Nearly 20 years ago, scientists stunned the world when they announced they had decoded the genes that make up a human being. They hoped to use that genetic blueprint to advance something called gene therapy which locates and fixes the genes responsible for different diseases.
Now, a clinical trial at the National Institutes of Health is doing exactly that in an attempt to cure sickle cell anemia, a devastating genetic disease that kills hundreds of thousands of people around the world every year.
For the past 15 months we've been following the scientists, and patients, who are ushering in a genetic revolution.
Jennelle Stephenson: I'm excited.
Ray Stephenson Today is the big day.
It's the day after Christmas, 2017, and 27-year-old Jennelle Stephenson has come with her father and brother from Florida to the National Institutes of Health, just outside Washington, D.C.
Jennelle Stephenson: Good morning.
Dr. John Tisdale: Good morning.
She's one of a small group of patients to receive an infusion containing altered DNA.
Nurse: This is what they look like.
Jennelle Stephenson: Merry Christmas to me.
Brother: Best Christmas present ever.
Jennelle Stephenson: Yay.
The clear liquid in the bag contains Jennelle's stem cells that have been genetically modified.
Dr. John Tisdale: There are about 500 million in there.
Jennelle Stephenson: Oh, my goodness.
The hope is the new DNA in the cells will cure Jennelle of sickle cell anemia, a brutal disease that causes debilitating pain.
Dr. Jon LaPook: At its worst, on a scale of zero to 10, how bad was your pain?
Jennelle Stephenson: We can go beyond a 10. It's terrible, it's horrible.
Dr. Jon LaPook: Pain where?
Jennelle Stephenson: Everywhere. My back, my shoulders, elbows, arms, legs, even my cheekbones, just pain.
Dr. Jon LaPook: Can you actually describe it?
Jennelle Stephenson: It's a very sharp, like, stabbing, almost feels like bone-crushing pain. Feels like someone's kind of constricting your bones, and then releasing constantly.
Pain from sickle cell can occur anywhere blood circulates. That's because red blood cells, normally donut-shaped, bend into an inflexible sickle shape, causing them to pile up inside blood vessels. The resulting traffic jam prevents the normal delivery of oxygen throughout the body, leading to problems that include bone deterioration, strokes and organ failure.
The gene that causes sickle cell anemia evolved in places like sub-Saharan Africa because it protects people from malaria. There, millions have the disease, and it's estimated more than 50 percent of babies born with it die before the age of five.
In the United States, it affects a hundred thousand people, mostly African-Americans.
For Jennelle, having the disease as a child often meant spending Christmas in the hospital. As an adult, she struggled through pain to complete college, but keeping a job was tough because something as simple as walking up stairs could trigger "a pain crisis."
Dr. Jon LaPook: Do you have friends who've died from sickle cell?
Jennelle Stephenson: I do. Yes, younger than me.
Dr. Jon LaPook: And you've known this your whole life growing up?
Jennelle Stephenson: Right.
Dr. Jon LaPook: That you could potentially die early?
Jennelle Stephenson: Right. Yes.
Dr. Jon LaPook: Did you think you would die early?
Jennelle Stephenson: I did, actually. When I hit about 22, I was like, "You know, I'm-- for a sickle celler, I'm kind of middle-aged right now."
Dr. Jon LaPook: What are some of the things that you've always wanted to do that you couldn't do?
Jennelle Stephenson: Honestly, everybody laughs at me for this, I just want to run, to be honest.
Dr. Jon LaPook: Things that most people would take for granted.
Jennelle Stephenson: Just basic things.
One of the most cruel parts of the disease, Jennelle and other patients have told us, is being accused of faking pain to get narcotics, being labeled a "drug-seeker." During one trip to the emergency department, when she fell to the floor in pain, a doctor refused to help her.
Jennelle Stephenson: And I'm looking up at her, and I'm in tears, and, I'm like, "I'm doing the best that I can."
Dr. Jon LaPook: And you gotta be thinking.
Jennelle Stephenson: I just, sometimes I don't understand, I don't get it. Like... Sorry. I'm in so much pain, and you think I just want some morphine. And it just makes me sad that some people in the medical community just don't get it.
