header logo image

EasySep Human B Cell Enrichment Kit

May 22nd, 2020 8:45 am

'); jQuery('.cart-remove-box a').on('click', function(){ link = jQuery(this).attr('href'); jQuery.ajax({ url: link, cache: false }); jQuery('.cart-remove-box').remove(); setTimeout(function(){window.location.reload();}, 800); }); }); //jQuery('#ajax_loader').hide(); // clear being added addToCartButton.text(defaultText).removeAttr('disabled').removeClass('disabled'); addToCartButton.parent().find('.disabled-blocker').remove(); loadingDots.remove(); clearInterval(loadingDotId); jQuery('body').append(""); setTimeout(function () {jQuery('.add-to-cart-success').slideUp(500)}, 5000); }); } try { jQuery.ajax( { url : url, dataType : 'json', type : 'post', data : data, complete: function(){ if(jQuery('body').hasClass('product-edit') || jQuery('body').hasClass('wishlist-index-configure')){ jQuery.ajax({ url: "https://www.stemcell.com/meigeeactions/updatecart/", cache: false }).done(function(html){ jQuery('header#header .top-cart').replaceWith(html); }); jQuery('#ajax_loader').hide(); jQuery('body').append(""); setTimeout(function () {jQuery('.add-to-cart-success').slideUp(500)}, 5000); } }, success : function(data) { if(data.status == 'ERROR'){ jQuery('body').append(''); }else{ ajaxComplete(); } } }); } catch (e) { } // End of our new ajax code this.form.action = oldUrl; if (e) { throw e; } } }.bind(productAddToCartForm); productAddToCartForm.submitLight = function(button, url){ if(this.validator) { var nv = Validation.methods; delete Validation.methods['required-entry']; delete Validation.methods['validate-one-required']; delete Validation.methods['validate-one-required-by-name']; if (this.validator.validate()) { if (url) { this.form.action = url; } this.form.submit(); } Object.extend(Validation.methods, nv); } }.bind(productAddToCartForm); function setAjaxData(data,iframe,name,image){ if(data.status == 'ERROR'){ jQuery('body').append(''); }else{ if(data.sidebar && !iframe){ if(jQuery('.top-cart').length){ jQuery('.top-cart').replaceWith(data.sidebar); } if(jQuery('.sidebar .block.block-cart').length){ if(jQuery('#cart-sidebar').length){ jQuery('#cart-sidebar').html(jQuery(data.sidebar).find('#mini-cart')); jQuery('.sidebar .block.block-cart .subtotal').html(jQuery(data.sidebar).find('.subtotal')); }else{ jQuery('.sidebar .block.block-cart p.empty').remove(); content = jQuery('.sidebar .block.block-cart .block-content'); jQuery('').appendTo(content); jQuery('').appendTo(content); content.find('#cart-sidebar').html(jQuery(data.sidebar).find('#mini-cart').html()); content.find('.actions').append(jQuery(data.sidebar).find('.subtotal')); content.find('.actions').append(jQuery(data.sidebar).find('.actions button.button')); } cartProductRemove('#cart-sidebar li.item a.btn-remove', { confirm: 'Are you sure you would like to remove this item from the shopping cart?', submit: 'Ok', calcel: 'Cancel' }); } jQuery.fancybox.close(); jQuery('body').append(''); }else{ jQuery.ajax({ url: "https://www.stemcell.com/meigeeactions/updatecart/", cache: false }).done(function(html){ jQuery('header#header .top-cart').replaceWith(html); jQuery('.top-cart #mini-cart li.item a.btn-remove').on('click', function(event){ event.preventDefault(); jQuery('body').append('Are you sure you would like to remove this item from the shopping cart?OkCancel'); jQuery('.cart-remove-box a').on('click', function(){ link = jQuery(this).attr('href'); jQuery.ajax({ url: link, cache: false }); jQuery('.cart-remove-box').remove(); setTimeout(function(){window.location.reload();}, 800); }); }); jQuery.fancybox.close(); jQuery('body').append(''); }); } } setTimeout(function () {jQuery('.add-to-cart-success').slideUp(500)}, 5000); } // The EasySep Human B Cell Enrichment Kit is designed to isolate B cells from fresh or previously frozen peripheral blood mononuclear cells by negative selection. Unwanted cells are targeted for removal with Tetrameric Antibody Complexes recognizing non-B cells and dextran-coated magnetic particles. The labeled cells are separated using an EasySep magnet without the use of columns. Desired cells are poured off into a new tube.

