header logo image


Page 122«..1020..121122123124..»

Archive for the ‘Stem Cell Therapy’ Category

Researchers Study CSCs as Therapeutic Targets for Mesothelioma

Wednesday, July 28th, 2010

Researchers Study Cancer Stem Cells as Therapeutic Targets for Mesothelioma, Asbestos.com, July 26, 2010. Excerpt:

In a study published in the International Journal of Oncology, Cortes-Dericks and colleagues tested whether cancer stem cells in malignant pleural mesothelioma express resistance to cisplatin and pemetrexed, two chemotherapy drugs commonly used to treat mesothelioma cancer.

This news item is based on the OA publication entitled: Putative cancer stem cells in malignant pleural mesothelioma show resistance to cisplatin and pemetrexed by Lourdes Cortes-Dericks, Giovanni L Carboni, Ralph A Schmid and Golnaz Karoubi, Int J Oncol 2010(Aug); 37(2): 437-44. [PubMed citation].

Read More...

Prostate CSCs sensitive to gamma-tocotrienol?

Tuesday, July 27th, 2010

Gamma-Tocotrienol Kills Prostate Cancer Stem Cells, PRNewswire, July 25, 2010. Excerpt:

The scientists found that low doses of gamma-tocotrienol cause apoptosis in the prostate cancer stem cells and suppress their colony formation capability. This results in a lower prostate cancer stem cell population (as defined by the protein markers CD133 and CD44). Further tests in mice models were conducted, where mice implanted with hormonal refractory prostate cancer cells were given gamma-tocotrienol orally. The results showed that gamma- tocotrienol not only reduced tumour size formed, but also decreased the incidence rate of tumour formation by 75%, as compared to the control group of mice, which had 100% tumour formation. These results strongly suggest that gamma-tocotrienol could be developed for prostate cancer prevention and treatment.

The news release by Davos Life Science is based on the publication:

Gamma-tocotrienol as an effective agent in targeting prostate cancer stem cell-like population by Sze Ue Luk and 11 co-authors, including Ming-Tat Ling, Int J Cancer 2010(Jul 8) [Epub ahead of print][PubMed citation].

Comment:

See also a relevant patent application: (WO/2010/047663) Use of Tocotrienol Composition for the Prevention of Cancer.
Publication Date: 29.04.2010
Applicants: DAVOS LIFE SCIENCE PTE. LTD. [SG/SG]; 16 Tuas South Street 5 Singapore 637795 (SG) (All Except US).
LING, Ming Tat [CN/AU]; (AU) (US Only).
YAP, Wei Ney [MY/SG]; (SG) (US Only).
WONG, Yong Chuan [MY/CN]; (CN) (US Only).
YAP, Yee Leng, Daniel [MY/SG]; (SG) (US Only).

Read More...

Prostate CSCs sensitive to gamma-tocotrienol?

Tuesday, July 27th, 2010

Gamma-Tocotrienol Kills Prostate Cancer Stem Cells, PRNewswire, July 25, 2010. Excerpt:

The scientists found that low doses of gamma-tocotrienol cause apoptosis in the prostate cancer stem cells and suppress their colony formation capability. This results in a lower prostate cancer stem cell population (as defined by the protein markers CD133 and CD44). Further tests in mice models were conducted, where mice implanted with hormonal refractory prostate cancer cells were given gamma-tocotrienol orally. The results showed that gamma- tocotrienol not only reduced tumour size formed, but also decreased the incidence rate of tumour formation by 75%, as compared to the control group of mice, which had 100% tumour formation. These results strongly suggest that gamma-tocotrienol could be developed for prostate cancer prevention and treatment.

The news release by Davos Life Science is based on the publication:

Gamma-tocotrienol as an effective agent in targeting prostate cancer stem cell-like population by Sze Ue Luk and 11 co-authors, including Ming-Tat Ling, Int J Cancer 2010(Jul 8) [Epub ahead of print][PubMed citation].

