Nearly 20 years ago, scientists stunned the world when they announced they had decoded the genes that make up a human being. They hoped to use that genetic blueprint to advance something called gene therapy which locates and fixes the genes responsible for different diseases.
Now, a clinical trial at the National Institutes of Health is doing exactly that in an attempt to cure sickle cell anemia, a devastating genetic disease that kills hundreds of thousands of people around the world every year.
For the past 15 months we've been following the scientists, and patients, who are ushering in a genetic revolution.
Jennelle Stephenson: I'm excited.
Ray Stephenson Today is the big day.
It's the day after Christmas, 2017, and 27-year-old Jennelle Stephenson has come with her father and brother from Florida to the National Institutes of Health, just outside Washington, D.C.
Jennelle Stephenson: Good morning.
Dr. John Tisdale: Good morning.
She's one of a small group of patients to receive an infusion containing altered DNA.
Nurse: This is what they look like.
Jennelle Stephenson: Merry Christmas to me.
Brother: Best Christmas present ever.
Jennelle Stephenson: Yay.
The clear liquid in the bag contains Jennelle's stem cells that have been genetically modified.
Dr. John Tisdale: There are about 500 million in there.
Jennelle Stephenson: Oh, my goodness.
The hope is the new DNA in the cells will cure Jennelle of sickle cell anemia, a brutal disease that causes debilitating pain.
Dr. Jon LaPook: At its worst, on a scale of zero to 10, how bad was your pain?
Jennelle Stephenson: We can go beyond a 10. It's terrible, it's horrible.
Dr. Jon LaPook: Pain where?
Jennelle Stephenson: Everywhere. My back, my shoulders, elbows, arms, legs, even my cheekbones, just pain.
Dr. Jon LaPook: Can you actually describe it?
Jennelle Stephenson: It's a very sharp, like, stabbing, almost feels like bone-crushing pain. Feels like someone's kind of constricting your bones, and then releasing constantly.
Pain from sickle cell can occur anywhere blood circulates. That's because red blood cells, normally donut-shaped, bend into an inflexible sickle shape, causing them to pile up inside blood vessels. The resulting traffic jam prevents the normal delivery of oxygen throughout the body, leading to problems that include bone deterioration, strokes and organ failure.
The gene that causes sickle cell anemia evolved in places like sub-Saharan Africa because it protects people from malaria. There, millions have the disease, and it's estimated more than 50 percent of babies born with it die before the age of five.
In the United States, it affects a hundred thousand people, mostly African-Americans.
For Jennelle, having the disease as a child often meant spending Christmas in the hospital. As an adult, she struggled through pain to complete college, but keeping a job was tough because something as simple as walking up stairs could trigger "a pain crisis."
Dr. Jon LaPook: Do you have friends who've died from sickle cell?
Jennelle Stephenson: I do. Yes, younger than me.
Dr. Jon LaPook: And you've known this your whole life growing up?
Jennelle Stephenson: Right.
Dr. Jon LaPook: That you could potentially die early?
Jennelle Stephenson: Right. Yes.
Dr. Jon LaPook: Did you think you would die early?
Jennelle Stephenson: I did, actually. When I hit about 22, I was like, "You know, I'm-- for a sickle celler, I'm kind of middle-aged right now."
Dr. Jon LaPook: What are some of the things that you've always wanted to do that you couldn't do?
Jennelle Stephenson: Honestly, everybody laughs at me for this, I just want to run, to be honest.
Dr. Jon LaPook: Things that most people would take for granted.
Jennelle Stephenson: Just basic things.
One of the most cruel parts of the disease, Jennelle and other patients have told us, is being accused of faking pain to get narcotics, being labeled a "drug-seeker." During one trip to the emergency department, when she fell to the floor in pain, a doctor refused to help her.
Jennelle Stephenson: And I'm looking up at her, and I'm in tears, and, I'm like, "I'm doing the best that I can."
Dr. Jon LaPook: And you gotta be thinking.
Jennelle Stephenson: I just, sometimes I don't understand, I don't get it. Like... Sorry. I'm in so much pain, and you think I just want some morphine. And it just makes me sad that some people in the medical community just don't get it.
