (some cases with fatal outcome), exfoliative dermatitis, and bullous pemphigoid, can occur. Monitor patients for suspected severe skin reactions and based on the severity of the adverse reaction, withhold or permanently discontinue KEYTRUDA and administer corticosteroids. For signs or symptoms of SJS or TEN, withhold KEYTRUDA and refer the patient for specialized care for assessment and treatment. If SJS or TEN is confirmed, permanently discontinue KEYTRUDA.
Other Immune-Mediated Adverse Reactions
Immune-mediated adverse reactions, which may be severe or fatal, can occur in any organ system or tissue in patients receiving KEYTRUDA and may also occur after discontinuation of treatment. For suspected immune-mediated adverse reactions, ensure adequate evaluation to confirm etiology or exclude other causes. Based on the severity of the adverse reaction, withhold KEYTRUDA and administer corticosteroids. Upon improvement to Grade 1 or less, initiate corticosteroid taper and continue to taper over at least 1 month. Based on limited data from clinical studies in patients whose immune-related adverse reactions could not be controlled with corticosteroid use, administration of other systemic immunosuppressants can be considered. Resume KEYTRUDA when the adverse reaction remains at Grade 1 or less following corticosteroid taper. Permanently discontinue KEYTRUDA for any Grade 3 immune-mediated adverse reaction that recurs and for any life-threatening immune-mediated adverse reaction.
The following clinically significant immune-mediated adverse reactions occurred in less than 1% (unless otherwise indicated) of 2799 patients: arthritis (1.5%), uveitis, myositis, Guillain-Barr syndrome, myasthenia gravis, vasculitis, pancreatitis, hemolytic anemia, sarcoidosis, and encephalitis. In addition, myelitis and myocarditis were reported in other clinical trials, including classical Hodgkin lymphoma, and postmarketing use.
Treatment with KEYTRUDA may increase the risk of rejection in solid organ transplant recipients. Consider the benefit of treatment vs the risk of possible organ rejection in these patients.
Infusion-Related Reactions
KEYTRUDA can cause severe or life-threatening infusion-related reactions, including hypersensitivity and anaphylaxis, which have been reported in 0.2% (6/2799) of patients. Monitor patients for signs and symptoms of infusion-related reactions. For Grade 3 or 4 reactions, stop infusion and permanently discontinue KEYTRUDA.
Complications of Allogeneic Hematopoietic Stem Cell Transplantation (HSCT)
Immune-mediated complications, including fatal events, occurred in patients who underwent allogeneic HSCT after treatment with KEYTRUDA. Of 23 patients with cHL who proceeded to allogeneic HSCT after KEYTRUDA, 6 (26%) developed graft-versus-host disease (GVHD) (1 fatal case) and 2 (9%) developed severe hepatic veno-occlusive disease (VOD) after reduced-intensity conditioning (1 fatal case). Cases of fatal hyperacute GVHD after allogeneic HSCT have also been reported in patients with lymphoma who received a PD-1 receptorblocking antibody before transplantation. Follow patients closely for early evidence of transplant-related complications such as hyperacute graft-versus-host disease (GVHD), Grade 3 to 4 acute GVHD, steroid-requiring febrile syndrome, hepatic veno-occlusive disease (VOD), and other immune-mediated adverse reactions.
In patients with a history of allogeneic HSCT, acute GVHD (including fatal GVHD) has been reported after treatment with KEYTRUDA. Patients who experienced GVHD after their transplant procedure may be at increased risk for GVHD after KEYTRUDA. Consider the benefit of KEYTRUDA vs the risk of GVHD in these patients.
Increased Mortality in Patients With Multiple Myeloma
In trials in patients with multiple myeloma, the addition of KEYTRUDA to a thalidomide analogue plus dexamethasone resulted in increased mortality. Treatment of these patients with a PD-1 or PD-L1 blocking antibody in this combination is not recommended outside of controlled trials.
Embryofetal Toxicity
Based on its mechanism of action, KEYTRUDA can cause fetal harm when administered to a pregnant woman. Advise women of this potential risk. In females of reproductive potential, verify pregnancy status prior to initiating KEYTRUDA and advise them to use effective contraception during treatment and for 4 months after the last dose.
