Embryonic stem cells (ES cells) are pluripotent stem cells derived from the inner cell mass of a blastocyst, an early-stage preimplantation embryo.[1][2] Human embryos reach the blastocyst stage 45 days post fertilization, at which time they consist of 50150 cells. Isolating the embryoblast or inner cell mass (ICM) results in destruction of the blastocyst, which raises ethical issues, including whether or not embryos at the pre-implantation stage should be considered to have the same moral or legal status as embryos in the post-implantation stage of development.[3][4]
Human ES cells measure approximately 14 m while mouse ES cells are closer to 8 m.[5]
Embryonic stem cells, derived from the blastocyst stage early mammalian embryos, are distinguished by their ability to differentiate into any cell type and by their ability to propagate. Embryonic stem cell's properties include having a normal karyotype, maintaining high telomerase activity, and exhibiting remarkable long-term proliferative potential.[6]
Embryonic stem cells of the inner cell mass are pluripotent, that is, they are able to differentiate to generate primitive ectoderm, which ultimately differentiates during gastrulation into all derivatives of the three primary germ layers: ectoderm, endoderm, and mesoderm. These include each of the more than 220 cell types in the adult body. Pluripotency distinguishes embryonic stem cells from adult stem cells found in adults; while embryonic stem cells can generate all cell types in the body, adult stem cells are multipotent and can produce only a limited number of cell types. If the pluripotent differentiation potential of embryonic stem cells could be harnessed in vitro, it might be a means of deriving cell or tissue types virtually to order. This would provide a radical new treatment approach to a wide variety of conditions where age, disease, or trauma has led to tissue damage or dysfunction.
In 2012, the Nobel Prize for Medicine was attributed conjointed to John B. Gurdon and Shinya Yamanaka for the discovery that mature cells can be reprogrammed to become pluripotent.[7]
Additionally, under defined conditions, embryonic stem cells are capable of propagating themselves indefinitely in an undifferentiated state and have the capacity when provided with the appropriate signals to differentiate, presumably via the formation of precursor cells, to almost all mature cell phenotypes.[8] This allows embryonic stem cells to be employed as useful tools for both research and regenerative medicine, because they can produce limitless numbers of themselves for continued research or clinical use.
Because of their plasticity and potentially unlimited capacity for self-renewal, embryonic stem cell therapies have been proposed for regenerative medicine and tissue replacement after injury or disease. Diseases that could potentially be treated by pluripotent stem cells include a number of blood and immune-system related genetic diseases, cancers, and disorders; juvenile diabetes; Parkinson's disease; blindness and spinal cord injuries. Besides the ethical concerns of stem cell therapy (see stem cell controversy), there is a technical problem of graft-versus-host disease associated with allogeneic stem cell transplantation. However, these problems associated with histocompatibility may be solved using autologous donor adult stem cells, therapeutic cloning. Stem cell banks or more recently by reprogramming of somatic cells with defined factors (e.g. induced pluripotent stem cells). Embryonic stem cells provide hope that it will be possible to overcome the problems of donor tissue shortage and also, by making the cells immunocompatible with the recipient. Other potential uses of embryonic stem cells include investigation of early human development, study of genetic disease and as in vitro systems for toxicology testing.[6]
According to a 2002 article in PNAS, "Human embryonic stem cells have the potential to differentiate into various cell types, and, thus, may be useful as a source of cells for transplantation or tissue engineering."[9]
Current research focuses on differentiating ES into a variety of cell types for eventual use as cell replacement therapies (CRTs). Some of the cell types that have or are currently being developed include cardiomyocytes (CM), neurons, hepatocytes, bone marrow cells, islet cells and endothelial cells.[10] However, the derivation of such cell types from ESs is not without obstacles and hence current research is focused on overcoming these barriers. For example, studies are underway to differentiate ES in to tissue specific CMs and to eradicate their immature properties that distinguish them from adult CMs.[11]