Comment:

See also a relevant patent application: (WO/2010/047663) Use of Tocotrienol Composition for the Prevention of Cancer.
Publication Date: 29.04.2010
Applicants: DAVOS LIFE SCIENCE PTE. LTD. [SG/SG]; 16 Tuas South Street 5 Singapore 637795 (SG) (All Except US).
LING, Ming Tat [CN/AU]; (AU) (US Only).
YAP, Wei Ney [MY/SG]; (SG) (US Only).
WONG, Yong Chuan [MY/CN]; (CN) (US Only).
YAP, Yee Leng, Daniel [MY/SG]; (SG) (US Only).

Read More...

Irradiating brain’s stem cell niche

Monday, July 26th, 2010

Irradiating brain's stem cell niche doubles survival time for patients with brain cancers by Kim Irwin, News Release, UCLA Newsroom, July 23, 2010. Excerpt:

Patients with deadly glioblastomas who received high doses of radiation that hit a portion of the brain which harbors neural stem cells had double the progression-free survival time as patients who had lower doses or no radiation targeting the area, a study from the radiation oncology department at UCLA's Jonsson Comprehensive Cancer Center has found.

The news release is based on this OA publication: Irradiation of the Potential Cancer Stem Cell Niches in the Adult Brain Improves Progression-free Survival of Patients with Malignant Glioma by Patrick Evers and 6 co-authors, including Frank Pajonk, BMC Cancer 2010(Jul 21); 10(1):384. [Epub ahead of print][FriendFeed entry].

Comment: On the brain as a model system to study the impact of radiation dose given to stem cell niches. Provides clinical evidence, based on an improvement in progression-free survival, to support the hypothesis that higher radiation doses to neural stem cell (NSC) niches improves patient survival by eradicating CSCs.

Read More...

Irradiating brain’s stem cell niche

Monday, July 26th, 2010

Irradiating brain's stem cell niche doubles survival time for patients with brain cancers by Kim Irwin, News Release, UCLA Newsroom, July 23, 2010. Excerpt:

Patients with deadly glioblastomas who received high doses of radiation that hit a portion of the brain which harbors neural stem cells had double the progression-free survival time as patients who had lower doses or no radiation targeting the area, a study from the radiation oncology department at UCLA's Jonsson Comprehensive Cancer Center has found.

The news release is based on this OA publication: Irradiation of the Potential Cancer Stem Cell Niches in the Adult Brain Improves Progression-free Survival of Patients with Malignant Glioma by Patrick Evers and 6 co-authors, including Frank Pajonk, BMC Cancer 2010(Jul 21); 10(1):384. [Epub ahead of print][FriendFeed entry].

Comment: On the brain as a model system to study the impact of radiation dose given to stem cell niches. Provides clinical evidence, based on an improvement in progression-free survival, to support the hypothesis that higher radiation doses to neural stem cell (NSC) niches improves patient survival by eradicating CSCs.

Read More...

International Stem Cell Corporation Plans $10 Million Financing Through European Subsidiary

Friday, July 23rd, 2010

International Stem Cell Corporation (OTCBB:ISCO), http://www.intlstemcell.com, announced today that it had entered into a Memorandum of Understanding with ARG Vermogensverwaltung AG ('ARG'), a German Investment Fund, to create a new European subsidiary ('ISCO Europe') to be funded with up to $10 million of capital derived from ARG and other independent sources in Europe. Shares of ISCO Europe are expected to trade on the Deutsche Bourse independently of the company's shares in the US. ISCO Europe's shares will not be convertible into ISCO shares on any US exchange.


ISCO Europe will be licensed by ISCO to develop and market therapeutic products derived from ISCO's technology throughout the Euro Currency Countries and Switzerland. New technologies developed by either ISCO or ISCO Europe will be made mutually available, thus expanding the total funding available to ISCO worldwide without issuing new ISCO shares and enhancing the potential market and scientific development capacity of both companies.