Dr. Francis Collins is director of the National Institutes of Health, the largest biomedical research agency in the world. He oversees a nearly 40 billion dollar budget that funds more than 400,000 researchers world-wide.
Dr. Collins was head of the Human Genome Project at the NIH in 2000 when he made a landmark announcement: after a decade of work, scientists had finally decoded the genes that make up a human being.
Dr. Jon LaPook: When did it all start for you?
Dr. Francis Collins: I got excited about genetics as a first-year medical student. A pediatric geneticist came to teach us about how genetics was relevant to medicine. And he brought patients to class and one of the first patients he brought was a young man with sickle cell disease who talked about the experience of sickle cell crises and how incredibly painful those are. And yet, it was all because of one single letter in the DNA that is misplaced, a "T" that should have been an "A." And that was profound. You could have all of that happen because of one letter that was misspelled.
The double helix of DNA is made up of billions of pieces of genetic information. What Dr. Collins is saying is, out of all that, it's just one error in the DNA code -- a "T" that should have been an "A" -- that causes sickle cell anemia. Fix that error, and you cure the disease.
But figuring out how to do that would take more than 20 years of research and a little serendipity.
Dr. Collins was playing in the NIH rock band in 2016 when his bass player -- hematologist Dr. John Tisdale -- started riffing on an idea.
Dr. John Tisdale: We'd finished setting up and went for a pizza before--
Dr. Francis Collins: I remember that.
Dr. John Tisdale: --before the gig. And at this point I pitched to Francis that it was really time that we do something definitive for sickle cell disease.
In the laboratory, Dr. Tisdale and his collaborators created a gene with the correct spelling. Then, to get that gene into the patient, they used something with a frightening reputation: HIV, the virus that causes AIDS. It turns out HIV is especially good at transferring DNA into cells.
Here's how it works. The corrected gene, seen here in yellow, is inserted into the HIV virus. Then, bone marrow stem cells are taken from of a patient with sickle cell anemia. In the laboratory those cells are combined with the virus carrying that new DNA.
Dr. John Tisdale: This virus will then find its way to one of those cells and drop off a copy or two of the correctly spelled gene. And then these cells will go back to the patient.
If the process works, the stem cells with the correct DNA will start producing healthy red blood cells.
Dr. Jon LaPook: I can hear people, our viewers out there, thinking, "Wait a second, how do you know you're not gonna get AIDS from the HIV virus?"
Dr. John Tisdale: The short answer is we cut out the bits that cause infection in HIV and we really replace that with the gene that's misspelled in sickle cell disease so that it transfers that instead of the infectious part.
Dr. Jon LaPook: The stakes here are enormous.
Dr. Francis Collins: Yes.
Dr. Jon LaPook: There's really very little safety net here, right?
Dr. Francis Collins: Make no mistake, we're talking about very cutting-edge research where the certainty about all the outcomes is not entirely there. We can look back at the history of gene therapy and see there have been some tragedies.
Dr. Jon LaPook: Deaths?
Dr. Francis Collins: Yes.
In 1999, 18-year-old Jesse Gelsinger received altered DNA to treat a different genetic disease. He died four days later from a massive immune response. And in another trial, two children developed cancer.
Jennelle Stephenson understands. This is a trial with huge risks and no guarantees.
Jennelle Stephenson: This is it.
When she arrived at the NIH clinical center in December 2017, Jennelle asked her brother, Ray, for some help.
Jennelle Stephenson: There goes Ray cutting my hair. Oh, snip.
She decided to cut off all her hair, rather than watch it fall out from the massive dose of chemotherapy needed to suppress her immune system so her body wouldn't reject the altered stem cells.
Jennelle Stephenson: I don't know how to feel right now. I'm a little emotional. But I'm OK, it will grow back.
A few days after the chemotherapy, Jennelle received the infusion of genetically modified cells.
Dr. John Tisdale: Is it going good now?
Nurse: Yes.
Jennelle Stephenson: It's just a waiting game.
But the wait was a painful one. Not only for Jennelle, but also for her father Ray. Who did what little he could as the effects of the chemotherapy kicked in, stripping Jennelle's throat and stomach of their protective layers.
