Can a pill provide the same cognitive benefits as exercise? [University of California, San Francisco]
The results of research in mice suggest that a little-studied liver enzyme called Gpld1 may be responsible for the well-known benefits of exercise on the aging brain, and that its regenerative effects may be transferrable directly from one animal to another. The studies, headed by scientists at the University of California, San Francisco (UCSF), Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, showed that when aged, sedentary mice received plasma transfusions from regularly exercising mice, they gained the same beneficial neurological effects without having to hit the running wheel themselves.
The findings could feasibly lead to new therapies that confer the neuroprotective effects of physical activity on people who cant exercise due to physical limitations. If there were a drug that produced the same brain benefits as exercise, everyone would be taking it, said Saul Villeda, PhD, a UCSF assistant professor in the departments of anatomy and of physical therapy and rehabilitation science. Now our study suggests that at least some of these benefits might one day be available in pill form. Research lead Villeda is senior author of the teams published paper in Science, which is titled, Blood factors transfer beneficial effects of exercise on neurogenesis and cognition to the aged brain.
Exercise is one of the best-studied and most powerful ways of protecting the brain from age-related cognitive decline. Exercise has been shown to improve cognition in individuals at risk of neurodegenerative diseases such as Alzheimers disease (AD) and frontotemporal dementia, even for individuals who carry rare gene variants that inevitably lead to dementia.
In the context of dementia-related neurodegenerative diseases, exercise is correlated with reduced risk for cognitive decline in the elderly, improves cognition in populations at risk for AD, and is associated with better neurobehavioral outcomes even in autosomal dominant AD, the scientists wrote. However, not everyone is able to exercise regularly as they get older, perhaps due to physical limitations or other disabilities. Despite the evident benefit of exercise, its application is hindered in the elderly, as physical frailty or poor health can decrease a persons ability or willingness to exercise, the authors continued. Researchers have long searched for strategies that could confer some of the same neurological benefits of exercise to people with low physical activity levels.
Villedas lab has previously shown thatbiological factorspresent in the blood of young mice can rejuvenate theaging mouse brain, and conversely, factors in the blood of older mice can bring on premature age-related cognitive decline in young mice. transfer of blood from young animals, either by heterochronic parabiosis (in which young and old circulatory systems are joined) or by administration of young blood plasma, improves regenerative capacity and cognition in aged mice, the authors noted.
These previous results led Alana Horowitz, a graduate student in the Villeda lab, and postdoctoral researcher Xuelai Fan, PhD, to look for blood-borne factors that might also confer the benefits of exercise, which is known to rejuvenate the aging brain in a similar fashion to that seen in the labs young blood experiments. Given parallels between the effects of exercise and young blood, we tested whether exercise-induced circulating blood factors could confer the beneficial effects of exercise on regenerative and cognitive function in the aged brain, the scientists continued.
To do this Horowitz and Fan took blood from aged mice who had exercised regularly for seven weeks and administered it to sedentary aged mice. They found that four weeks of this treatment produced dramatic improvements in learning and memory in the older mice, similar to that seen in the mice who had exercised regularly. When they examined the animals brains, they found evidence of enhanced production of new neurons in the hippocampus, a well-documented proxy for the rejuvenating benefits of exercise.
To discover what specific biological factors in the blood might be behind these effects, Horowitz, Fan, and colleagues measured the amounts of different soluble proteins in the blood of active versus sedentary mice. They identified 30 candidate proteins, 19 of which, to their surprise, were predominantly derived from the liver and many of which had previously been linked to functions in controlling the bodys metabolism. Two of these proteins, Gpld1 and Pon1m stood out as particularly important for metabolic processes, and the researchers chose to study Gpld1 in more detail because few previous studies had investigated its function. We figured that if the protein had already been investigated thoroughly, someone would have stumbled upon this effect, Villeda said. I like to sayif youre going to take a risk by exploring something new, you might as well go big!