Besides in the future becoming an important alternative to organ transplants, ES are also being used in field of toxicology and as cellular screens to uncover new chemical entities (NCEs) that can be developed as small molecule drugs. Studies have shown that cardiomyocytes derived from ES are validated in vitro models to test drug responses and predict toxicity profiles.[10] ES derived cardiomyocytes have been shown to respond to pharmacological stimuli and hence can be used to assess cardiotoxicity like Torsades de Pointes.[12]
ES-derived hepatocytes are also useful models that could be used in the preclinical stages of drug discovery. However, the development of hepatocytes from ES has proven to be challenging and this hinders the ability to test drug metabolism. Therefore, current research is focusing on establishing fully functional ES-derived hepatocytes with stable phase I and II enzyme activity.[13]
Researchers have also differentiated ES into dopamine-producing cells with the hope that these neurons could be used in the treatment of Parkinsons disease.[14][15] Recently, the development of ESC after Somatic Cell Nuclear Transfer (SCNT) of Olfactory ensheathing cells (OEC's) to a healthy Oocyte has been recommended for Neuro-degenerative diseases.[16] ESs have also been differentiated to natural killer (NK) cells and bone tissue.[17] Studies involving ES are also underway to provide an alternative treatment for diabetes. For example, DAmour et al. were able to differentiate ES into insulin producing cells[18] and researchers at Harvard University were able to produce large quantities of pancreatic beta cells from ES.[19]
Several new studies have started to address this issue. This has been done either by genetically manipulating the cells, or more recently by deriving diseased cell lines identified by prenatal genetic diagnosis (PGD). This approach may very well prove invaluable at studying disorders such as Fragile-X syndrome, Cystic fibrosis, and other genetic maladies that have no reliable model system.
Yury Verlinsky, a Russian-American medical researcher who specialized in embryo and cellular genetics (genetic cytology), developed prenatal diagnosis testing methods to determine genetic and chromosomal disorders a month and a half earlier than standard amniocentesis. The techniques are now used by many pregnant women and prospective parents, especially those couples with a history of genetic abnormalities or where the woman is over the age of 35, when the risk of genetically related disorders is higher. In addition, by allowing parents to select an embryo without genetic disorders, they have the potential of saving the lives of siblings that already had similar disorders and diseases using cells from the disease free offspring.[20]
Scientists have discovered a new technique for deriving human embryonic stem cell (ESC). Normal ESC lines from different sources of embryonic material including morula and whole blastocysts have been established. These findings allows researchers to construct ESC lines from embryos that acquire different genetic abnormalities; therefore, allowing for recognition of mechanisms in the molecular level that are possibly blocked that could impede the disease progression. The ESC lines originating from embryos with genetic and chromosomal abnormalities provide the data necessary to understand the pathways of genetic defects.[21]
A donor patient acquires one defective gene copy and one normal, and only one of these two copies is used for reproduction. By selecting egg cell derived from embryonic stem cells that have two normal copies, researchers can find variety of treatments for various diseases. To test this theory Dr. McLaughlin and several of his colleagues looked at whether parthenogenetic embryonic stem cells can be used in a mouse model that has thalassemia intermedia. This disease is described as an inherited blood disorder in which there is a lack of hemoglobin leading to anemia. The mouse model used, had one defective gene copy. Embryonic stem cells from an unfertilized egg of the diseased mice were gathered and those stem cells that contained only healthy hemoglobin genes were identified. The healthy embryonic stem cell lines were then converted into cells transplanted into the carrier mice. After five weeks, the test results from the transplant illustrated that these carrier mice now had a normal blood cell count and hemoglobin levels.[22]
Differentiated somatic cells and ES cells use different strategies for dealing with DNA damage. For instance, human foreskin fibroblasts, one type of somatic cell, use non-homologous end joining (NHEJ), an error prone DNA repair process, as the primary pathway for repairing double-strand breaks (DSBs) during all cell cycle stages.[23] Because of its error-prone nature, NHEJ tends to produce mutations in a cells clonal descendants.