It is expected that the new subsidiary will be funded initially by a private equity investment by ARG and that ARG will then assist in forming an investment group to invest up to $10 million concurrently with the listing of ISCO Europe on the Deutsche Bourse, the largest Securities Exchange in Europe. Following the financing of ISCO Europe, ISCO is expected to retain ownership of 80% or more of this new subsidiary.

'Although negotiations are still at the non-binding memorandum of understanding stage, this transaction, when completed, will expand ISCO's access to capital for worldwide expansion and ISCO's access to new scientific development without requiring equity dilution of ISCO's current shareholders. We are creating an investment, research and development, marketing and distribution entity by adding capital and human resources from Europe to help fulfill ISCO's goal of supplying its proprietary cells and cell therapies to the world,' said Kenneth Aldrich, Chairman and co-founder of ISCO.


ABOUT INTERNATIONAL STEM CELL CORPORATION (ISCO.OB)


International Stem Cell Corporation is a California-based biotechnology company focused on therapeutic and research products. ISCO's core technology, parthenogenesis, results in creation of pluripotent human stem cells from unfertilized oocytes (eggs). These proprietary cells avoid ethical issues associated with use or destruction of viable human embryos and, unlike most other major stem cell types, can be immune matched and be a source of therapeutic cells with minimal rejection after transplantation into hundreds of millions of individuals of differing racial groups. ISCO also produces and markets specialized cells and growth media for therapeutic research worldwide through its subsidiary, Lifeline Cell Technology, and is developing a line of cosmeceutical products via its subsidiary, Lifeline Skin Care. ISCO is advancing novel human stem cell-based therapies where cells have been proven to be efficacious but traditional small molecule and protein therapeutics have not. More information is available on ISCO's website. To subscribe to receive ongoing corporate communications please click on the following link: http://www.b2i.us/irpass.asp?BzID=1468&to=ea&s=0.


FORWARD-LOOKING STATEMENTS

Statements pertaining to anticipated developments and therapeutic applications, the potential benefits of collaborations, affiliations, and other opportunities for the company and its subsidiaries, along with other statements about the future expectations, beliefs, goals, plans, or prospects expressed by management constitute forward-looking statements. Any statements that are not historical fact (including, but not limited to statements that contain words such as "will," "believes," "plans," "anticipates," "expects," "estimates,") should also be considered to be forward-looking statements. Forward-looking statements involve risks and uncertainties, including, without limitation, risks inherent in the development and/or commercialization of potential products and the management of collaborations, uncertainty in the results of clinical trials or regulatory approvals, need and ability to obtain future capital, application of capital resources among competing uses, and maintenance of intellectual property rights. Actual results may differ materially from the results anticipated in these forward-looking statements and as such should be evaluated together with the many uncertainties that affect the company's business, particularly those mentioned in the cautionary statements found in the company's Securities and Exchange Commission filings. The company disclaims any intent or obligation to update forward-looking statements.


Key Words: Stem Cells, Biotechnology, Parthenogenesis


International Stem Cell Corporation
Kenneth C. Aldrich, Chairman
760-940-6383
kaldrich@intlstemcell.com
Or
Andrey Semechkin, Ph.D., CEO
aes@intlstemcell.com

Read More...

International Stem Cell Corporation Plans $10 Million Financing Through European Subsidiary

Friday, July 23rd, 2010

International Stem Cell Corporation (OTCBB:ISCO), http://www.intlstemcell.com, announced today that it had entered into a Memorandum of Understanding with ARG Vermogensverwaltung AG ('ARG'), a German Investment Fund, to create a new European subsidiary ('ISCO Europe') to be funded with up to $10 million of capital derived from ARG and other independent sources in Europe. Shares of ISCO Europe are expected to trade on the Deutsche Bourse independently of the company's shares in the US. ISCO Europe's shares will not be convertible into ISCO shares on any US exchange.