The team found that Gpld1 increased in the blood circulation of mice following exercise, and that levels of the protein correlated closely with improvements in the animals cognitive performance. Analysis of human data collected as part of the UCSF Memory and Aging Centers Hillblom Aging Network study also found elevated blood levels in healthy, active elderly adults, compared with levels in less active elders. These data identify Gpld1 as an exercise-induced circulating blood factor in aged mice and humans with potential relevance to cognitive function in mice, they wrote.
To test whether Gpld1 itself could drive the observed benefits of exercise, the researchers then engineered mice to overexpress Gpld1 in the liver, and evaluated the animals performance in multiple tests that measure various aspects of cognition and memory. To their amazement, three weeks of the treatment produced effects similar to six weeks of regular exercise, and also generated dramatic increases in new neuron growth in the hippocampus. Together, these data indicate that selectively increasing liver-derived systemic concentrations of Gpld1 is sufficient to improve adult neurogenesis and cognitive function in the aged hippocampus, the scientists stated.
To be honest, I didnt expect to succeed in finding a single molecule that could account for so much of the benefits of exercise on the brain, Villeda noted. It seemed more likely that exercise would exert many small, subtle effects that add up to a large benefit, but which would be hard to isolate. When I saw these data, I was completely floored Through this protein, the liver is responding to physical activity and telling the old brain to get young. Further laboratory experiments have shown that Gpld1 produced by the liver does not pass through the blood-brain barrier. Instead, the protein appears to exert its effects on the brain via pathways that reduce inflammation and blood coagulation throughout the body. Both blood coagulation and inflammation are known to be elevated with age and have been linked to dementia and age-related cognitive decline.
This is a remarkable example of liver-to-brain communication that, to the best of our knowledge, no one knew existed, Villeda continued. It makes me wonder what else we have been missing in neuroscience by largely ignoring the dramatic effects other organs might have on the brain, and vice versa.
The findings could have more broad-ranging implications, the authors suggested. Cumulatively, our data show that beneficial effects of exercise on the aged brain can be transferred through administration of blood components Given that transfer of young blood simultaneously elicits central and peripheral enhancements in regenerative capacity in aged mice, our data raise the possibility that the beneficial effects of exercise could be promoted broadly across tissues through circulating blood factors.
The Villeda lab is now working to better understand precisely how Gpld1 interacts with other biochemical signaling systems to produce its brain-boosting effects. The hope is to identify specific targets for therapeutics that could one day confer many of the protective benefits of exercise for the aging brain.
Go here to see the original:
Could Some of the Benefits of Exercise on the Brain be Captured in a Pill? - Genetic Engineering & Biotechnology News
- Regenerative Medicine: The Future of Healthcare - April 14th, 2025
- Regenerative medicine: Current therapies and future ... - April 14th, 2025
- Space Doctors and Stem Cell Production in Microgravity - Cedars-Sinai - April 14th, 2025
- Tracking Tissue Development to Inspire Regenerative Therapies - the-scientist.com - April 14th, 2025
- Study aims to stop Alzheimers with stem cell infusions - Drug Target Review - April 14th, 2025
- RheeGen's Topical Stem Cell Therapy Pioneers Future of Regenerative Medicine - Yahoo Finance - April 14th, 2025
- Lab-grown meat: you may find it icky, but it could drive forward medical research - ET HealthWorld - April 14th, 2025
- Advances in regenerative medicine-based approaches for skin ... - March 9th, 2025