Jennelle Stephenson: Oh, that hurts.
She was unable to speak for a week and lost 15 pounds. And because having a severely weakened immune system means even a mild cold can turn deadly, Jennelle had to stay in the hospital for nearly a month.
Last spring, she moved back to Florida and returned to the NIH for periodic check-ups.
Dr. John Tisdale: These are her red blood cells.
It didn't take long for Dr. Tisdale to notice something was happening.
Dr. Jon LaPook: This is Jennelle before any treatment?
Dr. John Tisdale: Right. All across her blood you can see these really abnormal shapes. This one in particular is shaped like a sickle.
Nine months later, this is what Dr. Tisdale saw: not a sickle cell in sight.
Dr. Jon LaPook: Was there ever a moment where you saw one of these normal-looking smears and thought, "Is this the right patient?"
Dr. John Tisdale: Oh, absolutely. When you're a scientist, you're skeptical all the time. So, first thing you do is look and make sure it's that patient, go grab another one, make sure it's the same. And we've done all that. And, indeed, her blood looks normal.
Jiu-Jitsu Teacher: Move. Switch your arms and move.
Remember, Jennelle used to struggle just to walk up a flight of stairs...
Jiu-Jitsu Teacher: And you fall.
...and a fall like this would have landed her in the hospital.
Jiu-Jitsu Teacher: Boom. Yeah. Good job. You did it. Bam.
Dr. Jon LaPook: Jennelle. You look amazing.
Jennelle Stephenson: Thank you.
Dr. Jon LaPook: I have to say, I was a little nervous when you were thrown and you went down on the mat.
Jennelle Stephenson: It was nothing. It was nothing. My body just felt strong.
Dr. Jon LaPook: Tell me about the adjustment that you need to make to go from the old you to the new you.
Jennelle Stephenson: My body it almost felt like it was, like, itching to do more. And I was like, "All right, well, let's go swimming today." "Let's go to the gym today." I'm like, all right, my body loves this. I kinda like it because my, I guess all my endorphins started pumping.
Dr. Jon LaPook: The endorphin high, something you had never experienced.
Jennelle Stephenson: Never experienced before. Yup.
Read the original:
Could gene therapy cure sickle cell anemia? - 60 Minutes ...
- Researchers Create Gene Therapy with Potential to Treat Peripheral Pain ... - December 28th, 2024
- How CRISPR Is Changing Cancer Research and Treatment - December 28th, 2024
- Gene Therapy Shows Long-Term Vision Benefits in Rare Eye Disease - December 28th, 2024
- 100 cell and gene therapy leaders to watch in 2025 - December 28th, 2024
- Can a new gene therapy reverse heart failure? - Futurity - December 28th, 2024
- Sustained visual improvements in LHON patients treated with AAV gene therapy - Medical Xpress - December 28th, 2024
- Nebraska Medicine administers novel gene therapy to first hemophilia ... - December 28th, 2024
- Gene Therapy for Cardiomyopathies Presents Promising Alternative to Current Treatment - Managed Healthcare Executive - December 28th, 2024
- Stem Cell Transplantation Still the Main Treatment Option for Beta-Thalassemia - Medpage Today - December 28th, 2024
- Caribou Overhyped Gene-Therapy Testing, Investor Class Suit Says - Bloomberg Law - December 28th, 2024
- WuXi AppTec sells off cell and gene therapy operations in US, UK - FirstWord Pharma - December 28th, 2024
- Top 5 Print Publication Articles of 2024 - Managed Healthcare Executive - December 28th, 2024
- Gene Therapy Shows Long-Term Vision Benefits in Rare Eye Disease - Medpage Today - December 28th, 2024
- UPenn gene therapy pioneers biotech gets $34 million in funding - The Philadelphia Inquirer - December 28th, 2024
- PHC Corporation to present LiCellGrow at Advanced Therapies Week 2025 - Drug Target Review - December 28th, 2024
- The Evolution of Cell & Gene Therapy: Development and Manufacturing Insights and the Role of CDMOs - Pharmaceutical Technology Magazine - December 28th, 2024
