header logo image

Efficient terminal erythroid differentiation requires the APC/C cofactor Cdh1 to limit replicative stress in erythroblasts | Scientific Reports -…

June 26th, 2022 2:05 am

Dzierzak, E. & Philipsen, S. Erythropoiesis: Development and differentiation. Cold Spring Harb. Perspect. Med. 3, a011601a011601 (2013).

PubMed PubMed Central Article CAS Google Scholar

Hattangadi, S. M., Wong, P., Zhang, L., Flygare, J. & Lodish, H. F. From stem cell to red cell: Regulation of erythropoiesis at multiple levels by multiple proteins, RNAs, and chromatin modifications. Blood 118, 62586268 (2011).

CAS PubMed PubMed Central Article Google Scholar

Mei, Y., Liu, Y. & Ji, P. Understanding terminal erythropoiesis: An update on chromatin condensation, enucleation, and reticulocyte maturation. Blood Rev. 46, 100740 (2021).

CAS PubMed Article Google Scholar

Steinman, R. A. Cell cycle regulators and hematopoiesis. Oncogene 21, 34033413 (2002).

CAS PubMed Article Google Scholar

Walkley, C. R., Sankaran, V. G. & Orkin, S. H. Rb and hematopoiesis: Stem cells to anemia. Cell Div. 3, 13 (2008).

PubMed PubMed Central Article CAS Google Scholar

Teixeira, L. K. & Reed, S. I. Ubiquitin ligases and cell cycle control. Annu. Rev. Biochem. 82, 387414 (2013).

CAS PubMed Article Google Scholar

Zhou, Z., He, M., Shah, A. A. & Wan, Y. Insights into APC/C: From cellular function to diseases and therapeutics. Cell Div. 11, 118 (2016).

Article CAS Google Scholar

Chang, L. & Barford, D. Insights into the anaphase-promoting complex: A molecular machine that regulates mitosis. Curr. Opin. Struct. Biol. 29, 19 (2014).

CAS PubMed Article Google Scholar

Eguren, M., Manchado, E. & Malumbres, M. Non-mitotic functions of the anaphase-promoting complex. Semin. Cell Dev. Biol. 22, 572578 (2011).

CAS PubMed Article Google Scholar

Qiao, X., Zhang, L., Gamper, A. M., Fujita, T. & Wan, Y. APC/C-Cdh1: From cell cycle to cellular differentiation and genomic integrity. Cell Cycle 9, 39043912 (2010).

CAS PubMed PubMed Central Article Google Scholar

Wsch, R., Robbins, J. A. & Cross, F. R. The emerging role of APC/CCdh1 in controlling differentiation, genomic stability and tumor suppression. Oncogene 29, 110 (2010).

PubMed Article CAS Google Scholar

Engelbert, D., Schnerch, D., Baumgarten, A. & Wsch, R. The ubiquitin ligase APCCdh1 is required to maintain genome integrity in primary human cells. Oncogene 27, 907917 (2008).

CAS PubMed Article Google Scholar

Garca-Higuera, I. et al. Genomic stability and tumour suppression by the APC/C cofactor Cdh1. Nat. Cell Biol. 10, 802811 (2008).

PubMed Article CAS Google Scholar

Sigl, R. et al. Loss of the mammalian APC/C activator FZR1 shortens G1 and lengthens S phase but has little effect on exit from mitosis. J. Cell Sci. 122, 42084217 (2009).

CAS PubMed Article Google Scholar

Yuan, X., Srividhya, J., De Luca, T., Lee, J.-H.E. & Pomerening, J. R. Uncovering the role of APC-Cdh1 in generating the dynamics of S-phase onset. Mol. Biol. Cell 25, 441456 (2014).

PubMed PubMed Central Article Google Scholar

Greil, C. et al. The role of APC/CCdh1 in replication stress and origin of genomic instability. Oncogene 35, 30623070 (2016).

