The coronavirus that causes COVID-19 has one major advantage over us it is a new human virus. Most people have not encountered the virus before, meaning their immune system is not primed and ready to fight it. When someone gets sick with COVID-19, there is a lag in an efficient immune response, giving the virus time to do significant damage before the immune system can reign in the infection.
It essentially becomes a race between how fast your immune system can clear the virus and how quickly the virus can replicate and induce damage, Agustin Melian, MD, Chief Medical Officer and Head of Global Medical Sciences at AlloVir, told BioSpace.
To develop an effective treatment or vaccine for COVID-19, scientists must understand how the immune system is impacted during the disease. One type of immune cell that is particularly important in the bodys response to COVID-19 is T-cells. T-cells perform many functions, including recognizing invading viruses such as the coronavirus that causes COVID-19.
Multiple studies from Wuhan, China reported that COVID-19 patients had very low T-cell counts; the sicker the patient, the lower their T-cell count. Lower T-cell counts were correlated with poorer outcomes (including higher risk of death) and T-cells isolated from COVID-19 patients also showed signs of exhaustion.
The elderly, patients with low T-cell numbers, and patients who express exhaustion markers on their T-cells are high risk groups in which nave cell responses (responses against a virus they have never seen before) may be deficient or delayed, thus allowing the virus to induce a large amount of damage, Dr. Melian explained. These patients may, therefore, benefit from AlloVirs approach which is designed to restore natural T-cell immunity in high risk patients.
Could giving high-risk COVID-19 patients functional T-cells against the coronavirus boost their immune system and help them recover? This is the question AlloVir aims to answer.
AlloVir creates allogeneic (off-the-shelf) virus-specific T-cells designed to treat common and devastating viral-associated diseases in vulnerable patients, such as those who are immunocompromised or patients who received an organ or stem cell transplant. Now, they are expanding their anti-viral T-cell arsenal and taking aim at COVID-19.
We believe AlloVirs technology is well positioned to treat patients with COVID-19 because our technology is designed to provide SARS-CoV-2 specific T-cell immunity while leaving non-infected cells intact, Dr. Melian commented. Our virus-specific T-cell candidates have been used to treat more than 275 immunocompromised patients with life-threatening viral infections and diseases and we believe it our approach may also have promise in treating COVID-19.
Fighting viruses with T-cells in immunocompromised patients
When you get infected with a virus, your immune system responds to the foreign threat by making specific T-cells that can recognize the virus. These specific T-cells prompt your immune system to destroy any cells infected by the virus.
However, if you have a T-cell deficiency, your immune system cannot robustly protect you. This is a major problem because an otherwise innocuous virus can become a serious infection, causing complications, and possibly even be life-threatening.
That is where AlloVir comes in. They address the underlying problem the weakened immune system. A weakened immune system can be beefed up by giving patients with T-cell deficiencies off-the-shelf virus-specific T-cells (VSTs) originally taken from healthy people. This restores their natural T-cell immunity and helps their immune system fight off the viruses.
At AlloVir, we are a leading innovator in discovering and developing allogeneic, virus-specific T-cell immunotherapies, Dr. Melian said. We are now excited to be applying our capabilities in discovering and developing SARS-CoV-2 specific T-cells to join the fight in developing a COVID-19 program for patients at high risk of severe and devastating disease.
AlloVirs virus-specific T-cell platform
To create AlloVirs T-cell therapies, the target virus is first studied carefully to identify its specific antigens (unique molecules on the outside of each virus that are specific to the virus and alert the immune system). The best antigens those that induce a strong T-cell response are used to create the therapy.
Next, blood is taken from healthy donors who have been exposed to the virus of interest and T-cells are isolated from the blood. The T-cells are activated in the lab they are trained to recognize the identified viral antigens, enabling the T-cells to selectively recognize only the desired virus.
After the T-cells have learned to recognize the specific virus, they are expanded to generate multitudes of cells. Once the activated, specific T-cells are created, they can be cryopreserved and kept for a long time, making them readily available as soon as a patient needs them. The entire process, from antigen selection to donor to ready-to-go T-cell treatment, can be completed in a matter of weeks. This process can be seen in the visual below.
Source: AlloVir
Patients are matched using the companys proprietary human leukocyte antigen (HLA)-matching formula. HLAs are proteins on the surface of cells that regulate the immune system.
Our proprietary donor selection algorithm, known as Cytokin enables us to cover >95 percent of patients in our target population from cells derived from a small number of donors, Dr. Melian said. This proprietary process of prospectively manufacturing cells for off-the-shelf use enables us to study our allogeneic cell therapies in large numbers of patients that suffer from global health crises, like seasonal influenza and, as we are discussing, the COVID-19 pandemic.