For even faster cell isolations, we recommend the new EasySep Human B Cell Isolation Kit (17954), which isolates cells in just 9 minutes.

Advantages:

Fast, easy-to-use and column-free Up to 99% purity Untouched, viable cells

Magnet Compatibility:

EasySep Magnet (Catalog #18000)

The Big Easy EasySep Magnet (Catalog #18001)

Easy 50 EasySep Magnet (Catalog #18002)

EasyPlate EasySep Magnet (Catalog 18102)

EasyEights EasySep Magnet (Catalog #18103)

RoboSep-S (Catalog #21000)

Subtype:

Cell Isolation Kits

Sample Source:

Leukapheresis; PBMC

Selection Method:

Negative

Application:

Cell Isolation

Area of Interest:

Immunology

Document Type

Product Name

Catalog #

Lot #

Language

Yes. The EasySep kits use either a negative selection approach by targeting and removing unwanted cells or a positive selection approach targeting desired cells. Depletion kits are also available for the removal of cells with a specific undesired marker (e.g. GlyA).

Magnetic particles are crosslinked to cells using Tetrameric Antibody Complexes (TAC). When placed in the EasySep Magnet, labeled cells migrate to the wall of the tube. The unlabeled cells are then poured off into a separate fraction.

The EasySep procedure is column-free. That's right - no columns!

The Product Information Sheet provided with each EasySep kit contains detailed staining information.

Yes. RoboSep, the fully automated cell separator, automates all EasySep labeling and cell separation steps.

Yes. We recommend a cell concentration of 2x108 cells/mL and a minimum working volume of 100 L. Samples containing 2x107 cells or fewer should be suspended in 100 L of buffer.

Yes, the EasySep particles are flow cytometry-compatible, as they are very uniform in size and about 5000X smaller than other commercially available magnetic beads used with column-free systems.

No, but due to the small size of these particles, they will not interfere with downstream applications.

Yes; however, this may impact the kit's performance. The provided EasySep protocols have already been optimized to balance purity, recovery and time spent on the isolation.

Yes, the purity of targeted cells will increase with additional rounds of separations; however, cell recovery will decrease.

If particle binding is a key concern, we offer two options for negative selection. The EasySep negative selection kits can isolate untouched cells with comparable purities, while RosetteSep can isolate untouched cells directly from whole blood without using particles or magnets.

Read More

This product is designed for use in the following research area(s) as part of the highlighted workflow stage(s). Explore these workflows to learn more about the other products we offer to support each research area.

Research Area Workflow Stages for

Workflow Stages

Figure 1. FACS Histogram Results With EasySep Human B Cell Enrichment Kit

Starting with frozen mononuclear cells, the CD19+ cell content of the enriched fraction typically ranges from 95% - 99%.

D. G. W. Alanine et al.

The Plasmodium falciparum reticulocyte-binding protein homolog 5 (PfRH5) is the leading target for next-generation vaccines against the disease-causing blood-stage of malaria. However, little is known about how human antibodies confer functional immunity against this antigen. We isolated a panel of human monoclonal antibodies (mAbs) against PfRH5 from peripheral blood B cells from vaccinees in the first clinical trial of a PfRH5-based vaccine. We identified a subset of mAbs with neutralizing activity that bind to three distinct sites and another subset of mAbs that are non-functional, or even antagonistic to neutralizing antibodies. We also identify the epitope of a novel group of non-neutralizing antibodies that significantly reduce the speed of red blood cell invasion by the merozoite, thereby potentiating the effect of all neutralizing PfRH5 antibodies as well as synergizing with antibodies targeting other malaria invasion proteins. Our results provide a roadmap for structure-guided vaccine development to maximize antibody efficacy against blood-stage malaria.

K. Kwak et al.

Protective antibody responses to vaccination or infection depend on affinity maturation, a process by which high-affinity germinal center (GC) B cells are selected on the basis of their ability to bind, gather, and present antigen to T follicular helper (Tfh) cells. Here, we show that human GC B cells have intrinsically higher-affinity thresholds for both B cell antigen receptor (BCR) signaling and antigen gathering as compared with na{{i}}ve B cells and that these functions are mediated by distinct cellular structures and pathways that ultimately lead to antigen affinity- and Tfh cell-dependent differentiation to plasma cells. GC B cells bound antigen through highly dynamic actin- and ezrin-rich pod-like structures that concentrated BCRs. The behavior of these structures was dictated by the intrinsic antigen affinity thresholds of GC B cells. Low-affinity antigens triggered continuous engagement and disengagement of membrane-associated antigens whereas high-affinity antigens induced stable synapse formation. The pod-like structures also mediated affinity-dependent antigen internalization by unconventional pathways distinct from those of na{"{i}}ve B cells. Thus intrinsic properties of human GC B cells set thresholds for affinity selection."""