CAS PubMed Article Google Scholar

Garzn, J. et al. Shortage of dNTPs underlies altered replication dynamics and DNA breakage in the absence of the APC/C cofactor Cdh1. Oncogene 36, 58085818 (2017).

PubMed Article CAS Google Scholar

Kimata, Y. APC/C ubiquitin ligase: Coupling cellular differentiation to G1/G0 phase in multicellular systems. Trends Cell Biol. 29, 591603 (2019).

CAS PubMed Article Google Scholar

Sigrist, S. J. & Lehner, C. F. Drosophila fizzy-related down-regulates mitotic cyclins and is required for cell proliferation arrest and entry into endocycles. Cell 90, 671681 (1997).

CAS PubMed Article Google Scholar

Delgado-Esteban, M., Garca-Higuera, I., Maestre, C., Moreno, S. & Almeida, A. APC/C-Cdh1 coordinates neurogenesis and cortical size during development. Nat. Commun. 4, 2879 (2013).

ADS PubMed Article CAS Google Scholar

Eguren, M. et al. The APC/C cofactor Cdh1 prevents replicative stress and p53-dependent cell death in neural progenitors. Nat. Commun. 4, 2880 (2013).

ADS PubMed Article CAS Google Scholar

Holt, J. E. et al. The APC/C activator FZR1 is essential for meiotic prophase I in mice. Development 141, 13541365 (2014).

CAS PubMed Article Google Scholar

Li, W., Wu, G. & Wan, Y. The dual effects of Cdh1/APC in myogenesis. FASEB J. 21, 36063617 (2007).

CAS PubMed Article Google Scholar

Wu, G. et al. The anaphase-promoting complex coordinates initiation of lens differentiation D. Mol. Biol. Cell 18, 10181029 (2007).

CAS PubMed PubMed Central Article Google Scholar

Koulnis, M. et al. Identification and analysis of mouse erythroid progenitors using the CD71/TER119 flow-cytometric assay. J. Vis. Exp. https://doi.org/10.3791/2809 (2011).

Article PubMed PubMed Central Google Scholar

de Boer, J. et al. Transgenic mice with hematopoietic and lymphoid specific expression of Cre. Eur. J. Immunol. 33, 314325 (2003).

PubMed Article Google Scholar

Bennett, L. F., Liao, C. & Paulson, R. F. Stress Erythropoiesis Model Systems 91102 (Springer, 2018). https://doi.org/10.1007/978-1-4939-7428-3_5.

Book Google Scholar

Swartz, K. L. et al. E2F2 promotes nuclear condensation and enucleation of terminally differentiated erythroblasts. Mol. Cell. Biol. 37, 110 (2017).

Article Google Scholar

Farrs, J. et al. PARP-2 sustains erythropoiesis in mice by limiting replicative stress in erythroid progenitors. Cell Death Differ. 22, 11441157 (2015).

PubMed Article CAS Google Scholar

Liu, J. et al. Quantitative analysis of murine terminal erythroid differentiation in vivo: Novel method to study normal and disordered erythropoiesis. Blood 121, e43e49 (2013).

CAS PubMed PubMed Central Article Google Scholar

Kozar, K. et al. Mouse development and cell proliferation in the absence of D-cyclins. Cell 118, 477491 (2004).

CAS PubMed Article Google Scholar

Sankaran, V. G. et al. Cyclin D3 coordinates the cell cycle during differentiation to regulate erythrocyte size and number. Genes Dev. 26, 20752087 (2012).

CAS PubMed PubMed Central Article Google Scholar

Spike, B. T. & Macleod, K. F. The Rb tumor suppressor in stress responses and hematopoietic homeostasis. Cell Cycle 4, 4245 (2005).

CAS PubMed Article Google Scholar

Sankaran, V. G., Orkin, S. H. & Walkley, C. R. Rb intrinsically promotes erythropoiesis by coupling cell cycle exit with mitochondrial biogenesis. Genes Dev. 22, 463475 (2008).

CAS PubMed PubMed Central Article Google Scholar

Kinross, K. M., Clark, A. J., Iazzolino, R. M. & Humbert, P. O. E2f4 regulates fetal erythropoiesis through the promotion of cellular proliferation. Blood 108, 886895 (2006).

