Cell and gene therapies seek to correct the root cause of an illness at the molecular level. These game-changing medicines are reshaping how we address previously untreatable illnesses transforming peoples lives.
Cell and gene therapy represent overlapping fields of research with similar therapeutic goals developing a treatment that can correct the underlying cause of a disease, often a rare inherited condition that can be life-threatening or debilitating and has limited treatment options.
While these technologies were initially developed in the context of treating rare diseases caused by a single faulty gene, they have since evolved towards tackling more common diseases, says Professor Rafael J. Yez-Muoz, director of the Centre of Gene and Cell Therapy (CGCT) at Royal Holloway University of London.
A powerful example is the chimeric antigen receptor (CAR) T-cell therapies, which have been approved for treating certain blood cancers. The approach involves genetically modifying a patients T cells in the laboratory before reintroducing them into the body to fight their disease.
For the first time, we had an example of gene therapy to treat a more common disease demonstrating that the technology has wide applicability, enthuses Yez-Muoz.
To date, 24 cellular and gene therapy products have received approval from the US Food and Drug Administration (FDA) including life-changing treatments for patients with rare diseases, such as inherited forms of blindness and neuromuscular conditions. A variety of gene and cell-based therapies for both rare and common diseases are also currently in development across many therapeutic areas, offering hope for many more families in coming years.
This webinar will provide an introduction to the regulatory framework for cell and gene therapies and highlight the importance of chemistry, manufacturing and controls. Watch to learn about regulatory concerns, safety and quality testing throughout the product lifecycle and key acronyms and terminology.
Gene therapies seek to introduce specific DNA sequences into a patients body to treat, prevent or potentially cure a disease. This may involve the delivery of a functional gene into cells to replace a gene that is missing or causing a problem or other strategies using nucleic acid sequences (such as antisense oligonucleotides or short interfering RNAs [siRNAs]) to reduce, restore or modify gene expression. More recently, scientists are also developing genome-editing technologies that aim to change the cells DNA at precise locations to treat a specific disease.
The key step in successful gene therapy relies on the safe and efficient delivery of genetic material into the target cells, which is carried out by packaging it into a suitable delivery vehicle (or vector). Many current gene therapies employ modified viruses based on adenoviruses, adeno-associated viruses (AAV), and lentiviruses as vectors due to their intrinsic ability to enter cells. But non-viral delivery systems such as lipid nanoparticles (LNPs) have also been successfully employed to deliver RNA-based therapeutics into cells.
A big advantage of using viral vectors for gene delivery is they are longer lasting than non-viral systems, states Dr. Rajvinder Karda, lecturer in gene therapy at University College London. Many of the rare diseases were aiming to tackle are severe and we need to achieve long-term gene expression for these treatments to be effective.
While improved technological prowess empowers the development of CRISPR-edited therapies, supply-chain and manufacturing hurdles still pose significant barriers to clinical and commercialization timelines. Watch this webinar to learn more about the state of CRISPR cell and gene therapies, challenges in CRISPR therapy manufacturing and a next-generation manufacturing facility.
Viral-vector gene therapies are either administered directly into the patients body (in vivo), or cells harvested from a patient are instead modified in the laboratory (ex vivo) and then reintroduced back into the body. Major challenges for in vivo gene delivery approaches are with the safe and efficient targeting of the therapeutic to the target cells and overcoming any potential immune responses to the vectors.
As well as getting the genetic material into the affected cells, we also need to try and limit it reaching other cells as expressing a gene in a cell where its not normally active could cause problems, explains Dr. Gerry McLachlan, group leader at the Roslin Institute in Edinburgh.
For example, the liver was identified as a major site of toxicity for an AAV-based gene therapy approved for treating spinal muscular atrophy (SMA), a type of motor neuron disease that affects people from a very young age.
Unfortunately, these viruses are leaky as theyre also going to organs that dont need therapy meaning you can get these off-target effects, says Karda. Theres still work to be done to develop and refine these technologies to make them more cell- and organ-specific.