Adverse Reactions
In KEYNOTE-006, KEYTRUDA was discontinued due to adverse reactions in 9% of 555 patients with advanced melanoma; adverse reactions leading to permanent discontinuation in more than one patient were colitis (1.4%), autoimmune hepatitis (0.7%), allergic reaction (0.4%), polyneuropathy (0.4%), and cardiac failure (0.4%). The most common adverse reactions (20%) with KEYTRUDA were fatigue (28%), diarrhea (26%), rash (24%), and nausea (21%).
In KEYNOTE-002, KEYTRUDA was permanently discontinued due to adverse reactions in 12% of 357 patients with advanced melanoma; the most common (1%) were general physical health deterioration (1%), asthenia (1%), dyspnea (1%), pneumonitis (1%), and generalized edema (1%). The most common adverse reactions were fatigue (43%), pruritus (28%), rash (24%), constipation (22%), nausea (22%), diarrhea (20%), and decreased appetite (20%).
In KEYNOTE-054, KEYTRUDA was permanently discontinued due to adverse reactions in 14% of 509 patients; the most common (1%) were pneumonitis (1.4%), colitis (1.2%), and diarrhea (1%). Serious adverse reactions occurred in 25% of patients receiving KEYTRUDA. The most common adverse reaction (20%) with KEYTRUDA was diarrhea (28%).
In KEYNOTE-189, when KEYTRUDA was administered with pemetrexed and platinum chemotherapy in metastatic nonsquamous NSCLC, KEYTRUDA was discontinued due to adverse reactions in 20% of 405 patients. The most common adverse reactions resulting in permanent discontinuation of KEYTRUDA were pneumonitis (3%) and acute kidney injury (2%). The most common adverse reactions (20%) with KEYTRUDA were nausea (56%), fatigue (56%), constipation (35%), diarrhea (31%), decreased appetite (28%), rash (25%), vomiting (24%), cough (21%), dyspnea (21%), and pyrexia (20%).
In KEYNOTE-407, when KEYTRUDA was administered with carboplatin and either paclitaxel or paclitaxel protein-bound in metastatic squamous NSCLC, KEYTRUDA was discontinued due to adverse reactions in 15% of 101 patients. The most frequent serious adverse reactions reported in at least 2% of patients were febrile neutropenia, pneumonia, and urinary tract infection. Adverse reactions observed in KEYNOTE-407 were similar to those observed in KEYNOTE-189 with the exception that increased incidences of alopecia (47% vs 36%) and peripheral neuropathy (31% vs 25%) were observed in the KEYTRUDA and chemotherapy arm compared to the placebo and chemotherapy arm in KEYNOTE-407.
In KEYNOTE-042, KEYTRUDA was discontinued due to adverse reactions in 19% of 636 patients; the most common were pneumonitis (3%), death due to unknown cause (1.6%), and pneumonia (1.4%). The most frequent serious adverse reactions reported in at least 2% of patients were pneumonia (7%), pneumonitis (3.9%), pulmonary embolism (2.4%), and pleural effusion (2.2%). The most common adverse reaction (20%) was fatigue (25%).
In KEYNOTE-010, KEYTRUDA monotherapy was discontinued due to adverse reactions in 8% of 682 patients with metastatic NSCLC; the most common was pneumonitis (1.8%). The most common adverse reactions (20%) were decreased appetite (25%), fatigue (25%), dyspnea (23%), and nausea (20%).
Adverse reactions occurring in patients with SCLC were similar to those occurring in patients with other solid tumors who received KEYTRUDA as a single agent.
In KEYNOTE-048, KEYTRUDA monotherapy was discontinued due to adverse events in 12% of 300 patients with HNSCC; the most common adverse reactions leading to permanent discontinuation were sepsis (1.7%) and pneumonia (1.3%). The most common adverse reactions (20%) were fatigue (33%), constipation (20%), and rash (20%).
In KEYNOTE-048, when KEYTRUDA was administered in combination with platinum (cisplatin or carboplatin) and FU chemotherapy, KEYTRUDA was discontinued due to adverse reactions in 16% of 276 patients with HNSCC. The most common adverse reactions resulting in permanent discontinuation of KEYTRUDA were pneumonia (2.5%), pneumonitis (1.8%), and septic shock (1.4%). The most common adverse reactions (20%) were nausea (51%), fatigue (49%), constipation (37%), vomiting (32%), mucosal inflammation (31%), diarrhea (29%), decreased appetite (29%), stomatitis (26%), and cough (22%).