- Pig kidney transplants, new schizophrenia drug: Here are 5 of the biggest medical breakthroughs in 2024 - ABC News - December 28th, 2024
- Cell Therapy Manufacturing Trends And Advancements Continuing In 2025 - BioProcess Online - December 28th, 2024
- Can Gene Therapy Treat Chronic Pain? - LabRoots - December 28th, 2024
- Driving innovation: India's foray into gene and cell therapies - The Economic Times - December 28th, 2024
- Governor Hochul Celebrates the Opening Of New York's First Cell and Gene Therapy Hub at Roswell Park Comprehensive Cancer Center in Buffalo - PR Web - December 19th, 2024
- GenSight Biologics Provides Update on Regulatory Discussions and Financial Situation - Business Wire - December 19th, 2024
- Atsena completes dosing in part A of X-linked retinoschisis gene therapy trial - Healio - December 19th, 2024
- Astellas and Sangamo Therapeutics Announce Capsid License Agreement to Deliver Genomic Medicines for Neurological Diseases - StreetInsider.com - December 19th, 2024
- Ring Therapeutics lays off just under half of staff in 2nd wave of cuts this year, CEO set to step down - Fierce Biotech - December 19th, 2024
- Gov. Hochul celebrates opening of first cell and gene therapy hub in NYS - WIVB.com - News 4 - December 19th, 2024
- Muscular Dystrophy Association and Coalition to Cure - GlobeNewswire - December 19th, 2024
- Atsena Therapeutics Announces Dosing Completed in Part A of - GlobeNewswire - December 19th, 2024
- 'A milestone moment': Roswell Park celebrates opening New York's first cell and gene therapy hub - WKBW 7 News Buffalo - December 19th, 2024
- Gene therapy to prevent stillbirth and premature delivery developed - News-Medical.Net - December 19th, 2024
- Breaking through the blood-brain barrier - Science - December 19th, 2024
- Cell therapy weekly: partnerships for advancing cell and gene therapies - RegMedNet - December 19th, 2024
- Roswell Park Opens Cell, Gene Therapy Hub - WGRZ.com - December 19th, 2024
- Cartherics gets $300k grant to advance Cell and Gene Therapy development - ETHealthWorld - December 19th, 2024
- ELMCRx Solutions Offers Cell & Gene Therapy Support Through Partnership with Emerging Therapy Solutions (ETS) - Business Wire - December 19th, 2024
- Fueling the Future of Gene Therapies with Manufacturing Innovation, Upcoming Webinar Hosted by Xtalks - PR Web - December 19th, 2024
- Concinnity secures 3M Seed funding to advance AI-driven gene therapy safety - Tech.eu - December 19th, 2024
- Viral Vectors-Based Gene Therapy for Non-Human Primates Market to Reach Over USD 92.76 Million by 2034 - EIN News - December 19th, 2024
- The pharma industry's silence on RFK Jr., and efforts by parents to develop gene therapies for their children - STAT - December 19th, 2024
- Tenaya reports positive early data on heart gene therapy - Investing.com - December 19th, 2024
- Unraveling The Complexity Of Cell Therapy: Advancements And Challenges - Life Science Leader Magazine - November 27th, 2024
- Novartis wagers more than $1B on gene therapies for the nervous system - BioPharma Dive - November 27th, 2024
- Gene therapy for geographic atrophy in age-related macular degeneration: current insights - Nature.com - November 27th, 2024
- Novartis buys gene therapy startup Kate Therapeutics, joining pursuit of muscular dystrophy treatment - STAT - November 27th, 2024
- At MGB's gene therapy institute, effort to win first venture capital investments continues - The Business Journals - November 27th, 2024
- Neurogene reports death of Rett patient left in critical condition by high dose of gene therapy - Fierce Biotech - November 27th, 2024
- Alzheimer Disease Awareness Month 2024: Looking Back at a Year of Progress in Cell and Gene Therapy - CGTLive - November 27th, 2024