ES cells use a different strategy to deal with DSBs.[24] Because ES cells give rise to all of the cell types of an organism including the cells of the germ line, mutations arising in ES cells due to faulty DNA repair are a more serious problem than in differentiated somatic cells. Consequently, robust mechanisms are needed in ES cells to repair DNA damages accurately, and if repair fails, to remove those cells with un-repaired DNA damages. Thus, mouse ES cells predominantly use high fidelity homologous recombinational repair (HRR) to repair DSBs.[24] This type of repair depends on the interaction of the two sister chromosomes formed during S phase and present together during the G2 phase of the cell cycle. HRR can accurately repair DSBs in one sister chromosome by using intact information from the other sister chromosome. Cells in the G1 phase of the cell cycle (i.e. after metaphase/cell division but prior the next round of replication) have only one copy of each chromosome (i.e. sister chromosomes arent present). Mouse ES cells lack a G1 checkpoint and do not undergo cell cycle arrest upon acquiring DNA damage.[25] Rather they undergo programmed cell death (apoptosis) in response to DNA damage.[26] Apoptosis can be used as a fail-safe strategy to remove cells with un-repaired DNA damages in order to avoid mutation and progression to cancer.[27] Consistent with this strategy, mouse ES stem cells have a mutation frequency about 100-fold lower than that of isogenic mouse somatic cells.[28]
The major concern with the possible transplantation of ESC into patients as therapies is their ability to form tumors including teratoma.[29] Safety issues prompted the FDA to place a hold on the first ESC clinical trial (see below), however no tumors were observed.
The main strategy to enhance the safety of ESC for potential clinical use is to differentiate the ESC into specific cell types (e.g. neurons, muscle, liver cells) that have reduced or eliminated ability to cause tumors. Following differentiation, the cells are subjected to sorting by flow cytometry for further purification. ESC are predicted to be inherently safer than IPS cells because they are not genetically modified with genes such as c-Myc that are linked to cancer. Nonetheless, ESC express very high levels of the iPS inducing genes and these genes including Myc are essential for ESC self-renewal and pluripotency,[30] and potential strategies to improve safety by eliminating c-Myc expression are unlikely to preserve the cells' "stemness". However, N-myc and L-myc have been identified to induce iPS cells instead of c-myc with similar efficiency.[31][32]
In 1964, Lewis Kleinsmith and G. Barry Pierce Jr. isolated a single type of cell from a teratocarcinoma, a tumor now known to be derived from a germ cell.[33] These cells isolated from the teratocarcinoma replicated and grew in cell culture as a stem cell and are now known as embryonal carcinoma (EC) cells.[34] Although similarities in morphology and differentiating potential (pluripotency) led to the use of EC cells as the in vitro model for early mouse development,[35] EC cells harbor genetic mutations and often abnormal karyotypes that accumulated during the development of the teratocarcinoma. These genetic aberrations further emphasized the need to be able to culture pluripotent cells directly from the inner cell mass.