In KEYNOTE-012, KEYTRUDA was discontinued due to adverse reactions in 17% of 192 patients with HNSCC. Serious adverse reactions occurred in 45% of patients. The most frequent serious adverse reactions reported in at least 2% of patients were pneumonia, dyspnea, confusional state, vomiting, pleural effusion, and respiratory failure. The most common adverse reactions (20%) were fatigue, decreased appetite, and dyspnea. Adverse reactions occurring in patients with HNSCC were generally similar to those occurring in patients with melanoma or NSCLC who received KEYTRUDA as a monotherapy, with the exception of increased incidences of facial edema and new or worsening hypothyroidism.
In KEYNOTE-087, KEYTRUDA was discontinued due to adverse reactions in 5% of 210 patients with cHL. Serious adverse reactions occurred in 16% of patients; those 1% included pneumonia, pneumonitis, pyrexia, dyspnea, GVHD, and herpes zoster. Two patients died from causes other than disease progression; 1 from GVHD after subsequent allogeneic HSCT and 1 from septic shock. The most common adverse reactions (20%) were fatigue (26%), pyrexia (24%), cough (24%), musculoskeletal pain (21%), diarrhea (20%), and rash (20%).
In KEYNOTE-170, KEYTRUDA was discontinued due to adverse reactions in 8% of 53 patients with PMBCL. Serious adverse reactions occurred in 26% of patients and included arrhythmia (4%), cardiac tamponade (2%), myocardial infarction (2%), pericardial effusion (2%), and pericarditis (2%). Six (11%) patients died within 30 days of start of treatment. The most common adverse reactions (20%) were musculoskeletal pain (30%), upper respiratory tract infection and pyrexia (28% each), cough (26%), fatigue (23%), and dyspnea (21%).
In KEYNOTE-052, KEYTRUDA was discontinued due to adverse reactions in 11% of 370 patients with locally advanced or metastatic urothelial carcinoma. Serious adverse reactions occurred in 42% of patients; those 2% were urinary tract infection, hematuria, acute kidney injury, pneumonia, and urosepsis. The most common adverse reactions (20%) were fatigue (38%), musculoskeletal pain (24%), decreased appetite (22%), constipation (21%), rash (21%), and diarrhea (20%).
In KEYNOTE-045, KEYTRUDA was discontinued due to adverse reactions in 8% of 266 patients with locally advanced or metastatic urothelial carcinoma. The most common adverse reaction resulting in permanent discontinuation of KEYTRUDA was pneumonitis (1.9%). Serious adverse reactions occurred in 39% of KEYTRUDA-treated patients; those 2% were urinary tract infection, pneumonia, anemia, and pneumonitis. The most common adverse reactions (20%) in patients who received KEYTRUDA were fatigue (38%), musculoskeletal pain (32%), pruritus (23%), decreased appetite (21%), nausea (21%), and rash (20%).
Adverse reactions occurring in patients with gastric cancer were similar to those occurring in patients with melanoma or NSCLC who received KEYTRUDA as a monotherapy.
Adverse reactions occurring in patients with esophageal cancer were similar to those occurring in patients with melanoma or NSCLC who received KEYTRUDA as a monotherapy.
In KEYNOTE-158, KEYTRUDA was discontinued due to adverse reactions in 8% of 98 patients with recurrent or metastatic cervical cancer. Serious adverse reactions occurred in 39% of patients receiving KEYTRUDA; the most frequent included anemia (7%), fistula, hemorrhage, and infections [except urinary tract infections] (4.1% each). The most common adverse reactions (20%) were fatigue (43%), musculoskeletal pain (27%), diarrhea (23%), pain and abdominal pain (22% each), and decreased appetite (21%).
Adverse reactions occurring in patients with hepatocellular carcinoma (HCC) were generally similar to those in patients with melanoma or NSCLC who received KEYTRUDA as a monotherapy, with the exception of increased incidences of ascites (8% Grades 34) and immune-mediated hepatitis (2.9%). Laboratory abnormalities (Grades 34) that occurred at a higher incidence were elevated AST (20%), ALT (9%), and hyperbilirubinemia (10%).