ISCO Europe will be licensed by ISCO to develop and market therapeutic products derived from ISCO's technology throughout the Euro Currency Countries and Switzerland. New technologies developed by either ISCO or ISCO Europe will be made mutually available, thus expanding the total funding available to ISCO worldwide without issuing new ISCO shares and enhancing the potential market and scientific development capacity of both companies.


It is expected that the new subsidiary will be funded initially by a private equity investment by ARG and that ARG will then assist in forming an investment group to invest up to $10 million concurrently with the listing of ISCO Europe on the Deutsche Bourse, the largest Securities Exchange in Europe. Following the financing of ISCO Europe, ISCO is expected to retain ownership of 80% or more of this new subsidiary.

'Although negotiations are still at the non-binding memorandum of understanding stage, this transaction, when completed, will expand ISCO's access to capital for worldwide expansion and ISCO's access to new scientific development without requiring equity dilution of ISCO's current shareholders. We are creating an investment, research and development, marketing and distribution entity by adding capital and human resources from Europe to help fulfill ISCO's goal of supplying its proprietary cells and cell therapies to the world,' said Kenneth Aldrich, Chairman and co-founder of ISCO.


ABOUT INTERNATIONAL STEM CELL CORPORATION (ISCO.OB)


International Stem Cell Corporation is a California-based biotechnology company focused on therapeutic and research products. ISCO's core technology, parthenogenesis, results in creation of pluripotent human stem cells from unfertilized oocytes (eggs). These proprietary cells avoid ethical issues associated with use or destruction of viable human embryos and, unlike most other major stem cell types, can be immune matched and be a source of therapeutic cells with minimal rejection after transplantation into hundreds of millions of individuals of differing racial groups. ISCO also produces and markets specialized cells and growth media for therapeutic research worldwide through its subsidiary, Lifeline Cell Technology, and is developing a line of cosmeceutical products via its subsidiary, Lifeline Skin Care. ISCO is advancing novel human stem cell-based therapies where cells have been proven to be efficacious but traditional small molecule and protein therapeutics have not. More information is available on ISCO's website. To subscribe to receive ongoing corporate communications please click on the following link: http://www.b2i.us/irpass.asp?BzID=1468&to=ea&s=0.


FORWARD-LOOKING STATEMENTS

Statements pertaining to anticipated developments and therapeutic applications, the potential benefits of collaborations, affiliations, and other opportunities for the company and its subsidiaries, along with other statements about the future expectations, beliefs, goals, plans, or prospects expressed by management constitute forward-looking statements. Any statements that are not historical fact (including, but not limited to statements that contain words such as "will," "believes," "plans," "anticipates," "expects," "estimates,") should also be considered to be forward-looking statements. Forward-looking statements involve risks and uncertainties, including, without limitation, risks inherent in the development and/or commercialization of potential products and the management of collaborations, uncertainty in the results of clinical trials or regulatory approvals, need and ability to obtain future capital, application of capital resources among competing uses, and maintenance of intellectual property rights. Actual results may differ materially from the results anticipated in these forward-looking statements and as such should be evaluated together with the many uncertainties that affect the company's business, particularly those mentioned in the cautionary statements found in the company's Securities and Exchange Commission filings. The company disclaims any intent or obligation to update forward-looking statements.


Key Words: Stem Cells, Biotechnology, Parthenogenesis


International Stem Cell Corporation
Kenneth C. Aldrich, Chairman
760-940-6383
kaldrich@intlstemcell.com
Or
Andrey Semechkin, Ph.D., CEO
aes@intlstemcell.com

Read More...

More about salinomycin

Monday, July 19th, 2010

New mission for salinomycin in cancer by Cord Naujokat, SciTopics, July 15, 2010. Excerpt (in the "continue reading" section):

In addition, a very recent study demonstrates that salinomycin overcomes ATP-binding cassette (ABC) transporter-mediated multidrug and apoptosis resistance in human leukemia stem cell-like cells (3).