In 1981, embryonic stem cells (ES cells) were independently first derived from mouse embryos by two groups. Martin Evans and Matthew Kaufman from the Department of Genetics, University of Cambridge published first in July, revealing a new technique for culturing the mouse embryos in the uterus to allow for an increase in cell number, allowing for the derivation of ES cells from these embryos.[36]Gail R. Martin, from the Department of Anatomy, University of California, San Francisco, published her paper in December and coined the term Embryonic Stem Cell.[37] She showed that embryos could be cultured in vitro and that ES cells could be derived from these embryos. In 1998, a breakthrough occurred when researchers, led by James Thomson at the University of Wisconsin-Madison, first developed a technique to isolate and grow human embryonic stem cells in cell culture.[38]
On January 23, 2009, Phase I clinical trials for transplantation of oligodendrocytes (a cell type of the brain and spinal cord) derived from human ES cells into spinal cord-injured individuals received approval from the U.S. Food and Drug Administration (FDA), marking it the world's first human ES cell human trial.[39] The study leading to this scientific advancement was conducted by Hans Keirstead and colleagues at the University of California, Irvine and supported by Geron Corporation of Menlo Park, CA, founded by Michael D. West, PhD. A previous experiment had shown an improvement in locomotor recovery in spinal cord-injured rats after a 7-day delayed transplantation of human ES cells that had been pushed into an oligodendrocytic lineage.[40] The phase I clinical study was designed to enroll about eight to ten paraplegics who have had their injuries no longer than two weeks before the trial begins, since the cells must be injected before scar tissue is able to form. The researchers emphasized that the injections were not expected to fully cure the patients and restore all mobility. Based on the results of the rodent trials, researchers speculated that restoration of myelin sheathes and an increase in mobility might occur. This first trial was primarily designed to test the safety of these procedures and if everything went well, it was hoped that it would lead to future studies that involve people with more severe disabilities.[41] The trial was put on hold in August 2009 due to FDA concerns regarding a small number of microscopic cysts found in several treated rat models but the hold was lifted on July 30, 2010.[42]
In October 2010 researchers enrolled and administered ESTs to the first patient at Shepherd Center in Atlanta.[43] The makers of the stem cell therapy, Geron Corporation, estimated that it would take several months for the stem cells to replicate and for the GRNOPC1 therapy to be evaluated for success or failure.
In November 2011 Geron announced it was halting the trial and dropping out of stem cell research for financial reasons, but would continue to monitor existing patients, and was attempting to find a partner that could continue their research.[44] In 2013 BioTime (NYSEMKT:BTX), led by CEO Dr. Michael D. West, acquired all of Geron's stem cell assets, with the stated intention of restarting Geron's embryonic stem cell-based clinical trial for spinal cord injury research.[45]
BioTime company Asterias Biotherapeutics (NYSE MKT: AST) was granted a $14.3 million Strategic Partnership Award by the California Institute for Regenerative Medicine (CIRM) to re-initiate the worlds first embryonic stem cell-based human clinical trial, for spinal cord injury. Supported by California public funds, CIRM is the largest funder of stem cell-related research and development in the world.[46]
The award provides funding for Asterias to reinitiate clinical development of AST-OPC1 in subjects with spinal cord injury and to expand clinical testing of escalating doses in the target population intended for future pivotal trials.[47]
AST-OPC1 is a population of cells derived from human embryonic stem cells (hESCs) that contains oligodendrocyte progenitor cells (OPCs). OPCs and their mature derivatives called oligodendrocytes provide critical functional support for nerve cells in the spinal cord and brain. Asterias recently presented the results from phase 1 clinical trial testing of a low dose of AST-OPC1 in patients with neurologically-complete thoracic spinal cord injury. The results showed that AST-OPC1 was successfully delivered to the injured spinal cord site. Patients followed 2-3 years after AST-OPC1 administration showed no evidence of serious adverse events associated with the cells in detailed follow-up assessments including frequent neurological exams and MRIs. Immune monitoring of subjects through one year post-transplantation showed no evidence of antibody-based or cellular immune responses to AST-OPC1. In four of the five subjects, serial MRI scans performed throughout the 2-3 year follow-up period indicate that reduced spinal cord cavitation may have occurred and that AST-OPC1 may have had some positive effects in reducing spinal cord tissue deterioration. There was no unexpected neurological degeneration or improvement in the five subjects in the trial as evaluated by the International Standards for Neurological Classification of Spinal Cord Injury (ISNCSCI) exam.[48]
The Strategic Partnership III grant from CIRM will provide funding to Asterias to support the next clinical trial of AST-OPC1 in subjects with spinal cord injury, and for Asterias product development efforts to refine and scale manufacturing methods to support later-stage trials and eventually commercialization. CIRM funding will be conditional on FDA approval for the trial, completion of a definitive agreement between Asterias and CIRM, and Asterias continued progress toward the achievement of certain pre-defined project milestones.[49]