CAS PubMed Article Google Scholar

Hu, T. et al. Concomitant inactivation of Rb and E2f8 in hematopoietic stem cells synergizes to induce severe anemia. Blood 119, 45324542 (2012).

CAS PubMed PubMed Central Article Google Scholar

Ghazaryan, S. et al. Inactivation of Rb and E2f8 synergizes to trigger stressed DNA replication during erythroid terminal differentiation. Mol. Cell. Biol. 34, 28332847 (2014).

PubMed PubMed Central Article CAS Google Scholar

Alvarez, S. et al. Replication stress caused by low MCM expression limits fetal erythropoiesis and hematopoietic stem cell functionality. Nat. Commun. 6, 8548 (2015).

ADS CAS PubMed Article Google Scholar

Ishizawa, J. et al. The cell cycle regulator Cdh1 controls the pool sizes of hematopoietic stem cells and mature lineage progenitors by protecting from genotoxic stress. Cancer Sci. 102, 967974 (2011).

CAS PubMed Article Google Scholar

He, C. et al. c-myc in the hematopoietic lineage is crucial for its angiogenic function in the mouse embryo. Development 135, 24672477 (2008).

CAS PubMed Article Google Scholar

Dirlam, A., Spike, B. T. & Macleod, K. F. Deregulated E2f2 underlies cell cycle and maturation defects in retinoblastoma null erythroblasts. Mol. Cell. Biol. 27, 87138728 (2007).

CAS PubMed PubMed Central Article Google Scholar

Cohen, M. et al. Unbiased transcriptome signature of in vivo cell proliferation reveals pro- and antiproliferative gene networks. Cell Cycle 12, 29923000 (2013).

CAS PubMed PubMed Central Article Google Scholar

Boekhout, M. et al. Feedback regulation between atypical E2Fs and APC/C-Cdh1 coordinates cell cycle progression. EMBO Rep. 17, 414427 (2016).

CAS PubMed PubMed Central Article Google Scholar

Clijsters, L. et al. Cyclin F controls cell-cycle transcriptional outputs by directing the degradation of the three activator E2Fs. Mol. Cell 74, 12641277 (2019).

CAS PubMed PubMed Central Article Google Scholar

Yuan, R. et al. Cyclin F-dependent degradation of E2F7 is critical for DNA repair and G2-phase progression. EMBO J. 38, 20 (2019).

Google Scholar

Wasserman, D. et al. Cell cycle oscillators underlying orderly proteolysis of E2F8. Mol. Biol. Cell 31, 725740 (2020).

CAS PubMed PubMed Central Article Google Scholar

Choudhury, R. et al. APC/C and SCF(cyclin F) constitute a reciprocal feedback circuit controlling S-phase entry. Cell Rep. 16, 33593372 (2016).

CAS PubMed PubMed Central Article Google Scholar

Angulo-Ibez, M. et al. Erk5 contributes to maintaining the balance of cellular nucleotide levels and erythropoiesis. Cell Cycle 14, 38643876 (2015).

PubMed PubMed Central Article CAS Google Scholar

Bracken, A. P., Ciro, M., Cocito, A. & Helin, K. E2F target genes: Unraveling the biology. Trends Biochem. Sci. 29, 409417 (2004).

CAS PubMed Article Google Scholar

Hayashi, S., Lewis, P., Pevny, L. & McMahon, A. P. Efficient gene modulation in mouse epiblast using a Sox2Cre transgenic mouse strain. Mech. Dev. 119, S97S101 (2002).

PubMed Article Google Scholar

Read more from the original source:
Efficient terminal erythroid differentiation requires the APC/C cofactor Cdh1 to limit replicative stress in erythroblasts | Scientific Reports -...

Related Post

Comments are closed.


2024 © StemCell Therapy is proudly powered by WordPress
Entries (RSS) Comments (RSS) | Violinesth by Patrick