Among the 50 patients with MCC enrolled in study KEYNOTE-017, adverse reactions occurring in patients with MCC were generally similar to those occurring in patients with melanoma or NSCLC who received KEYTRUDA as a monotherapy. Laboratory abnormalities (Grades 34) that occurred at a higher incidence were elevated AST (11%) and hyperglycemia (19%).
In KEYNOTE-426, when KEYTRUDA was administered in combination with axitinib, fatal adverse reactions occurred in 3.3% of 429 patients. Serious adverse reactions occurred in 40% of patients, the most frequent (1%) were hepatotoxicity (7%), diarrhea (4.2%), acute kidney injury (2.3%), dehydration (1%), and pneumonitis (1%). Permanent discontinuation due to an adverse reaction occurred in 31% of patients; KEYTRUDA only (13%), axitinib only (13%), and the combination (8%); the most common were hepatotoxicity (13%), diarrhea/colitis (1.9%), acute kidney injury (1.6%), and cerebrovascular accident (1.2%). The most common adverse reactions (20%) were diarrhea (56%), fatigue/asthenia (52%), hypertension (48%), hepatotoxicity (39%), hypothyroidism (35%), decreased appetite (30%), palmar-plantar erythrodysesthesia (28%), nausea (28%), stomatitis/mucosal inflammation (27%), dysphonia (25%), rash (25%), cough (21%), and constipation (21%).
See original here:
FDA Oncologic Drugs Advisory Committee (ODAC) Recommends KEYTRUDA (pembrolizumab) for the Treatment of Certain Patients with High-Risk, Non-Muscle...
- Exosomes Are Being Hyped as a Silver Bullet Therapy. Scientists Say No. - Singularity Hub - December 28th, 2024
- UC Irvine Study Reveals Risks Associated with Direct-to-Consumer Ads for Stem Cell and Exosome COVID-19 Therapies - India Education Diary - November 18th, 2023
- STEM | Description, Development, & Facts | Britannica - January 31st, 2023
- What is STEM Education? | Live Science - January 31st, 2023
- Science, Technology, Engineering, and Math, including Computer Science - ed - January 23rd, 2023
- What Does STEM Stand For? Definition, Degrees and More - January 23rd, 2023
- What Is STEM? - Definition & Resources for Teachers - January 23rd, 2023
- Science, technology, engineering, and mathematics - Wikipedia - January 23rd, 2023
- Stem Definition & Meaning - Merriam-Webster - January 23rd, 2023
- November: labblood-study | News and features - University of Bristol - November 7th, 2022
- Creative Medical Technology Holdings Announces FDA Clearance of Investigational New Drug (IND) Application for AlloStem, a Novel Cell Therapy for the... - November 7th, 2022
- Janssen to Highlight Latest Scientific Advances in Hematologic Diseases at ASH 2022 with Clinical and Real-World Data Across Innovative Pipeline and... - November 7th, 2022
- Type 2 Diabetes Stem Cell Therapy - Top U.S. Stem Cell ... - January 1st, 2022
- Cancer Drug Approvals from 2021 That Patients May Have Missed - Curetoday.com - January 1st, 2022
- Late effects in survivors of high-risk neuroblastoma following stem cell transplant with and without total body irradiation - DocWire News - January 1st, 2022
- The new life of a teenager with a strange tumor on his face after the operation - Market Research Telecast - January 1st, 2022
- Best of what was new in diabetes health for 2021 - Dickson Post - January 1st, 2022
- Hematopoietic Stem Cell Transplantation - StatPearls ... - December 22nd, 2021
- Autologous Stem Cell Transplant for Multiple Myeloma - December 22nd, 2021
- City of Hope presents leading-edge research on blood cancer therapies and its vaccine to reduce stem cell transplant complications at American Society... - December 22nd, 2021
- Adaptation Is Key to Advancing Care for Adult Patients With Leukemia - OncLive - December 22nd, 2021
- FDA Approves First Drug to Prevent Graft Versus Host Disease | FDA - FDA.gov - December 22nd, 2021
- Vera Therapeutics Announces Acquisition of Monoclonal Antibody From Pfizer to Treat BK Virus in Transplant Patients - Yahoo Finance - December 22nd, 2021