- Regenerative Medicine: Case Study for Understanding and Anticipating ... - March 9th, 2025
- Top 3 Grants in Regenerative Medicine: February 2025 - RegMedNet - March 9th, 2025
- Editorial: Tissue Engineering and Regenerative Medicine: Advances, Controversies, and Future Directions by Frontiers in Bioengineering and... - March 9th, 2025
- Malaysia To Host 7th World Conference On Exercise And Regenerative Medicine - BERNAMA - March 9th, 2025
- Advancing Regenerative Medicine: A Comprehensive Outlook on the Global Cell Therapy Market - openPR - March 9th, 2025
- Worlds First 3D-Printed Penis Implant Successfully Restores Function in Pigs and Rabbits - The Daily Galaxy --Great Discoveries Channel - March 9th, 2025
- AskBio Receives FDA Regenerative Medicine Advanced Therapy designation for Parkinsons disease investigational gene therapy - Bayer - February 24th, 2025
- What is Regenerative Medicine? | Regenerative Medicine | University of ... - February 24th, 2025
- The quest for a communication device that tells cells to regenerate the body - Big Think - February 24th, 2025
- Transforming the future of regenerative medicine - Reuters - February 24th, 2025
- Breakthrough Alzheimer's Treatment Gets Official WHO Recognition - Major Milestone for Rare Disease Therapy - StockTitan - February 24th, 2025
- Regenerative Medicine Pioneer with 35-Year Track Record Takes Scientific Helm at ZEO ScientifiX - StockTitan - February 24th, 2025
- 101 Guide to Regenerative Medicine Types | Applications, Challenges - February 7th, 2025
- Regenerative Medicine | What is it? | ASCPM - February 7th, 2025
- Regenerative medicine and advanced therapy | NIST - February 7th, 2025
- Therapeutic Reprogramming toward Regenerative Medicine - February 7th, 2025
- Novel living biomaterial aims to advance regenerative medicine - February 7th, 2025
- UC Irvine-led discovery of new skeletal tissue advances regenerative ... - February 7th, 2025
- Top 3 Grants in Regenerative Medicine: January 2025 - RegMedNet - February 7th, 2025
- Advancements in lung regeneration: from bench to bedside - February 7th, 2025
- Entos Pharmaceuticals Awarded $4 Million USD in Funding from the California Institute for Regenerative Medicine (CIRM) for its Congenital Generalized... - February 7th, 2025
- Adia Nutrition Officially Enters $15.1 Billion Global Stem Cell Market with Domestic Treatments by Successful Opening of First Florida Location -... - February 7th, 2025
- Cell therapy weekly: iPSC therapy IND for Phase III trial cleared - RegMedNet - February 7th, 2025
- Creative Medical Technology Holdings Expands Collaboration with Greenstone Biosciences to Accelerate iPSCelz - EIN News - February 7th, 2025
- Placental Stem Cell Therapy Solution Market Size And Booming - openPR - February 7th, 2025
- Stem Cells Applications in Regenerative Medicine and Disease ... - December 6th, 2024
- Ageing of stem cells reduces their capacity to form tumours - Nature.com - December 6th, 2024
- Master of Science in Regenerative Medicine and Entrepreneurships FUSION program information session - The Daily | Case Western Reserve University - December 6th, 2024
- BioRestorative Therapies Announces Notice of Allowance of - GlobeNewswire - December 6th, 2024
- Stem Cell Therapy Strategic Business Report 2024 - - GlobeNewswire - December 6th, 2024
- University of Colorado Anschutz Medical Campus-Led Team Receives Up to $46 Million to Develop Innovative Treatment to Cure Blindness - University of... - December 6th, 2024
- Affimed Announces Acimtamig and AlloNK Combination Granted Regenerative Medicine Advanced Therapy (RMAT) Designation by the U.S. Food and Drug... - December 6th, 2024
- Navigating the hope and hype of regenerative medicine - October 14th, 2024
- Cell and Gene Therapy Investment Ticks Up After Hard Few Years - BioSpace - October 14th, 2024
- Crackdowns on Unproven Stem Cell Therapies Worked Abroad - Medpage Today - October 14th, 2024
- How Regenerative Medicine can help you get out of pain without surgery - WJLA - October 14th, 2024