It is also important to ensure the gene is expressed at the right level in the affected cells too high and it may cause side effects and too little may render the treatment ineffective. In a recent major advancement in the field, scientists developed a dimmer switch system Xon that enables gene expression to be precisely controlled through exposure to an orally delivered small molecule drug. This novel system offers an unprecedented opportunity to refine and tailor the application of gene therapies in humans.
Download this whitepaper to discover an electroporation system that resulted in CAR transfection efficiencies as high as 70% in primary human T cells, can avoid the potential risks associated with viral transduction and is able to produce CAR T cells at a sufficient scale for clinical and therapeutic applications.
In 1989, a team of researchers identified the gene that causes the chronic, life-limiting inherited disease cystic fibrosis (CF) the cystic fibrosis transmembrane conductance regulator (CFTR). This was the first ever disease-causing gene to be discovered marking a major milestone in the field of human genetics. In people with CF, mutations in the CFTR gene can result in no CTFR protein, or the protein being made incorrectly or at insufficient levels all of which lead to a cascade of problems that affect the lungs and other organs.
Our team focuses on developing gene therapies to treat respiratory diseases in particular, were aiming to deliver the CTFR gene into lung cells to treat CF patients, says McLachlan.
The results of the UK Respiratory Gene Therapy Consortiums most recent clinical trial showed that an inhaled non-viral CTFR gene therapy formulation led to improvements in patient lung function.
While this was encouraging, the effects were modest and we need to develop a more potent delivery vehicle, explains McLachlan. Weve also been working on a viral-based gene therapy using a lentiviral vector to introduce a healthy copy of the CTFR gene into cells of the lung.
Kardas team focuses on developing novel gene therapy and gene-editing treatments for incurable genetic diseases affecting the central and peripheral nervous system and Yez-Muoz is aiming to develop new treatments for rare neurodegenerative diseases that affect children, including SMA and ataxia telangiectasia (AT).
But a significant barrier for academic researchers around the world is accessing the dedicated resources, facilities and expertise required to scale up and work towards the clinical development and eventually the commercial production of gene and cell therapies. These challenges will need to be addressed and overcome if these important advancements are to successfully deliver their potentially life-changing benefits to patients.
Download this app note to discover how electron activated dissociation can obtain in-depth structural characterization of singly charged, ionizable lipids and related impurities, decrease risk of missing critical low abundance impurities and increase confidence in product quality assessment.
After many decades of effort, the future of gene and cell therapies is incredibly promising. A flurry of recent successes has led to the approval of several life-changing treatments for patients and many more products are in development.
Its no longer just about hope, but now its a reality with a growing number of rare diseases that can be effectively treated with these therapies, describes Yez-Muoz. We now need to think about how we can scale up these technologies to address the thousands of rare diseases that exist and even within these diseases, people will have different mutations, which will complicate matters even further.
But as more of these gene and cell-based therapies are approved, there is a growing urgency to address the challenge of equitable access to these innovative treatments around the world.
Gene therapies have the dubious honor of being the most expensive treatments ever and this isnt sustainable in the longer term, says Yez-Muoz. Just imagine being a parent and knowing there is an effective therapy but your child cant access it that would be absolutely devastating.