D. G. Gonzalez et al.

We examined the unique contributions of the cytokines IL-21 and IL-4 on germinal center (GC) B cell initiation and subsequent maturation in a murine model system. Similar to other reports, we found T follicular helper cell expression of IL-21 begins prior to T follicular helper cell migration into the B cell follicle and precedes that of IL-4. Consistent with this timing, IL-21 signaling has a greater influence on the perifollicular pre-GC B cell transition to the intrafollicular stage. Notably, Bcl6hi B cells can form in the combined absence of IL-21R- and STAT6-derived signals; however, these nascent GC B cells cease to proliferate and are more prone to apoptosis. When B cells lack either IL-21R or STAT6, aberrant GCs form atypical centroblasts and centrocytes that differ in their phenotypic maturation and costimulatory molecule expression. Thus, IL-4 and IL-21 play nonredundant roles in the phased progression of GC B cell development that can initiate in the combined absence of these cytokine signals.

Pé et al.

Type 1 diabetes (T1D) is characterized by a chronic, progressive autoimmune attack against pancreas-specific antigens, effecting the destruction of insulin-producing -cells. Here we show interleukin-2 (IL-2) is a non-pancreatic autoimmune target in T1D. Anti-IL-2 autoantibodies, as well as T cells specific for a single orthologous epitope of IL-2, are present in the peripheral blood of non-obese diabetic (NOD) mice and patients with T1D. In NOD mice, the generation of anti-IL-2 autoantibodies is genetically determined and their titre increases with age and disease onset. In T1D patients, circulating IgG memory B cells specific for IL-2 or insulin are present at similar frequencies. Anti-IL-2 autoantibodies cloned from T1D patients demonstrate clonality, a high degree of somatic hypermutation and nanomolar affinities, indicating a germinal centre origin and underscoring the synergy between cognate autoreactive T and B cells leading to defective immune tolerance.

Carroll VA et al.

HIV-1 infection is associated with increased risk for B-cell lymphomas. How HIV infection promotes the development of lymphoma is unclear, but it may involve chronic B-cell activation, inflammation, and/or impaired immunity, possibly leading to a loss of control of oncogenic viruses and reduced tumor immunosurveillance. We hypothesized that HIV structural proteins may contribute to lymphomagenesis directly, because they can persist long term in lymph nodes in the absence of viral replication. The HIV-1 transgenic mouse Tg26 carries a noninfectious HIV-1 provirus lacking part of the gag-pol region, thus constituting a model for studying the effects of viral products in pathogenesis. Approximately 15% of Tg26 mice spontaneously develop leukemia/lymphoma. We investigated which viral proteins are associated with the development of leukemia/lymphoma in the Tg26 mouse model, and performed microarray analysis on RNA from spleen and lymph nodes to identify potential mechanisms of lymphomagenesis. Of the viral proteins examined, only expression of HIV-1 matrix protein p17 was associated with leukemia/lymphoma development and was highly expressed in bone marrow before disease. The tumor cells resembled pro-B cells, and were CD19(+)IgM(-)IgD(-)CD93(+)CD43(+)CD21(-)CD23(-)VpreB(+)CXCR4(+) Consistent with the pro-B-cell stage of B-cell development, microarray analysis revealed enrichment of transcripts, including Rag1, Rag2, CD93, Vpreb1, Vpreb3, and Igll1 We confirmed RAG1 expression in Tg26 tumors, and hypothesized that HIV-1 matrix protein p17 may directly induce RAG1 in B cells. Stimulation of human activated B cells with p17 enhanced RAG1 expression in three of seven donors, suggesting that intracellular signaling by p17 may lead to genomic instability and transformation.

STEMCELL TECHNOLOGIES INC.S QUALITY MANAGEMENT SYSTEM IS CERTIFIED TO ISO 13485. PRODUCTS ARE FOR RESEARCH USE ONLY AND NOT INTENDED FOR HUMAN OR ANIMAL DIAGNOSTIC OR THERAPEUTIC USES UNLESS OTHERWISE STATED.

Internal Search Keywords: 19054|19054RF|19054C.2|19014|14054 |B cell isolation|Easy sep B cell

Visit link:
EasySep Human B Cell Enrichment Kit

Related Post

Comments are closed.


2024 © StemCell Therapy is proudly powered by WordPress
Entries (RSS) Comments (RSS) | Violinesth by Patrick