Any new infectious disease poses unique challenges to people who are pregnant during an outbreak. The effects of Sars, Zika and influenza in pregnancy highlight the potential immediate and longer term detrimental health outcomes a virus can have for both mother and baby. These risks include premature delivery of the baby with Sars, birth defects with Zika and greater risk of severe influenza.
Should we be as worried about pregnancy and COVID-19? There are a number of things we need to think about. These fall into two broad areas related to the effects on the foetus and the effects on the pregnant person themselves.
In both cases we need to think about the immediate effects during the pregnancy as well as the longer term health effects for both parent and child. The early evidence we have shows that changes to the immune system during pregnancy could be somewhat protective against the disease.
Early data from pregnant women with COVID-19 indicates that the disease is linked to premature birth and changes to the placenta that might reflect altered blood flow. This suggests that virus-associated disruptions do occur between parent and foetus.
However, these studies were of women with severe cases of the disease. We know very little about the effect of mild disease or asymptomatic infection in pregnancy. Understanding this is critical, as studies have highlighted that asymptomatic and mildly infected pregnant women far outnumber those requiring hospitalisation for COVID-19.
This indicates that pregnant people are not more susceptible to severe COVID-19, which was one of the greatest concerns at the beginning of the pandemic and led to them being categorised as vulnerable.
The apparent protective effect of pregnancy against severe disease might simply reflect the different immune responses to severe COVID-19 seen in men and women, and the fact that more men than women die from the disease in general. However, we do not see the same response in pregnancy with other viruses, such as influenza, suggesting something else is at play with SARS-CoV-2.
So far, it seems that the foetus is very well protected from the passage of SARS-CoV-2 from mother to child (known as vertical transmission) and such passage, while possible, seems to be uncommon. This might be down to the natural features of the placenta, which produces molecules that stop the virus binding to placental cells. It could also be that the placental membranes limit infection by the virus.
Of course, it is very difficult to study the placenta prior to birth. Alternative measures, such as analysing cellular debris released from the placenta (known as extracellular vesicles) which can be found in a sample of the mothers blood, are really needed to find out what features of the placenta might protect the foetus from infection and what effects the virus has on the placenta.
Any antibodies that a mother infected with SARS-CoV-2 makes will pass to the foetus across the placenta (known as passive immunity). This provides short-term protection from many infectious agents for the last months of pregnancy and for some months after the baby is born. These antibodies will also continue to be provided in breast milk if the baby is breast fed.
Early studies from China have shown that antibodies that protect against COVID-19 are present in newborns of women who had such antibodies. This confirms that passive immunity, where a baby essentially inherits antibodies from a parent, occurs with SARS-CoV-2. We now need some larger studies to investigate whether anti-SARS-CoV-2 antibodies are present in human milk to better understand the role of these antibodies in neutralising the virus and protecting the baby.
Molecules other than antibodies can also pass from parent to foetus. Pregnant women with severe COVID-19 have many of the hallmarks of an inflammatory response that we see in other people with similar symptoms. This includes elevated levels of molecules such as interleukin-6 (IL-6), which indicates that the immune response has been activated.
There are a number of studies showing that maternal immune activation can have detrimental effects on the developing foetus. Such activation is associated with increased risk of respiratory, cardiovascular, neurodevelopmental and other disorders in the offspring. Whether SARS-CoV-2 will have such long-term effects on the health of these children remains to be seen.
In a previous article, we discussed how the immune system changes during pregnancy, and it might be that unique features of this and other dynamic adaptations that occur with pregnancy provide protection from severe COVID-19.
Other examples of possible protective mechanisms include differences in the receptor molecules used by SARS-CoV-2 to invade human cells. Angiotensin-converting enzyme 2 (ACE2) is the best known of these viral entry receptors but CD147, CD26 and others also have this role.
All of these receptors undergo changes during pregnancy, which might contribute to resilience. These receptors also occur as soluble forms that can be measured in blood and breast milk and might act as decoy receptors, stopping the virus from binding to cells.
Elaborating on why both the pregnant person and their child seem to be relatively resilient to severe forms of COVID-19 might help us understand other disease processes and identify ways to combat the disease.
Work from the UK Obstetric Surveillance System has shown that, as with the wider population, Asian and Black pregnant women are more likely to be admitted to hospital with SARS-CoV-2 infection. Therefore, we really need to consider the effects of ethnicity and other risk factors in our studies of COVID-19 in pregnancy.
This is especially important as these studies will support efforts towards the use of any vaccine in pregnancy.