Dr. Francis Collins is director of the National Institutes of Health, the largest biomedical research agency in the world. He oversees a nearly 40 billion dollar budget that funds more than 400,000 researchers world-wide.
Dr. Collins was head of the Human Genome Project at the NIH in 2000 when he made a landmark announcement: after a decade of work, scientists had finally decoded the genes that make up a human being.
Dr. Jon LaPook: When did it all start for you?
Dr. Francis Collins: I got excited about genetics as a first-year medical student. A pediatric geneticist came to teach us about how genetics was relevant to medicine. And he brought patients to class and one of the first patients he brought was a young man with sickle cell disease who talked about the experience of sickle cell crises and how incredibly painful those are. And yet, it was all because of one single letter in the DNA that is misplaced, a "T" that should have been an "A." And that was profound. You could have all of that happen because of one letter that was misspelled.
The double helix of DNA is made up of billions of pieces of genetic information. What Dr. Collins is saying is, out of all that, it's just one error in the DNA code -- a "T" that should have been an "A" -- that causes sickle cell anemia. Fix that error, and you cure the disease.
But figuring out how to do that would take more than 20 years of research and a little serendipity.
Dr. Collins was playing in the NIH rock band in 2016 when his bass player -- hematologist Dr. John Tisdale -- started riffing on an idea.
Dr. John Tisdale: We'd finished setting up and went for a pizza before--
Dr. Francis Collins: I remember that.
Dr. John Tisdale: --before the gig. And at this point I pitched to Francis that it was really time that we do something definitive for sickle cell disease.
In the laboratory, Dr. Tisdale and his collaborators created a gene with the correct spelling. Then, to get that gene into the patient, they used something with a frightening reputation: HIV, the virus that causes AIDS. It turns out HIV is especially good at transferring DNA into cells.
Here's how it works. The corrected gene, seen here in yellow, is inserted into the HIV virus. Then, bone marrow stem cells are taken from of a patient with sickle cell anemia. In the laboratory those cells are combined with the virus carrying that new DNA.
Dr. John Tisdale: This virus will then find its way to one of those cells and drop off a copy or two of the correctly spelled gene. And then these cells will go back to the patient.
If the process works, the stem cells with the correct DNA will start producing healthy red blood cells.
Dr. Jon LaPook: I can hear people, our viewers out there, thinking, "Wait a second, how do you know you're not gonna get AIDS from the HIV virus?"
Dr. John Tisdale: The short answer is we cut out the bits that cause infection in HIV and we really replace that with the gene that's misspelled in sickle cell disease so that it transfers that instead of the infectious part.
Dr. Jon LaPook: The stakes here are enormous.
Dr. Francis Collins: Yes.
Dr. Jon LaPook: There's really very little safety net here, right?
Dr. Francis Collins: Make no mistake, we're talking about very cutting-edge research where the certainty about all the outcomes is not entirely there. We can look back at the history of gene therapy and see there have been some tragedies.
Dr. Jon LaPook: Deaths?
Dr. Francis Collins: Yes.
In 1999, 18-year-old Jesse Gelsinger received altered DNA to treat a different genetic disease. He died four days later from a massive immune response. And in another trial, two children developed cancer.
Jennelle Stephenson understands. This is a trial with huge risks and no guarantees.
Jennelle Stephenson: This is it.
When she arrived at the NIH clinical center in December 2017, Jennelle asked her brother, Ray, for some help.
Jennelle Stephenson: There goes Ray cutting my hair. Oh, snip.
She decided to cut off all her hair, rather than watch it fall out from the massive dose of chemotherapy needed to suppress her immune system so her body wouldn't reject the altered stem cells.
Jennelle Stephenson: I don't know how to feel right now. I'm a little emotional. But I'm OK, it will grow back.
A few days after the chemotherapy, Jennelle received the infusion of genetically modified cells.
Dr. John Tisdale: Is it going good now?
Nurse: Yes.
Jennelle Stephenson: It's just a waiting game.
But the wait was a painful one. Not only for Jennelle, but also for her father Ray. Who did what little he could as the effects of the chemotherapy kicked in, stripping Jennelle's throat and stomach of their protective layers.
Jennelle Stephenson: Oh, that hurts.