- After throwing goodbye party, woman with cancer finds hope close to home in Austin - Austin American-Statesman - December 22nd, 2021
- Dr. K.M. Cherian Heart Foundation & Educational Society Organized Cme Programme & Workshop On Cell Culture And Regenerative Medicine - APN... - December 22nd, 2021
- Namesake of new center a young man in love with the pursuit of knowledge - The Saint Anselm Crier - November 7th, 2021
- Red Cross blood drive focuses on sickle cell disease fight - Palladium-Item - November 7th, 2021
- Shockwave therapy brings new healing opportunities for heart attack patients and hope for people with spinal cord injuries - KULR-TV - November 7th, 2021
- 1st CRISPR Gene Editing Trial Slated to Open in Severe SCD Patients - Sickle Cell Anemia News - April 4th, 2021
- Transplant After CD19 CAR T-Cell Therapy Shows Durable Disease Control in Children, Young Adults With B-ALL - Cancer Network - April 4th, 2021
- Timely Bone Marrow Transplant by Fortis gives new lease of life to a patient with Multiple Myeloma - APN News - April 4th, 2021
- Kirron Kher is suffering with Multiple Myeloma: Know the causes, symptoms and more about this type of blood cancer - Jagran English - April 4th, 2021
- Decitabine Improved Outcomes for Patients With Refractory Prolonged Isolated Thrombocytopenia - Hematology Advisor - April 4th, 2021
- Lake in the Hills police officer and father of 4 kids battling rare cancer forced to retire - Lake and McHenry County Scanner - April 4th, 2021
- Insulin 100: How the road to a diabetes cure is yielding better treatments - News@UofT - April 4th, 2021
- Boxcar Scars Market |Exclusive Report on Latest Trends and Market Growth Opportunities - BioSpace - April 4th, 2021
- Merck Receives Positive EU CHMP Opinion for Updated Label of KEYTRUDA (pembrolizumab) To Include Results of Phase 3 KEYNOTE-361 Trial in Certain Adult... - April 4th, 2021
- BeyondSpring Announces Submission of New Drug Application to US FDA and China NMPA for Plinabulin and G-CSF Combination for the Prevention of... - April 4th, 2021
- Types of leukemia: Prevalence, treatment options, and prognosis - Medical News Today - February 14th, 2021
- Roche receives first FDA clearance for urine sample type for BK virus quantitative test to aid in the improvement of care for transplant patients -... - February 14th, 2021
- Energy drinks may damage the heart, researchers warnshould the FDA get involved? - Cardiovascular Business - February 14th, 2021
- FDA Approves G1 Therapeutics' COSELA (trilaciclib): The First and Only Myeloprotection Therapy to Decrease the Incidence of Chemotherapy-Induced... - February 14th, 2021
- Easter Ross mum of blood cancer tot urges would-be stem cell donors to show the love this Valentine's Day; Alness lass Adeline Davidson's plight... - February 14th, 2021
- Global Induced Pluripotent Market Positive Outlook, Revenue Generation & Leading Manufacturers, Forecast 2026||CELGENE CORPORATION; Astellas... - February 14th, 2021
- Leukemia in children: Symptoms, causes, treatment, outlook, and more - Medical News Today - February 7th, 2021
- After Bone Marrow Donation Saves 9-Year-Old Boy With Cancer, Boston Mom Fights To Raise Awareness - Here And Now - February 7th, 2021
- Understanding bone marrow transplant: The guidelines and the protocols - The New Indian Express - February 4th, 2021
- Why Cynata is hopeful its COVID treatment trial will succeed where others have failed - Business News Australia - February 4th, 2021
- Mobilize family caregivers to speed the rollout of Covid-19 vaccines - STAT - February 4th, 2021
- People With Cancer Should Receive COVID-19 Vaccine, Experts Say - Cancer Health Treatment News - February 4th, 2021
- Evotec and Medical Center Hamburg-Eppendorf Enter Partnership to Develop iPSC-Based Tissue Therapy f - PharmiWeb.com - February 4th, 2021