These T-cells are advantageous because they are active against a single virus or multiple viruses, are not patient-specific (so they are readily available) and are a single treatment that provides lasting protection. The biggest bonus is the immediate off-the-shelf use for time-sensitive infections in vulnerable populations, added Dr. Melian.
In addition to developing their COVID-19 therapy (called ALVR109), AlloVir has two other multi-virus specific T-cell therapies in development: Viralym-M (ALVR105) and ALVR106. Both therapies focus on treating viral diseases common to stem cell and solid organ transplant patients and other vulnerable populations.
Viralym-M targets six common viruses: BK virus (BKV), cytomegalovirus (CMV), adenovirus (AdV), Epstein-Barr virus (EBV, also called human herpesvirus 4), human herpesvirus 6, and JC virus (also called human polyomavirus 2). Although these viruses are widespread and infect most people, they only cause severe problems in people with weakened immune systems due to age, organ or stem cell transplant, or disease (such as diabetes or AIDS). In a Phase 2 study, 93 percent of 38 allogeneic stem cell transplant patients had a clinical response to Viralym-M treatment and functional Viralym-M cells lasted up to 12 weeks in the patients.
ALVR106 targets four common respiratory viruses: influenza, parainfluenza virus, respiratory syncytial virus (RSV), and human meta-pneumovirus (HMPV). While these viruses tend to cause mild to moderate respiratory illnesses, they can cause severe, life-threatening illness, especially in people with weakened immune systems. ALVR106 is still in preclinical development but clinical trials are expected to begin this year. Overall, AlloVir expects to have three new proof-of-concept (POC) Phase 1b/2 and three pivotal Phase 3 studies started over the next 6-18 months.
Off-the-shelf T-cells against COVID-19
While AlloVir originally designed their T-cell therapies for transplant patients, their platform can potentially be applied to any virus to create virus-specific T-cells. This versatility allowed AlloVir to pivot and create T-cells against SARS-CoV-2, the virus that causes COVID-19. This new investigational therapy, called ALVR109, is being developed as a stand-alone treatment, though it may also be incorporated into their ALVR106 respiratory virus therapy at some point in the future.
Normally, the body would make virus-specific T-cells on their own and these would clear the virus, commented Dr. Melian. We enable that process in patients who otherwise would be T-cell deficient to restore T-cell immunity by giving ex vivo expanded cells that come from patients who already have demonstrated a potent immune response and have cleared the infection.
The process of creating coronavirus-specific T-cells is the same as creating their other virus-specific T-cell therapies. First, blood is taken from people who have recovered from COVID-19 and the T-cells are isolated. Then, the cells are stimulated with viral antigens in the lab, expanded, and cryopreserved.
We purposely choose a broad range of viral antigens to stimulate the T-cells to ensure the virus cant circumvent the virus-specific T-cell therapy by mutating or developing resistance, Dr. Melian said. Working with a wide spectrum of viral activity is different than other approaches that just focus on one viral antigen.
An open-label Phase 1 trial (called BAT IT) is anticipated to start within the next few months. Initial clinical studies of ALVR109 aim to treat high-risk COVID-19 patients, such as the elderly, to prevent organ damage. Prophylaxis studies, where the T-cells could be given to high-risk or immunocompromised patients who are not currently sick with COVID-19, may be considered later.
Coronavirus-specific T-cells vs. COVID-19 convalescent plasma
You may be wondering if another treatment that uses blood from COVID-19 survivors, called convalescent plasma therapy, is similar to AlloVirs T-cell therapy. In convalescent plasma treatment, antibodies from COVID-19 survivors are isolated from their blood by separating out their plasma (the liquid part of the blood). The plasma is given to COVID-19 patients to help their immune system fight off the infection.
Although convalescent plasma and AlloVirs coronavirus-specific T-cell treatments are both derived from COVID-19 survivors blood, the two treatments are fundamentally different.
Antibodies and T-cells work in different areas of the immune system, explained Dr. Melian. Antibodies can go after viruses in circulating blood but cant necessarily see viruses in infected cells. On the other hand, T-cells are pleotropic and directly attack virally infected cells, turning off the viral factories. T-cells are interesting because it is a live therapy they can home to virally-infected cells and direct the immune system.
Dr. Melian went on to explain that T-cell approach may be more comprehensive because they can support other immune cells that work against viruses, such as B-cells that make viral-specific antibodies. T-cells can also stimulate cytokines including interferon (a group of signaling proteins the immune system uses to respond to viruses), which further activates the bodys antiviral response.
Providing virus-specific antibodies may be beneficial and protective for some viral infections, Dr. Melian added. We dont know how these antibodies affect COVID-19 patients yet, but COVID-19 has a high mortality rate despite standard of care treatment. In this respect, it is important that all viable approaches to treatment be evaluated and I am very pleased to see these therapies have entered clinical testing.