- Why This Gene-Therapy Companys Stock Is Rising 228% - Yahoo! Voices - November 27th, 2024
- How Minaris is Tackling the Scalability Challenge in Cell and Gene Therapy: A Conversation with CEO, Dr. Hiroto Bando - geneonline - November 27th, 2024
- RNA editing is the next frontier in gene therapy heres what you need to know - The Conversation - November 27th, 2024
- Assessment of gene therapy viral vectors in RPE cells - News-Medical.Net - November 27th, 2024
- Retinal organoids and RPE models for retinal gene therapy development - News-Medical.Net - November 27th, 2024
- China Vows to Bolster Gene Therapy Research in Key Biotech Hub - Bloomberg - November 27th, 2024
- Gene Therapy - Volume 31 Issue 11-12, November 2024 - Nature.com - November 27th, 2024
- Iovance Biotherapeutics Announces the Promotion of Raj Puri, M.D., Ph.D. to Chief Regulatory Officer - GlobeNewswire - November 27th, 2024
- Patient Dies in Gene Therapy Trial, But FDA Permits Neurogene to Proceed With Low Dose - MedCity News - November 27th, 2024
- New CRISPR system pauses genes, rather than turning them off permanently - Livescience.com - November 27th, 2024
- Liver-targeting gene therapy lowers mice whole-body SMA symptoms - SMA News Today - November 27th, 2024
- Bright breakthroughs: Real stories of beating rare disease - Science - November 27th, 2024
- Sarepta Therapeutics Announces Global Licensing and Collaboration Agreement with Arrowhead Pharmaceuticals for Multiple Clinical and Preclinical siRNA... - November 27th, 2024
- A Year of DMD Gene Therapy Trial Failures - AJMC.com Managed Markets Network - November 3rd, 2024
- Hemophilia B: Gene Therapy Shows Promise - Medscape - November 3rd, 2024
- Around the Helix: Cell and Gene Therapy Company Updates October 30, 2024 - CGTLive - November 3rd, 2024
- 2024 PharmaVoice 100s: Cell and Gene Therapy Pioneers - PharmaVoice - November 3rd, 2024
- Cell therapy weekly: support for commercialization of complex therapies - RegMedNet - November 3rd, 2024
- Lexeo shares early data on Alzheimers gene therapy - Endpoints News - November 3rd, 2024
- Medicaid Aiming to Improve Patient Access to High-Cost Therapies - AJMC.com Managed Markets Network - November 3rd, 2024
- The Significance of Gene Therapy in Neuromuscular Medicine at the 2025 MDA Conference: Paul Melmeyer, MPP - Neurology Live - November 3rd, 2024
- OHSU researchers identify gene that could be key to future HIV vaccine - OHSU News - November 3rd, 2024
- Purespring gene therapy reduces kidney scarring in mice and is stably expressed in pigs - Fierce Biotech - November 3rd, 2024
- Data Roundup: October 2024 Features Update for TCR-Based Autologous Cell Therapy in Melanoma, the First Clinical Demonstration of Therapeutic RNA... - November 3rd, 2024
- NewBiologix Launches Xcell to Accelerate, Optimize, and Scale Gene and Cell Therapy Production - Business Wire - November 3rd, 2024
- Vertex Pharmaceuticals and CRISPR Therapeutics Casgevy: the 200 Best Inventions of 2024 - TIME - November 3rd, 2024
- Addressing gene and cell therapy commercialization challenges - TechTarget - November 3rd, 2024
- University of Pennsylvania gene therapy spinout Interius BioTherapeutics doses patient, achieves CAR therapy first - The Business Journals - November 3rd, 2024
- Roche will aim to tackle gene therapy challenges through Dyno deal - The Pharma Letter - November 3rd, 2024
- Behind the Breakthroughs: How to Turn $1,000,000 CAR Ts into Real Medicines - Inside Precision Medicine - November 3rd, 2024
- Terumo automates manufacturing to expand cell & gene therapies - European Pharmaceutical Manufacturer - November 3rd, 2024
- 12-Year-Old Leaves Washington DC Hospital As The First Patient To Receive Approved Gene Therapy For Sickle Cell Disease - AfroTech - November 3rd, 2024
- Lexeo Therapeutics Announces Positive Interim Data for - GlobeNewswire - November 3rd, 2024