In vitro fertilization generates multiple embryos. The surplus of embryos is not clinically used or is unsuitable for implantation into the patient, and therefore may be donated by the donor with consent. Human embryonic stem cells can be derived from these donated embryos or additionally they can also be extracted from cloned embryos using a cell from a patient and a donated egg.[50] The inner cell mass (cells of interest), from the blastocyst stage of the embryo, is separated from the trophectoderm, the cells that would differentiate into extra-embryonic tissue. Immunosurgery, the process in which antibodies are bound to the trophectoderm and removed by another solution, and mechanical dissection are performed to achieve separation. The resulting inner cell mass cells are plated onto cells that will supply support. The inner cell mass cells attach and expand further to form a human embryonic cell line, which are undifferentiated. These cells are fed daily and are enzymatically or mechanically separated every four to seven days. For differentiation to occur, the human embryonic stem cell line is removed from the supporting cells to form embryoid bodies, is co-cultured with a serum containing necessary signals, or is grafted in a three-dimensional scaffold to result.[51]
Embryonic stem cells are derived from the inner cell mass of the early embryo, which are harvested from the donor mother animal. Martin Evans and Matthew Kaufman reported a technique that delays embryo implantation, allowing the inner cell mass to increase. This process includes removing the donor mother's ovaries and dosing her with progesterone, changing the hormone environment, which causes the embryos to remain free in the uterus. After 46 days of this intrauterine culture, the embryos are harvested and grown in in vitro culture until the inner cell mass forms egg cylinder-like structures, which are dissociated into single cells, and plated on fibroblasts treated with mitomycin-c (to prevent fibroblast mitosis). Clonal cell lines are created by growing up a single cell. Evans and Kaufman showed that the cells grown out from these cultures could form teratomas and embryoid bodies, and differentiate in vitro, all of which indicating that the cells are pluripotent.[36]
Gail Martin derived and cultured her ES cells differently. She removed the embryos from the donor mother at approximately 76 hours after copulation and cultured them overnight in a medium containing serum. The following day, she removed the inner cell mass from the late blastocyst using microsurgery. The extracted inner cell mass was cultured on fibroblasts treated with mitomycin-c in a medium containing serum and conditioned by ES cells. After approximately one week, colonies of cells grew out. These cells grew in culture and demonstrated pluripotent characteristics, as demonstrated by the ability to form teratomas, differentiate in vitro, and form embryoid bodies. Martin referred to these cells as ES cells.[37]
It is now known that the feeder cells provide leukemia inhibitory factor (LIF) and serum provides bone morphogenetic proteins (BMPs) that are necessary to prevent ES cells from differentiating.[52][53] These factors are extremely important for the efficiency of deriving ES cells. Furthermore, it has been demonstrated that different mouse strains have different efficiencies for isolating ES cells.[54] Current uses for mouse ES cells include the generation of transgenic mice, including knockout mice. For human treatment, there is a need for patient specific pluripotent cells. Generation of human ES cells is more difficult and faces ethical issues. So, in addition to human ES cell research, many groups are focused on the generation of induced pluripotent stem cells (iPS cells).[55]
On August 23, 2006, the online edition of Nature scientific journal published a letter by Dr. Robert Lanza (medical director of Advanced Cell Technology in Worcester, MA) stating that his team had found a way to extract embryonic stem cells without destroying the actual embryo.[56] This technical achievement would potentially enable scientists to work with new lines of embryonic stem cells derived using public funding in the USA, where federal funding was at the time limited to research using embryonic stem cell lines derived prior to August 2001. In March, 2009, the limitation was lifted.[57]
The iPSC technology was pioneered by Shinya Yamanakas lab in Kyoto, Japan, who showed in 2006 that the introduction of four specific genes encoding transcription factors could convert adult cells into pluripotent stem cells.[58] He was awarded the 2012 Nobel Prize along with Sir John Gurdon "for the discovery that mature cells can be reprogrammed to become pluripotent." [59]
In 2007 it was shown that pluripotent stem cells highly similar to embryonic stem cells can be generated by the delivery of three genes (Oct4, Sox2, and Klf4) to differentiated cells.[60] The delivery of these genes "reprograms" differentiated cells into pluripotent stem cells, allowing for the generation of pluripotent stem cells without the embryo. Because ethical concerns regarding embryonic stem cells typically are about their derivation from terminated embryos, it is believed that reprogramming to these "induced pluripotent stem cells" (iPS cells) may be less controversial. Both human and mouse cells can be reprogrammed by this methodology, generating both human pluripotent stem cells and mouse pluripotent stem cells without an embryo.[61]
This may enable the generation of patient specific ES cell lines that could potentially be used for cell replacement therapies. In addition, this will allow the generation of ES cell lines from patients with a variety of genetic diseases and will provide invaluable models to study those diseases.