Here is the original post:
Cell and Gene Therapy: Rewriting the Future of Medicine - Technology Networks
- Comparing Genetics and Molecular Genetics: What's the Difference? - December 19th, 2024
- Standards and guidelines for the interpretation of sequence ... - PubMed - December 19th, 2024
- Chapter 12: Techniques of Molecular Genetics - Biology LibreTexts - December 19th, 2024
- 8.S: Techniques of Molecular Genetics (Summary) - December 19th, 2024
- Master of Science Computational Biology and Quantitative Genetics - December 19th, 2024
- Pitt Researchers Lead Group that Calls for Global Discussion About Possible Risks from Mirror Bacteria - Pitt Health Sciences - December 19th, 2024
- Molecular Genetics Testing - StatPearls - NCBI Bookshelf - November 16th, 2024
- Working with Molecular Genetics (Hardison) - Biology LibreTexts - November 16th, 2024
- Molecular Underpinnings of Genetic and Rare Diseases: From ... - Frontiers - November 16th, 2024
- The molecular genetics of schizophrenia: New findings promise new insights. - November 16th, 2024
- 8: Techniques of Molecular Genetics - Biology LibreTexts - September 4th, 2024
- 1.5: Molecular Genetics - Biology LibreTexts - September 4th, 2024
- Molecular genetics made simple - PMC - National Center for ... - September 4th, 2024
- 4 Introduction to Molecular Genetics - University of Minnesota Twin Cities - September 4th, 2024
- Molecular genetics - Definition and Examples - Biology Online - September 4th, 2024
- A Detailed Look at the Science of Molecular Genetics - KnowYourDNA - September 4th, 2024
- Molecular Genetics | NHLBI, NIH - September 4th, 2024
- Molecular biology - Wikipedia - September 4th, 2024
- Genetics, Molecular & Cellular Biology Admissions - September 4th, 2024
- Researchers map 50,000 of DNAs mysterious knots in the human genome - EurekAlert - September 4th, 2024
- Artificial selection of mutations in two nearby genes gave rise to shattering resistance in soybean - Nature.com - September 4th, 2024
- Mainz Biomed Expands Corporate Health Program for ColoAlert with the Addition of Three New Companies in Germany - Marketscreener.com - April 7th, 2023
- Molecular Genetics and Metabolism | Journal - ScienceDirect - December 11th, 2022
- People don't mate randomly but the flawed assumption that they do is an essential part of many studies linking genes to diseases and traits - The... - November 25th, 2022
- Molecular and Cell Biology and Genetics - Master of Science / PhD ... - October 7th, 2022
- NIPD Genetics: Leading Genetic Testing Company - October 7th, 2022
- Skeletal Biology and Regeneration Students Recognized For Research Excellence - UConn Today - University of Connecticut - October 7th, 2022
- Mary Munson elected fellow of the American Society for Cell Biology - UMass Medical School - October 7th, 2022
- Every Body's Talking at Them: an Interview with Jon Lieff - CounterPunch - October 7th, 2022
- TriBeta invites students to explore opportunities to work with faculty at research fair on Oct. 11 - Ohio University - October 7th, 2022
- Genetics: the Vatican Does Not Intend to Be Behind the Times - FSSPX.News - October 7th, 2022
- Yield10 Bioscience Appoints Willie Loh, Ph.D., to the Board of Directors - citybiz - October 7th, 2022
- Molecular pathways of major depressive disorder converge on the synapse | Molecular Psychiatry - Nature.com - October 7th, 2022
- Sigyn Therapeutics Strengthens Board of Directors With the Appointments of Richa Nand, Jim Dorst and Christopher Wetzel - Yahoo Finance - October 7th, 2022
- UTHSC Researcher Co-Leads Study of Genes that Modulate Aging, Lifespan - UTHSC News - UTHSC News - October 7th, 2022
- GATC Health Investor Conference to Feature First Public Demonstration of Its AI Platform's Drug Discovery Capabilities - PR Newswire - October 7th, 2022
- Three Professors Conferred Tenure and Eleven Promoted - Wesleyan Argus - October 7th, 2022
- Who will get the call from Stockholm? It's time for STAT's 2022 Nobel Prize predictions - STAT - October 7th, 2022
- Dalhousie to present exhibition celebrating Gerhard Herzberg and his legacy - Dal News - October 7th, 2022
- Why Some People Should Rethink Their Morning Cup Of Coffee - Health Digest - October 7th, 2022
- UofL researchers lead the call to increase genetic diversity in immunogenomics - uoflnews.com - July 6th, 2021
- In Brief This Week: Foundation Medicine, Myriad Genetics, Genetron Health, and More - GenomeWeb - July 6th, 2021
- More filling? Tastes great? How flies, and maybe people, choose their food - Yale News - July 6th, 2021