- Regenity Biosciences Receives 510(k) Clearance for RejuvaKnee, a Groundbreaking Regenerative Meniscus Implant Device to Redefine the Standard of Care... - October 14th, 2024
- Buy, Sell, Hold: Cell and Gene Therapy - BioPharm International - October 14th, 2024
- Mayo Clinic offers unique regenerative medicine procedure for knee and ... - September 13th, 2024
- Regenerative Medicine to the Rescue - Cleveland Clinic - September 13th, 2024
- Regenerative medicine applications: An overview of clinical trials - September 13th, 2024
- The Progression of Regenerative Medicine and its Impact on Therapy ... - September 13th, 2024
- Immune cell injection significantly boosts healing of bone, muscle & skin - September 13th, 2024
- Regenerative Medicine Foundation - September 13th, 2024
- BridgeBio Receives FDAs Regenerative Medicine Advanced Therapy (RMAT ... - September 13th, 2024
- Tissue engineering and regenerative medicine approaches in colorectal ... - September 13th, 2024
- Tubular scaffolds boost stem cell-driven bone regeneration in skull defects - Phys.org - September 13th, 2024
- Finding the right path(way) to reduce fat accumulation in the liver - Medical University of South Carolina - September 13th, 2024
- NAMRU EURAFCENT Signs Agreement with Egypt Center for Research and Regenerative Medicine - DVIDS - September 13th, 2024
- BridgeBio Receives FDAs Regenerative Medicine Advanced Therapy (RMAT) Designation for BBP-812 Canavan Disease Gene Therapy Program - StockTitan - September 13th, 2024
- BioNexus Gene Lab Corp. Signs Strategic Partnership MOU with Shenzhen Rongguang Group to Advance Cancer Screening, Precision Medicine, and... - September 13th, 2024
- Neurona Therapeutics Receives $3.8 Million CIRM Grant for the Development of Next Generation Neural Cell Therapy Candidate - Yahoo Finance - September 13th, 2024
- Aging is associated with functional and molecular changes in distinct hematopoietic stem cell subsets - Nature.com - September 13th, 2024
- Cellino Awarded $25M in Funding from the Advanced Research Projects Agency for Health (ARPA-H) - Business Wire - September 13th, 2024
- HepaTx Enters Collaboration with Mayo Clinic to Advance Cell Therapy Technology for Liver Disease to Clinical Trials - Longview News-Journal - September 13th, 2024
- Obsidian Therapeutics Receives FDA Regenerative Medicine Advanced Therapy (RMAT) Designation for OBX-115 for the Treatment of Advanced Melanoma -... - September 4th, 2024
- Regenerative Medicine in Orthopedic Surgery: Expanding Our Toolbox - Cureus - September 4th, 2024
- Somite.ai takes pre-seed to $10M as it eyes to become the OpenAI of stem cell biology - CTech - September 4th, 2024
- Longeveron Announces Positive Type C Meeting with U.S. FDA Regarding Pathway to BLA for Lomecel-B in Hypoplastic Left Heart Syndrome (HLHS) - Yahoo... - September 4th, 2024
- Study Explores Potential Of 3D Printed Regenerative Breast Implants - Forbes - September 4th, 2024
- Nikon Announces New Image Analysis Functions to Empower Drug Discovery Research for Cancer, Neurological Disease, and Regenerative Medicine - PR... - September 4th, 2024
- Trinity researcher scores 800,000 to boost regenerative medicine - SiliconRepublic.com - September 4th, 2024
- Seeing the future: Zebrafish regenerates fully functional photoreceptor cells and restores its vision - EurekAlert - September 4th, 2024
- Regenerative Medicine Industry Projected to Surge to USD 73,084.2 Million by 2033, Growing at an 18.5% CAGR - Future Market Insights - September 4th, 2024
- What is regenerative medicine? | Northwell Health - July 2nd, 2024
- Science Saturday: A regenerative reset for aging - July 2nd, 2024
- Science Saturday: A year of new directions and advancements for ... - March 29th, 2024
- Diverse ways regenerative medicine is advancing health care - March 29th, 2024
- Stem cell-based regenerative medicine - PMC - National Center for ... - February 27th, 2024
- Regenerative medicine | NIST - February 10th, 2024
- San Jose blood stem cell donor meets 15-year-old whose life he saved in Los Angeles - The Mercury News - May 17th, 2023
- Regenerative medicine: Current therapies and future directions - April 23rd, 2023