She was unable to speak for a week and lost 15 pounds. And because having a severely weakened immune system means even a mild cold can turn deadly, Jennelle had to stay in the hospital for nearly a month.
Last spring, she moved back to Florida and returned to the NIH for periodic check-ups.
Dr. John Tisdale: These are her red blood cells.
It didn't take long for Dr. Tisdale to notice something was happening.
Dr. Jon LaPook: This is Jennelle before any treatment?
Dr. John Tisdale: Right. All across her blood you can see these really abnormal shapes. This one in particular is shaped like a sickle.
Nine months later, this is what Dr. Tisdale saw: not a sickle cell in sight.
Dr. Jon LaPook: Was there ever a moment where you saw one of these normal-looking smears and thought, "Is this the right patient?"
Dr. John Tisdale: Oh, absolutely. When you're a scientist, you're skeptical all the time. So, first thing you do is look and make sure it's that patient, go grab another one, make sure it's the same. And we've done all that. And, indeed, her blood looks normal.
Jiu-Jitsu Teacher: Move. Switch your arms and move.
Remember, Jennelle used to struggle just to walk up a flight of stairs...
Jiu-Jitsu Teacher: And you fall.
...and a fall like this would have landed her in the hospital.
Jiu-Jitsu Teacher: Boom. Yeah. Good job. You did it. Bam.
Dr. Jon LaPook: Jennelle. You look amazing.
Jennelle Stephenson: Thank you.
Dr. Jon LaPook: I have to say, I was a little nervous when you were thrown and you went down on the mat.
Jennelle Stephenson: It was nothing. It was nothing. My body just felt strong.
Dr. Jon LaPook: Tell me about the adjustment that you need to make to go from the old you to the new you.
Jennelle Stephenson: My body it almost felt like it was, like, itching to do more. And I was like, "All right, well, let's go swimming today." "Let's go to the gym today." I'm like, all right, my body loves this. I kinda like it because my, I guess all my endorphins started pumping.
Dr. Jon LaPook: The endorphin high, something you had never experienced.
Jennelle Stephenson: Never experienced before. Yup.
Read the original:
Could gene therapy cure sickle cell anemia? - 60 Minutes ...
- A Year of DMD Gene Therapy Trial Failures - AJMC.com Managed Markets Network - November 3rd, 2024
- Hemophilia B: Gene Therapy Shows Promise - Medscape - November 3rd, 2024
- Around the Helix: Cell and Gene Therapy Company Updates October 30, 2024 - CGTLive - November 3rd, 2024
- 2024 PharmaVoice 100s: Cell and Gene Therapy Pioneers - PharmaVoice - November 3rd, 2024
- Cell therapy weekly: support for commercialization of complex therapies - RegMedNet - November 3rd, 2024
- Lexeo shares early data on Alzheimers gene therapy - Endpoints News - November 3rd, 2024
- Medicaid Aiming to Improve Patient Access to High-Cost Therapies - AJMC.com Managed Markets Network - November 3rd, 2024
- The Significance of Gene Therapy in Neuromuscular Medicine at the 2025 MDA Conference: Paul Melmeyer, MPP - Neurology Live - November 3rd, 2024
- OHSU researchers identify gene that could be key to future HIV vaccine - OHSU News - November 3rd, 2024
- Purespring gene therapy reduces kidney scarring in mice and is stably expressed in pigs - Fierce Biotech - November 3rd, 2024
- Data Roundup: October 2024 Features Update for TCR-Based Autologous Cell Therapy in Melanoma, the First Clinical Demonstration of Therapeutic RNA... - November 3rd, 2024
- NewBiologix Launches Xcell to Accelerate, Optimize, and Scale Gene and Cell Therapy Production - Business Wire - November 3rd, 2024
- Vertex Pharmaceuticals and CRISPR Therapeutics Casgevy: the 200 Best Inventions of 2024 - TIME - November 3rd, 2024
- Addressing gene and cell therapy commercialization challenges - TechTarget - November 3rd, 2024
- University of Pennsylvania gene therapy spinout Interius BioTherapeutics doses patient, achieves CAR therapy first - The Business Journals - November 3rd, 2024