Read the original here:
COVID-19 and pregnancy: what we know about what happens to your immune system - The Conversation UK
- Eosinophil innate immune memory after bacterial skin infection promotes allergic lung inflammation - Science | AAAS - April 5th, 2025
- Researchers Discover mRNA Vaccines Leave Lasting Mark on the Immune System - SciTechDaily - April 5th, 2025
- Scientific Journeys: Uncovering how dioxins affect the immune system - National Institutes of Health (NIH) (.gov) - April 5th, 2025
- Oligodendroglial precursor cells modulate immune response and early demyelination in a murine model of multiple sclerosis - Science | AAAS - April 5th, 2025
- Measles can ravage the immune system and brain, causing long-term damage a virologist explains - The Conversation - April 5th, 2025
- Microscopic Instigators - The University of New Mexico - April 5th, 2025
- Changes in the immune index before and after surgery in urinary malignancy patients with AIDS - Nature - April 5th, 2025
- Non-immune targeting of CXCR3 compromises mitochondrial function and suppresses tumor growth in glioblastoma - Nature - April 5th, 2025
- 8 Supplements That Will Boost Your Immune System - Verywell Health - April 5th, 2025
- Improving immunotherapy for the treatment of hepatocellular carcinoma: learning from patients and preclinical models - Nature - April 5th, 2025
- Redefining the immune landscape of hepatitis A virus infection - Nature - April 5th, 2025
- What Happens to Your Immune Health When You Take Vitamin C and Zinc Together? - Verywell Health - April 5th, 2025
- Diet Has A Major Impact On The Immune System - WorldHealth.net - April 5th, 2025
- Top 7 ways to boost your immune system - The Indian Express - April 5th, 2025
- Kinetics of pIgR and IgM immune responses in snakehead ( Channa argus ) to inactivated Aeromonas hydrophila via immersion and intraperitoneal... - April 5th, 2025
- What Is Man Flu? - Cleveland Clinic Health Essentials - April 5th, 2025
- Dynamics of T cell subpopulations and plasma cytokines during the first year of antineoplastic therapy in patients with breast cancer: the BEGYN-1... - April 5th, 2025
- Publication in npj Vaccines Reports Cross-reactive and Long-Lasting Immune Responses for self-amplifying mRNA (samRNA) COVID-19 Vaccine Booster... - April 5th, 2025
- 9 Supplements, Tonics, and Oils to Boost Immune Health - W Magazine - April 5th, 2025
- Preoperative pan-immuno-inflammatory values and albumin-to-globulin ratio predict the prognosis of stage IIII colorectal cancer - Nature - April 5th, 2025
- Systemic Lupus Erythematosus (Lupus) - Who gets it? | NIAMS - February 7th, 2025
- Systemic Lupus Erythematosus (Lupus) Basics - National Institute of ... - February 7th, 2025
- Long COVID: women at greater risk compared to men could immune system differences be the cause? - The Conversation - February 7th, 2025
- What is Pemphigus? Symptoms & Causes | NIAMS - February 7th, 2025
- How the immune system influences pancreatic cancer: New interactions provide therapeutic insights - Medical Xpress - February 7th, 2025
- Mitochondrias Secret Power Unleashed in the Battle Against Inflammation - SciTechDaily - February 7th, 2025
- WNT11 Promotes immune evasion and resistance to Anti-PD-1 therapy in liver metastasis - Nature.com - February 7th, 2025
- The role of the behavioral immune system in the expression of short and long-term orientation in young Chilean men during the COVID-19 pandemic - BMC... - February 7th, 2025
- Harvard nutritionist eats these 5 foods to keep her 'immune system strong' and 'energy high' - CNBC - February 7th, 2025
- Micro Immune Response On-chip (MIRO) models the tumour-stroma interface for immunotherapy testing - Nature.com - February 7th, 2025
- Personalized Therapeutic Vaccine Steers the Immune System to Fight Kidney Cancer | Newswise - Newswise - February 7th, 2025
- Identification of m6A methyltransferase-related WTAP and ZC3H13 predicts immune infiltrates in glioblastoma - Nature.com - February 7th, 2025
- Serotonin attenuates tumor necrosis factor-induced intestinal inflammation by interacting with human mucosal tissue - Nature.com - February 7th, 2025
- Identification of the immune infiltration and biomarkers in ulcerative colitis based on liquidliquid phase separation-related genes - Nature.com - February 7th, 2025
- FLASH radiation reprograms lipid metabolism and macrophage immunity and sensitizes medulloblastoma to CAR-T cell therapy - Nature.com - February 7th, 2025
- Young Innovators: U of S researcher uses bat immune systems to find next generation therapies - Saskatoon Star-Phoenix - February 7th, 2025
- World Cancer Day 2025: Chronic stress, immune system, and cancer risk- How are these connected? - The Times of India - February 7th, 2025
- New research unlocks key to long-lasting immune response in cancer and chronic diseases - The Peter Doherty Institute for Infection and Immunity - February 7th, 2025