Convalescent plasma and AlloVirs coronavirus-specific T-cell therapies are not mutually exclusive, so they could even be used together.
More:
Equipping the Immune System to Fight Against COVID-19 - BioSpace
- A mathematical model simulating the adaptive immune response in various vaccines and vaccination strategies - Nature.com - October 14th, 2024
- Fox Chase Cancer Center Researchers Find Gene That Triggers Immune Response in Treatment-Resistant Small-Cell Lung Cancer - Fox Chase Cancer Center - October 14th, 2024
- What Does It Mean to Be Immunocompromised? - The New York Times - October 14th, 2024
- Scientist hopes to cure Type 1 diabetes by disguising stem cells - The University of Arizona - October 14th, 2024
- Watching an infection unfold with a sphingolipid probe - Drug Discovery News - October 14th, 2024
- The cells that protect your brain against infection could also be behind some chronic diseases - BBC.com - October 14th, 2024
- On Nutrition: Foods that help strengthen the immune system - LimaOhio.com - October 14th, 2024
- An integral T cell pathway has implications for understanding sex-based immune response - Medical Xpress - October 14th, 2024
- Immune Response Linked to Lewy Body Formation - Neuroscience News - October 14th, 2024
- Are vaccines the future of cancer prevention? - Genetic Literacy Project - October 14th, 2024
- The Gut Microbiome and Autoimmunity - Inside Precision Medicine - October 14th, 2024
- Researchers discover how oral cancer cells may block the body's immune response - News-Medical.Net - September 21st, 2024
- Are Vaccines More Effective When You Believe in Them? - Greater Good Science Center at UC Berkeley - September 21st, 2024
- Researchers discover immune response to dengue can predict risk of severe reinfections - Medical Xpress - September 21st, 2024
- Texas Researchers Find Acid Walls That Shield Cancer Tumors from Bodys Immune System Response - DARKDaily.com - Laboratory News - September 21st, 2024
- Lysosomes in the immunometabolic reprogramming of immune cells in atherosclerosis - Nature.com - September 21st, 2024
- A new way to reprogram immune cells and direct them toward anti-tumor immunity - MIT News - September 21st, 2024
- Unravelling the many mysteries of the immune system - Cosmos - September 21st, 2024
- Long COVID patients maintain robust immune memory two years after infection - News-Medical.Net - September 21st, 2024
- Nutraceuticals and pharmacological to balance the transitional microbiome to extend immunity during COVID-19 and other viral infections - Journal of... - September 21st, 2024
- Which adults benefit from the pneumococcal vaccine? - Mayo Clinic Press - September 21st, 2024
- UAMS receives $2.2 million grant to study immune response to eye disease - talkbusiness.net - September 21st, 2024
- Low oxygen levels in tumors could enhance some of the body's immune responses against cancer - Medical Xpress - September 21st, 2024
- Overview of the Immune System - The Merck Manuals - March 18th, 2024
- What are the organs of the immune system? - InformedHealth.org - NCBI ... - January 17th, 2024
- Mom who homeschools her children reveals she lets her one-year-old play in and EAT mud - but insists it is goo - Daily Mail - November 26th, 2023
- The limits of nutritional supplements: they dont cure or prevent ailments, nor are they harmless - EL PAS USA - November 26th, 2023
- Here's how your gut affects your mental health, immune function and even cardiovascular health - indulgexpress - November 18th, 2023
- From fear to freedom: Anchor Paul LaGrone shares his story of sudden hair loss & the disease that caused it - ABC Action News Tampa Bay - May 9th, 2023
- Strengthen Your Immune System With 4 Simple Strategies - May 1st, 2023
- Immunodeficiency Awareness Month: What Is The Science Behind These Diseases? Know Warning Signs - ABP Live - May 1st, 2023
- Nearly 90% of patients with rare skin cancer respond to therapy that prevents tumors from evading the immune - cleveland.com - April 23rd, 2023
- University of Cincinnati researchers helping develop 'vaccine' to fight aggressive cancer - WKRC TV Cincinnati - April 23rd, 2023
- Sana Biotechnology Highlights Preclinical Hypoimmune Data for its Allogeneic CAR T Platform and Advancements with its In Vivo Fusogen Platform with... - April 23rd, 2023
- Immune System: Parts & Common Problems - Cleveland Clinic - March 21st, 2023
- Disorders of the Immune System | Johns Hopkins Medicine - March 21st, 2023
- Sometimes 15 Minutes Are More Than Enough To Improve Immune System, Sleep Quality And Depression - Revyuh - March 13th, 2023
- People produce endocannabinoids similar to compounds found in marijuana that are critical to many bodily functions - The Conversation Indonesia - February 24th, 2023