- Roche will aim to tackle gene therapy challenges through Dyno deal - The Pharma Letter - November 3rd, 2024
- Behind the Breakthroughs: How to Turn $1,000,000 CAR Ts into Real Medicines - Inside Precision Medicine - November 3rd, 2024
- Terumo automates manufacturing to expand cell & gene therapies - European Pharmaceutical Manufacturer - November 3rd, 2024
- 12-Year-Old Leaves Washington DC Hospital As The First Patient To Receive Approved Gene Therapy For Sickle Cell Disease - AfroTech - November 3rd, 2024
- Lexeo Therapeutics Announces Positive Interim Data for - GlobeNewswire - November 3rd, 2024
- New FDA designations granted to NCATS for rare disease therapies. - NCBI - October 22nd, 2024
- $1.8 Million Awarded to Study the Durability of Gene Therapy - University of Arkansas Newswire - October 22nd, 2024
- By the numbers: US leads charge of cell and gene therapies - BioWorld Online - October 22nd, 2024
- University of Arkansas Researcher Awarded $1.8M for Gene Therapy Study - Arkansas Business - October 22nd, 2024
- Cellectis to Present Data on TALE-Base Editors and Non-Viral Gene Therapy at the ESGCT 31st Annual Congress - StockTitan - October 22nd, 2024
- Around the Helix: Cell and Gene Therapy Company Updates October 16, 2024 - CGTLive - October 22nd, 2024
- Japan mulls ways to boost cell, gene therapy approvals - BioWorld Online - October 22nd, 2024
- A New Type of Gene Therapy Shows Promise for Treating Retinitis Pigmentosa - Managed Healthcare Executive - October 22nd, 2024
- Buy, Sell, Hold: Cell and Gene Therapy - Part 2 - BioPharm International - October 22nd, 2024
- When a Miracle Cure Is Left on the Shelf - Bloomberg - October 22nd, 2024
- Genethon to Showcase the Latest Advances in Gene Therapies for Multiple Diseases at the ESGCT 31 - Business Wire - October 22nd, 2024
- MeiraGTx's gene therapy improves motor function and quality of life in phase 2 Parkinson's trial - Fierce Biotech - October 22nd, 2024
- 5 Sickle Cell Therapies to Watch Following Pfizers Oxbryta Exit - BioSpace - October 22nd, 2024
- Fiocruz and GEMMABio announce partnership for the development of gene therapies - Fiocruz - October 22nd, 2024
- JPMA on Japans Biotech Industry: Cancer, Cardiovascular, and Aging Lead Diseases; Antibody, Cell, and Gene Therapies Top the Innovation List -... - October 22nd, 2024
- Cell and Gene Therapy Clinical Trial Market is expected to reach USD 119.3 Billion by 2032 at a 24.9% of CAGR - PharmiWeb.com - October 22nd, 2024
- Buy, Sell, Hold: Cell and Gene Therapy - Part 3 - Pharmaceutical Technology Magazine - October 22nd, 2024
- The role of quality assurance in accelerating drug development for emerging therapies - pharmaphorum - October 22nd, 2024
- Cellectis to Present Data on TALE-Base Editors and Non-Viral Gene Therapy at the ESGCT 31st Annual Congress - The Manila Times - October 22nd, 2024
- Nucleic Acid and Gene Therapies in Neuromuscular Disorders Market is projected to grow at a CAGR of - PharmiWeb.com - October 22nd, 2024
- Gene therapy: advances, challenges and perspectives - PMC - October 6th, 2024
- Meeting on the Mesa to Highlight Cell and Gene Therapy Opportunities, Challenges - BioSpace - October 6th, 2024
- Ferring opens doors to Finnish manufacturing hub as supply of its bladder cancer gene therapy continues to grow - FiercePharma - October 6th, 2024
- Meet Boston's National STEM Champion who's a junior in high school studying gene therapy - CBS Boston - October 6th, 2024
- Gene therapy research offers hope for kids with life-altering condition - WCVB Boston - October 6th, 2024
- Is gene therapy the next big step in vision loss treatment? - Medical News Today - October 6th, 2024
- Protein's Role in Insulin Signaling Could Have Implications for Gene Therapy - AJMC.com Managed Markets Network - October 6th, 2024
- Scientists overcome major challenge in gene therapy and drug delivery - News-Medical.Net - October 6th, 2024