However, as a first indication that the induced pluripotent stem cell (iPS) cell technology can in rapid succession lead to new cures, it was used by a research team headed by Rudolf Jaenisch of the Whitehead Institute for Biomedical Research in Cambridge, Massachusetts, to cure mice of sickle cell anemia, as reported by Science journal's online edition on December 6, 2007.[62][63]
On January 16, 2008, a California-based company, Stemagen, announced that they had created the first mature cloned human embryos from single skin cells taken from adults. These embryos can be harvested for patient matching embryonic stem cells.[64]
The online edition of Nature Medicine published a study on January 24, 2005, which stated that the human embryonic stem cells available for federally funded research are contaminated with non-human molecules from the culture medium used to grow the cells.[65] It is a common technique to use mouse cells and other animal cells to maintain the pluripotency of actively dividing stem cells. The problem was discovered when non-human sialic acid in the growth medium was found to compromise the potential uses of the embryonic stem cells in humans, according to scientists at the University of California, San Diego.[66]
However, a study published in the online edition of Lancet Medical Journal on March 8, 2005 detailed information about a new stem cell line that was derived from human embryos under completely cell- and serum-free conditions. After more than 6 months of undifferentiated proliferation, these cells demonstrated the potential to form derivatives of all three embryonic germ layers both in vitro and in teratomas. These properties were also successfully maintained (for more than 30 passages) with the established stem cell lines.[67]
Read more:
Embryonic stem cell - Wikipedia
- The Science Of Health: Are Spinal Cord Injuries Irreversible? Know Science Advances That Can Cure Them In The Future - ABP Live - October 16th, 2023
- Biden Weaponized Health Care on Abortion, Transgender, COVID-19 - Daily Signal - April 23rd, 2023
- Can This Company's Research Help Transform Regenerative Medicine As Its Lead Product Receives FDA IND Approval? - Marketscreener.com - November 17th, 2022
- BIOADAPTIVES, INC. Management's Discussion and Analysis of Financial Condition and Results of Operations (form 10-Q) - Marketscreener.com - November 17th, 2022
- With fewer inmates (and officers), Michigan closes another prison - Bridge Michigan - September 12th, 2022
- Testol 140 Review, Real Testol-140 Reviews Before and After Results - Dailyuw - September 12th, 2022
- Can California deliver on its zero-emission car goal? - Los Angeles Times - September 12th, 2022
- Researchers revive abandoned technique in effort to make artificial human eggs in a test tube - STAT - August 3rd, 2022
- 'Incredibly prejudicial': Why Sacramento courts have caged cells, and why that'll change - Walla Walla Union-Bulletin - August 3rd, 2022
- Ethical Issues in Stem Cell Research - PubMed Central (PMC) - December 22nd, 2021
- Dream Body Clinic Stem Cell Therapy Stem Cells HGH - December 22nd, 2021
- Stem cells | healthdirect - December 22nd, 2021
- Human Embryonic Stem Cells | The Embryo Project Encyclopedia - December 22nd, 2021
- Stem cells, through a religious lens Harvard Gazette - December 22nd, 2021
- Scientists identify 2nd HIV patient whose body rid itself of virus - National Herald - November 21st, 2021