- Microbial Dynamics and Immune Response to NTHi in COPD - Physician's Weekly - February 7th, 2025
- MHE Week in Review RFK Jr. Spotlight - Managed Healthcare Executive - February 7th, 2025
- Psoriasis Basics: Overview, Symptoms, and Causes - January 27th, 2025
- Vitiligo Symptoms, Treatment & Causes | NIAMS - January 27th, 2025
- The Surprising Connection Between Obesity, Parasites, and Your Immune System - SciTechDaily - January 27th, 2025
- Versatile 69p spice that boosts immune system can go in soups, smoothies and milk - Express - January 27th, 2025
- How the skins secret immune system could lead to needle-free vaccines - Gavi, the Vaccine Alliance - January 27th, 2025
- Fevers link with a key kind of immunity is surprisingly ancient - Science News Magazine - January 27th, 2025
- Immunology - The Scientist - January 27th, 2025
- Opinion: Immune System And Ageing Why We Get More Vulnerable As We Age - ABP Live - January 27th, 2025
- 'Forever chemicals' (PFAS) may weaken immune function in children, leading to more frequent infections - U.S. Right to Know - January 27th, 2025
- Cellular Signals That Wreak Havoc in Sepsis are Revealed - LabRoots - January 27th, 2025
- New Combination Immunotherapy Targets Melanoma and Breast Cancer with Promising Results - Inside Precision Medicine - January 27th, 2025
- New Research in The Journal of Poultry Science: Trained Immunity Offers Novel Poultry Disease Prevention Strategies - PR Newswire - January 27th, 2025
- Scientists uncover how cancer cells hijack T-cells, making it harder for the body to fight back - Medical Xpress - January 27th, 2025
- MiNK Therapeutics Targets Immune Reconstitution to Combat - GlobeNewswire - January 27th, 2025
- Mitochondria may be a promising therapeutic target for inflammatory diseases - Medical Xpress - January 27th, 2025
- Explainer: What is Guillain-Barr Syndrome and how it affects the immune system - Mathrubhumi English - January 27th, 2025
- Yes, Some Vaccines Contain Aluminum. Thats a Good Thing. - The New York Times - January 27th, 2025
- You Are What You Eat? MD Breaks Down The Science Of The Gut Microbiome - mindbodygreen - January 27th, 2025
- Potential gamechanger: Researchers discover basis for immunotherapy-induced myocarditis - Healio - January 27th, 2025
- Ozempic and Wegovy may boost health, from addiction to dementia - BBC.com - January 27th, 2025
- Neutrophil diversity and function in health and disease - Nature.com - December 6th, 2024
- Harnessing the Power of the Immune System for Breast Cancer Treatment - Breast Cancer Research Foundation - December 6th, 2024
- Study Examines Neoantigen Landscapes and Their Role in Immunotherapy Efficacy - Consult QD - December 6th, 2024
- The 5 Best Teas to Support Your Immune System This Cold & Flu Season - EatingWell - December 6th, 2024
- Engineered immune cells may be able to tame inflammation - Medical Xpress - December 6th, 2024
- Hybrid model of tumor growth, angiogenesis and immune response yields strategies to improve antiangiogenic therapy - Nature.com - December 6th, 2024
- Opioids interfere with cancer immunotherapy, but another type of drug could help - Medical Xpress - December 6th, 2024
- RANKL cytokine restores thymus cells in old mice, reducing tumor growth and improving T cell immune response - Fierce Biotech - December 6th, 2024
- Predictive role of neutrophil percentage-to-albumin ratio, neutrophil-to-lymphocyte ratio, and systemic immune-inflammation index for mortality in... - December 6th, 2024
- Immuno-Oncology Strategic Industry Research Report 2023-2024 & 2030: Approval of Pembrolizumab (Keytruda) and Nivolumab (Opdivo), which Target... - December 6th, 2024
- Study cracks the cold case of immunotherapy resistance - News-Medical.Net - December 6th, 2024
- New immune therapy improves survival and reduces tumor burden in glioblastoma - News-Medical.Net - December 6th, 2024
- Identification of immune-related hub genes and potential molecular mechanisms involved in COVID-19 via integrated bioinformatics analysis - Nature.com - December 6th, 2024
- Immune Cell Breakthrough: Scientists Discover a Hidden Ally in the Fight Against Cancer - SciTechDaily - December 6th, 2024
- Rising temperatures impact the immune system of wild monkeys - Earth.com - December 6th, 2024
- Study declaring Alzheimer's to be a "brain disease" proven to be fabricated - Earth.com - December 6th, 2024
- Warming temperatures impact immune performance of wild monkeys, U-M study shows - University of Michigan News - December 6th, 2024
- New study explores heart risks of cancer immunotherapy - News-Medical.Net - December 6th, 2024
- 'Incredible' way to boost your immune system naturally and ward of colds and flu this winter - The Mirror - December 6th, 2024
- Tis the Season to Boost Your Immune System - Mix93.3 - December 6th, 2024