- Innovative gene therapy for hemophilia - healthcare-in-europe.com - October 6th, 2024
- The Largest Network of Research Sites Vetted to Execute Complexities of Cell & Gene Therapy (CGT) Trials Now Includes 1,500 Sites - PR Newswire - October 6th, 2024
- Weight loss drug breakthroughs, gene therapies, and more: 8 clinical trials to watch right now - Quartz - October 6th, 2024
- Cell therapy weekly: Promising Phase I results for Parkinsons disease cell therapy - RegMedNet - October 6th, 2024
- Targeting CREB-binding protein (CBP) abrogates colorectal cancer stemness through epigenetic regulation of C-MYC - Nature.com - October 6th, 2024
- Forge Biologics Announces the FUEL AAV Manufacturing Platform to Provide Developers with a More Efficient Solution for Gene Therapy Production -... - October 6th, 2024
- Ninth Circuit Decision Marks Critical Legal Victory for U.S. FDA in Mission to Protect Patients from Unregulated Cell Therapy Products - PR Newswire - October 6th, 2024
- Gene therapy: What is it and how does it work? | Live Science - September 21st, 2024
- How Does Gene Therapy Work? Types, Uses, Safety - Healthline - September 21st, 2024
- In race to make gene therapy for age-related blindness, 4D Molecular announces positive results - STAT - September 21st, 2024
- Penn gene therapy pioneer Jim Wilson explains why he's leaving - The Business Journals - September 21st, 2024
- Whats the Meaning of Cure in Gene Therapy? - Managed Healthcare Executive - September 21st, 2024
- Ori doubles down on Charles River collaboration with promising new data on its automated cell therapy platform - FiercePharma - September 21st, 2024
- Doctors cured her sickle-cell disease. So why is she still in pain? - Nature.com - September 21st, 2024
- Gene Therapy Company Increases Focus on Mesothelioma Program - Mesothelioma.net Blog - September 21st, 2024
- Sickle cell gene therapies roll out slowly : Shots - Health News - NPR - September 21st, 2024
- Patients At Last Begin Receiving Vertex-CRISPR and Bluebird Sickle Cell Gene Therapies - BioSpace - September 21st, 2024
- Beacon Therapeutics Presents 36-Month Interim Results from Phase I/2 HORIZON Trial of AGTC-501 in Patients with XLRP - PR Newswire - September 21st, 2024
- Beacons Gene Therapy Shows Continued Promise in Trial - TipRanks - September 21st, 2024
- How stem cell and gene therapies are revolutionising healthcare - Express Healthcare - September 21st, 2024
- Nanoscope Therapeutics to be Featured at Annual EUretina Congress in Barcelona - PR Newswire - September 21st, 2024
- 6-year-old Tennessee boy denied potentially life-saving gene therapy by insurance company - WCYB - September 21st, 2024
- Seeking a sickle cell cure: 12-year-old in DC is 1st patient in US to get new gene therapy - NBC Washington - May 24th, 2024
- Game-changer: The Hindu Editorial on approval for gene therapy to treat sickle cell disease and beta thalassemia - The Hindu - December 13th, 2023
- Early trials show promise for innovative gene therapy in lung cancer treatment - WJAR - October 16th, 2023
- Cell and Gene Therapy Manufacturing Quality Control Market Growing Trends and Technology Forecast to 2029 |... - SeeDance News - October 16th, 2023
- How Gene Therapy Can Cure or Treat Diseases | FDA - March 21st, 2023
- Genetic Therapies - What Are Genetic Therapies? | NHLBI, NIH - March 21st, 2023
- FDA approves novel gene therapy to treat patients with a rare form of ... - December 28th, 2022
- Gene Therapy - Discover How It Works Its Types And Applications - BYJUS - December 28th, 2022
- IVERIC bio Subsidiary Sells Assets of Gene Therapy Product Candidates for Treatment of Retinal Diseases - Marketscreener.com - December 28th, 2022
- Mustang Bio Announces Phase 1/2 Clinical Trial Data of MB-106, a First-in-Class CD20-targeted, Autologous CAR T Cell Therapy, to be Presented at 11th... - October 31st, 2022