- Need to streamline research on CRISPR gene-editing technology: Experts - Business Standard - November 21st, 2021
- Atrial Fibrillation Market Growth Driven by Technological Advancements in AFib Systems and Solutions and Rapidly Increasing Geriatric Population -... - November 21st, 2021
- Could Regenerative Biology Work in Humans? - Harvard Magazine - July 21st, 2021
- Alberta and NWT Bishops OK vaccination for COVID Grandin Media - Grandin Media - December 3rd, 2020
- The way prisoners flag guard abuse, inadequate health care and unsanitary conditions Is broken - injusticewatch.org - December 3rd, 2020
- From Roaches To Medical Emergencies, Illinois Inmates Say Theres Nobody That We Can Really Go To For Help - WBEZ - December 3rd, 2020
- Alexion Receives Marketing Authorization from European Commission for New Formulation of ULTOMIRIS (ravulizumab) with Significantly Reduced Infusion... - November 20th, 2020
- California's Stem Cell Agency Will Get A Funding Boost From Prop 14. Here's A Look At Its History. - Capital Public Radio News - November 19th, 2020
- Stem Cell Banking Market is Projected to Reach $6,956 million by 2023 | Leading key players are Cord Blood Registry, ViaCord, Cryo-Cell, China Cord... - November 19th, 2020
- Locked up during the Waupun COVID surge - Wisconsin Examiner - November 19th, 2020
- Panelists debate the implications and ethics of stem cell research - Johns Hopkins News-Letter - November 2nd, 2020
- Rapid Reshore & Development and BrainStorm Cell Therapeutics Announce Agreement to Advance Construction of BrainStorm's US Manufacturing Facility... - November 2nd, 2020
- Is the Pro-Life Movement on a Collision Course with the Coronavirus? - The Dispatch - November 2nd, 2020
- Will Trevor Lawrence stay at Clemson to avoid the Jets? - Yahoo! Voices - November 2nd, 2020
- Spurs' Becky Hammon honored with impressive San Antonio mural - Yahoo! Voices - November 2nd, 2020
- Total Student Enrollment of China New Higher Education Group Achieves Strong Organic Growth to a New Record High -- Total Number of Enrolled Students... - November 2nd, 2020
- Elis announces the acquisition of 3 laundries in Brazil - Yahoo Finance UK - November 2nd, 2020
- Stem Cell Banking Market is forecast to reach $6,956 million by 2023 | ViaCord,Cryo-Cell, China Cord Blood Corporation, Cryo-Save - The Daily... - October 2nd, 2020
- Those linked to stem cell board received more than $2.1 billion - Capitol Weekly - September 16th, 2020
- Patenting Stem Cell Inventions in India- What to Expect? - Lexology - September 13th, 2020
- Global Stem Cell Banking Market Is Projected To Witness Vigorous Expansion By 2026 - Kewaskum Statesman News Journal - September 13th, 2020
- How Close Are We To Making Babies from Bone Marrow? - Discover Magazine - August 12th, 2020
- India could bleed itself dry amidst covid-19 crisis owing to blood shortage - ETHealthworld.com - July 12th, 2020
- Court rules controversial stem cell research is legal - July 10th, 2020
- Legal Issues in Stem Cell Therapy in the U.S. - Inventus Law - June 19th, 2020
- Restoring vision to the blind - Science Magazine - May 22nd, 2020
- Death of a Survivor - The New Republic - May 4th, 2020
- Could Cannabis Be an Effective Treatment for COVID-19? - Lab Manager Magazine - April 29th, 2020
- The Republicans who were once so pro-life they fought over one woman on life support now want to sacrifice grandma for the economy - The Independent - April 29th, 2020
- Russia's Humanitarian Law Obligations to Civilians in Occupied Ukrainian Territories in the Time of COVID-19 - Just Security - April 29th, 2020