- Spending more time with your kids, grandkidsand their germsmay lower risk of a severe outcome from Covid-19, recent studies show - CNBC - December 20th, 2022
- Published in Journal for Immunotherapy of Cancer: Using Single-Cell Analysis to Assess the Effects of an Anti-OX40 Monoclonal Antibody in Its... - November 17th, 2022
- Man who had COVID-19 for 400 days finally cured after getting treated with antibodies, study says - msnNOW - November 17th, 2022
- Social Distancing: The Impact on Your Health and Immune System - Healthline - October 7th, 2022
- Unraveling the Mysteries of the Immune System - Duke University School of Medicine - October 7th, 2022
- When Will ISR Immune System Regulation Holding AB (publ) (STO:ISR) Become Profitable? - Simply Wall St - October 7th, 2022
- VitaGaming Introduces Immune Support and Collagen to help Gamers boost immunity and fight stress - PR Web - October 7th, 2022
- Ohio reports third U.S. death of person with monkeypox who had underlying health conditions - CNBC - October 7th, 2022
- How a select few people have been cured of HIV - PBS - October 7th, 2022
- BeniCaros Wins Nutrition Industry Executive 2022 Immune Health Award - GlobeNewswire - October 7th, 2022
- Seasonal superfoods to give your immune system a boost this autumn - Yahoo Entertainment - October 7th, 2022
- Whats Going Around: Flu cases confirmed locally - ABC27 - October 7th, 2022
- Contributor: How to Fight the Cold and the Flu This Season - AJMC.com Managed Markets Network - October 7th, 2022
- Updated COVID-19 Bivalent Booster Released in Time for Fall and Winter Omicron Wave - Cornell University The Cornell Daily Sun - October 7th, 2022
- Oralair pill that retrains the immune system to reduce risk of thunderstorm asthma - 7NEWS - October 7th, 2022
- COVID immune reaction could affect brain mechanisms and induce neurological symptoms - Sky News - October 7th, 2022
- 7 Surprising Health Benefits of Pumpkins - AARP - October 7th, 2022
- Why Do Some Allergies Go Away While Others Dont? - The Atlantic - October 7th, 2022
- 15 foods to boost the immune system - Medical News Today - September 4th, 2022
- The powerful supplement that could enhance your immune response to bacteria and viruses - Express - September 4th, 2022
- New research: Cancer-fighting viruses can boost body's immune response - The Indian Express - September 4th, 2022
- Long COVID: How researchers are zeroing in on the self-targeted immune attacks that may lurk behind it - The Conversation Indonesia - September 4th, 2022
- Study raises concerns about the effectiveness of the monkeypox vaccine - STAT - September 4th, 2022
- Five Natural Immune-Boosting Treatments to Try This Flu Season - Boston magazine - September 4th, 2022
- Returning to Football After COVID-19 Infection - Louisiana State University - September 4th, 2022
- #1 Best Way to Boost Your Immunity Against BA.5 Eat This Not That - Eat This, Not That - September 4th, 2022
- Whatever happened to the Botswana scientist who identified omicron then caught it? - NPR - September 4th, 2022
- Non-Hodgkin's lymphoma: What is the cancer that Jane Fonda announced she has? - FOX 29 Philadelphia - September 4th, 2022
- 8 Health Benefits of Cabbage - Health Essentials - September 4th, 2022
- Identification of cervical squamous cell carcinoma feature genes and construction of a prognostic model based on immune-related features - BMC Women's... - September 4th, 2022
- VICTOR DAVIS HANSON: The mysteries of Long COVID - Las Vegas Review-Journal - September 4th, 2022
- Is This Popular Montana City The Most Depressed In The Nation? - XL Country - September 4th, 2022
- First adapted COVID-19 booster vaccines recommended for approval in the EU | European Medicines Agency - European Medicines Agency | - September 4th, 2022
- Potential of Vaccines in Treating Parkinson's, Alzheimer's Detailed | AC Immune to Launch Trial of Vaccine in Early-stage Parkinson's - Parkinson's... - September 4th, 2022
- What Are Zombie Cells? Here's How They Impact Aging - Prevention Magazine - September 4th, 2022
- What To Know About Hand, Foot and Mouth Disease - Health Essentials - September 4th, 2022
- On maternity and the stronger immune response in women - Nature.com - August 19th, 2022
- New study could change what we eat to supercharge immune system and fight disease - WOODTV.com - August 19th, 2022
- Extending dogs' lives, and sex and the immune system - MIT Technology Review - August 19th, 2022
- Your Immune System Will Thrive With This Elderberry Hill Liquid Morning Multivitamin - Men's Journal - August 19th, 2022
- Sure Signs Your Immune System Isn't as Strong as it Should Be Eat This Not That - Eat This, Not That - August 19th, 2022
- Can the monkeypox vaccine stop the current outbreak? : Goats and Soda - NPR - August 19th, 2022