- APOE Tied to Increased Susceptibility to SARS-CoV-2 | ALZFORUM - Alzforum - February 4th, 2021
- Transforming Outcomes in Advanced CSCC with Immunotherapy - LWW Journals - February 4th, 2021
- Ashley Cain is living his worst nightmare as his baby daughter battles leukaemia in hospital - The Sun - February 4th, 2021
- Canada's blood supply has a diversity problem and people are dying because of it - CBC.ca - February 1st, 2021
- Autologous Stem Cell and Non Stem Based therapies Market Share, Size 2021 Global Industry Future Trends, Growth, Strategies,, Segmentation, In-depth... - February 1st, 2021
- Merck Receives Positive EU CHMP Opinion for Expanded Approval of KEYTRUDA (pembrolizumab) in Certain Patients With Relapsed or Refractory Classical... - February 1st, 2021
- Merck Presents Results From Head-to-Head Phase 3 KEYNOTE-598 Trial Evaluating KEYTRUDA (pembrolizumab) in Combination With Ipilimumab Versus KEYTRUDA... - February 1st, 2021
- Disabled People Are Waiting, Anxiously, For Lifesaving Covid-19 Vaccinations - Forbes - February 1st, 2021
- Family of Belfast woman Eimear Gooderham (25) share memories and dealing with grief in special UTV programme - Belfast Telegraph - February 1st, 2021
- Single-cell molecular profiling of all three components of the HPA axis reveals adrenal ABCB1 as a regulator of stress adaptation - Science Advances - February 1st, 2021
- The Need for New Biological Targets for Therapeutic Intervention in COPD - Pulmonology Advisor - February 1st, 2021
- What Patients With Cancer, Survivors Need to Know About the Emergency Use Authorization of COVID-19 Vaccine - Curetoday.com - December 19th, 2020
- Every Patient Treated With CRISPR Gene Therapy for Blood Diseases Continues to Thrive, More Than a Year On - Good News Network - December 19th, 2020
- Are Hiccups a Sign of the New Coronavirus? - Healthline - December 19th, 2020
- KEYTRUDA Plus LENVIMA Combination Demonstrated Statistically Significant Improvement in Overall Survival, Progression-Free Survival and Objective... - December 19th, 2020
- Covid-19 can have impact on heart too, say experts - Hindustan Times - December 19th, 2020
- Even if You've Had COVID-19 You Still Need the Vaccine - Healthline - December 19th, 2020
- The Link Between Cancer and Metabolic Dysfunction - Technology Networks - December 19th, 2020
- Diamyd Medical and Critical Path Institute announce data sharing collaboration to develop advanced drug development tools in type 1 diabetes -... - December 19th, 2020
- Gene therapy gives man with sickle cell disease the chance for a better future - Science Codex - December 3rd, 2020
- Randomized, Double-Blind, Placebo-Controlled Trial to Evaluate Safety and Therapeutic Efficacy of Angiogenesis Induced by Intraarterial Autologous... - December 3rd, 2020
- Coronavirus Updates: The Latest Treatments and Vaccines - GovTech - December 3rd, 2020
- Graft Versus Host Disease (GVHD) Patient Population, Treatment Algorithm, Medical Practices And Epidemiology Forecast To 2030 - The Market Feed - December 3rd, 2020
- Government of Canada and JDRF Canada announce new research funding to accelerate stem cell-based therapies for type 1 diabetes - India Education Diary - December 3rd, 2020
- Coinfection: more than the sum of its parts - Science Codex - November 19th, 2020
- Angiocrine Bioscience Announces FDA Regenerative Medicine Advanced Therapy (RMAT) Designation Granted to AB-205 (Universal E-CEL Cell Therapy) to... - November 17th, 2020
- FDA Approves Merck's KEYTRUDA in Combination With Chemotherapy for Patients With Locally Recurrent Unresectable or Metastatic Triple?Negative Breast... - November 17th, 2020
- Human mesenchymal stromal cells do not express ACE2 and TMPRSS2 and are not permissive to SARS-CoV-2 infection - DocWire News - November 17th, 2020
- Cleveland Clinic team draws a link between COVID-19 protection and the sleep aid melatonin - FierceBiotech - November 17th, 2020