- Merck Boosts Commercial Viral Vector and Gene Therapy Manufacturing Capacity - PR Newswire UK - April 22nd, 2020
- Insights Into the $8.8 Billion Cell Therapy Industry, 2020-2027 - Rising Adoption of Regenerative Medicine, Introduction of Novel Platforms &... - March 17th, 2020
- The tragic life of Meredith Vieira - Nicki Swift - March 17th, 2020
- The 411 on Stem Cells: What They Are and Why It's Important to Be Educated - Legal Examiner - February 20th, 2020
- The Challenge of Bioethics to Decision-Making in the UK - Westminster Abbey - February 20th, 2020
- Penn announces seven 2020 Thouron Award winners - Penn: Office of University Communications - February 20th, 2020
- BrainStorm Cell Therapeutics to Present at the 2020 Biotech Showcase and 3rd Annual Neuroscience Innovation Forum at JPM Week - GlobeNewswire - January 7th, 2020
- Drugs, Biologics, and Regenerative Medicine in 2019: A Successful Year Ends with Promise of a More Challenging 2020 - JD Supra - December 21st, 2019
- Edited Transcript of MRKR.OQ earnings conference call or presentation 12-Nov-19 10:00pm GMT - Yahoo Finance - November 29th, 2019
- BrainStorm Announces Financial Results for the Third Quarter of 2019 and Provides a Corporate Update - GlobeNewswire - November 19th, 2019
- What to Know in Washington: Trump Ally in Impeachment Spotlight - Bloomberg Government - November 19th, 2019
- Do transhumanists need their own bill of rights? - Quartz - October 27th, 2019
- Does Stem Cell Therapy Work For Back Pain? - Regenexx - October 8th, 2019
- The Ethical, Social & Legal Issues of Cloning Animals ... - October 8th, 2019
- An Overview of Stem Cell Research | The Center for ... - October 5th, 2019
- Ethical Issues in Stem Cell Research | Endocrine Reviews ... - October 2nd, 2019
- Embryo - Wikipedia - October 2nd, 2019
- Legal Issues in Stem Cell Therapy in the U.S. - Royse Law Firm - September 14th, 2019
- Research With Stem Cells | American Medical Association - May 23rd, 2019
- Practical Problems with Embryonic Stem Cells - usccb.org - March 17th, 2019
- Stem Cells For Dummies: The Controvery, Pros and Cons ... - March 6th, 2019
- Human cloning - Wikipedia - February 18th, 2019
- stem cell | Definition, Types, Uses, Research, & Facts ... - December 12th, 2018
- Timeline of major events in stem cell research policy ... - August 25th, 2018
- stem-cells | ETHICAL, LEGAL, AND SOCIAL ISSUES - July 29th, 2018
- The Legal and Ethical Issues of Cloning That Make it ... - October 11th, 2017
- 5 Ethical and Legal Issues | Cord Blood: Establishing a ... - September 21st, 2017
- FDA Grants Orphan Drug Status to Cellect's ApoGraft for Acute GvHD and Chronic GvHD - PR Newswire (press release) - September 5th, 2017
- Of cell phones and swords things Amarilloans should know about new state laws - Amarillo.com - September 1st, 2017
- Cellect Shares Will Be Traded From Next Week Exclusively on NASDAQ - PR Newswire (press release) - September 1st, 2017
- ICMR to release stem cell research guidelines soon - BSI bureau (press release) - September 1st, 2017
- ICMR's stem cell research guidelines soon to be released - ETHealthworld.com - August 31st, 2017
- Should your medical data be off the record? - The Irish Times - Irish Times - August 25th, 2017
- Combatting the spread of anti-vaccination sentiment - OUPblog (blog) - August 25th, 2017
- How processing health data has become increasingly problematic - Irish Times - August 24th, 2017