- Genetic mapping of subsets of patients with fragile X syndro | TACG - Dove Medical Press - July 6th, 2021
- What is The Babydust Method? Danielle Lloyd swears method helped her conceive girl - The Mirror - July 6th, 2021
- Datar Cancer Genetics joins hands with US based Iylon Precision Oncology to offer personalized Precision Oncology cancer treatment solutions - PR Web - July 6th, 2021
- Mapping a pathway to competitive production - hortidaily.com - hortidaily.com - July 6th, 2021
- Associations between pancreatic expression quantitative traits and risk of pancreatic ductal adenocarcinoma. - Physician's Weekly - July 6th, 2021
- Global Genomics Market | Rising Incidence of Chronic and Genetic Diseases are Key Factors to Grow Market During 2021-2029 | 23andMe, Agilent... - July 6th, 2021
- The Babydust Method Danielle Lloyd used to conceive a girl after four sons and how it works - RSVP Live - July 6th, 2021
- In the beginning science and faith - The Irish Times - June 24th, 2021
- Ancient Maya Maintained Native Tropical Forest Plants around Their Water Reservoirs | Archaeology - Sci-News.com - June 24th, 2021
- Local foundation awards $1.25 million to MIND Institute to study rare genetic condition - UC Davis Health - June 24th, 2021
- Xlife Sciences AG: Collaboration with the University of Marburg - Yahoo Finance - June 24th, 2021
- Genetics diagnostics in India is on the verge of transformation: Neeraj Gupta, Founder and CEO of Genes2me - The Financial Express - June 24th, 2021
- Precision Medicine: Improving Health With Personalized Solutions - BioSpace - June 24th, 2021
- Half of Portland areas 22 top National Merit winners hail from just 2 schools - OregonLive - June 24th, 2021
- Investing in stem cells, the building blocks of the body - MoneyWeek - June 24th, 2021
- New study finds low levels of a sugar metabolite associates with disability and neurodegeneration in multiple sclerosis - Newswise - May 14th, 2021
- Cernadas-Martn Is a Champion for Marine and Human Diversity | | SBU News - Stony Brook News - May 14th, 2021
- Four Penn Faculty: Election to the National Academy of Sciences - UPENN Almanac - May 14th, 2021
- Is there a difference between a gene-edited organism and a 'GMO'? The question has important implications for regulation - Genetic Literacy Project - May 14th, 2021
- 5 Students Inducted Into American Society for Biochemistry and Molecular Biology Honor Society - Wesleyan Connection - May 14th, 2021
- The Science of Aliens, Part 2: What Kind of Genetic Code Would Extraterrestrials Have? - Air & Space Magazine - May 14th, 2021
- UT Austin Faculty Member Receives 2021 Piper Professor Award - Office of the Executive Vice President and Provost - UT News | The University of Texas... - May 14th, 2021
- Distinguished University of Birmingham plant scientist elected to the Royal Society - University of Birmingham - May 14th, 2021
- Double Hoo Research: Undergrads and Grads Team Up to Create Knowledge - University of Virginia - May 14th, 2021
- Global Genetic Testing Market Top Countries Analysis and Manufacturers With Impact of COVID-19 | 2021-2028 Detail Analysis focusing on Application,... - May 14th, 2021
- Morag Park named to the Order of Quebec - McGill Reporter - McGill Reporter - May 14th, 2021
- Third Rock Ventures Launches Flare Therapeutics With $82 Million Series A - BioSpace - May 14th, 2021
- The Royal Society announces election of new Fellows 2021 - Cambridge Network - May 14th, 2021
- Researchers Decode the "Language" of Immune Cells - Technology Networks - May 14th, 2021
- RepliCel Launches the Next Stage of a Research Project with the University of British Columbia to Build World-Class Hair Follicle Cell Data Map -... - May 14th, 2021
- Mice Sperm Sabotage Other Swimmers With Poison | Smart News - Smithsonian Magazine - February 14th, 2021
- Study Identifies Never-Before-Seen Dual Function in Enzyme Critical for Cancer Growth - Newswise - February 14th, 2021
- Devious sperm 'poison' their rivals, forcing them to swim in circles until they die - Livescience.com - February 14th, 2021
- More needs to be done to find and fight COVID-19 variants, says Colorado researcher - FOX 31 Denver - February 14th, 2021
- Selfish sperm genes 'poison' the competition for the win - Big Think - February 14th, 2021
- Some sperm cells swim faster and even poison their competition to climb to the top - ZME Science - February 14th, 2021
- We are scientists: U of T researchers reach out to girls and women around the world - News@UofT - February 14th, 2021