Reference #3: Salinomycin overcomes ABC transporter-mediated multidrug and apoptosis resistance in human leukemia stem cell-like KG-1a cells, by Dominik Fuchs and 4 co-authors, including Cord Naujokat, Biochem Biophys Res Commun 2010(Apr 16);394(4): 1098-104 [Epub 2010(Mar 27)][PubMed citation].

Comments: Near the end of this article about salinomycin is the comment that "the investigation of its safety, toxicity, pharmacology and anticancer activity in humans will be a challenge." The author then mentions a preliminary study of "a small cohort of patients with metastatic breast cancer or metastatic head and neck cancers". The results of this preliminary study of the toxicity of salinomycin are summarized. They have not yet been published in the peer-reviewed literature, although a manuscript has been submitted [see reference #4 in the article]. The implication of these preliminary results is that there may be a "therapeutic window" for salinomycin, that is, a drug dosage that yields clinically significant benefits in the absence of excessive toxicity.

For a previous commentary on salinomycin, see: Cancer stem cell breakthrough by Kat Arney, Science Update blog, Cancer Research UK, August 14, 2009. Excerpt:

We need to stress that these were laboratory experiments, and there is no evidence yet that salinomycin can treat cancer in humans. Salinomycin is currently used as an antibiotic for chickens and cows, and it can be toxic or even fatal to humans, causing serious muscle and heart problems.

If there is a "therapeutic window" for salinomycin, it could be a small one, and is likely to vary from one tumor to another.

For a previous post to this blog about salinomycin, see: Identification of selective inhibitors of breast CSCs in mice, August 14, 2009.

Read More...

More about salinomycin

Monday, July 19th, 2010

New mission for salinomycin in cancer by Cord Naujokat, SciTopics, July 15, 2010. Excerpt (in the "continue reading" section):

In addition, a very recent study demonstrates that salinomycin overcomes ATP-binding cassette (ABC) transporter-mediated multidrug and apoptosis resistance in human leukemia stem cell-like cells (3).

Reference #3: Salinomycin overcomes ABC transporter-mediated multidrug and apoptosis resistance in human leukemia stem cell-like KG-1a cells, by Dominik Fuchs and 4 co-authors, including Cord Naujokat, Biochem Biophys Res Commun 2010(Apr 16);394(4): 1098-104 [Epub 2010(Mar 27)][PubMed citation].

Comments: Near the end of this article about salinomycin is the comment that "the investigation of its safety, toxicity, pharmacology and anticancer activity in humans will be a challenge." The author then mentions a preliminary study of "a small cohort of patients with metastatic breast cancer or metastatic head and neck cancers". The results of this preliminary study of the toxicity of salinomycin are summarized. They have not yet been published in the peer-reviewed literature, although a manuscript has been submitted [see reference #4 in the article]. The implication of these preliminary results is that there may be a "therapeutic window" for salinomycin, that is, a drug dosage that yields clinically significant benefits in the absence of excessive toxicity.

For a previous commentary on salinomycin, see: Cancer stem cell breakthrough by Kat Arney, Science Update blog, Cancer Research UK, August 14, 2009. Excerpt:

We need to stress that these were laboratory experiments, and there is no evidence yet that salinomycin can treat cancer in humans. Salinomycin is currently used as an antibiotic for chickens and cows, and it can be toxic or even fatal to humans, causing serious muscle and heart problems.

If there is a "therapeutic window" for salinomycin, it could be a small one, and is likely to vary from one tumor to another.

For a previous post to this blog about salinomycin, see: Identification of selective inhibitors of breast CSCs in mice, August 14, 2009.

Read More...

Innovative Researcher Vlog

Friday, July 16th, 2010

SU2C Innovative Researcher Vlog: Dr. Lawlor (Pt. 3). Video (3:09 min) posted July 13, 2010. Features Elizabeth R Lawlor, University of Michigan, an SU2C Innovative Research Grants Investigator. [About SU2C (Stand Up to Cancer)]. She provides brief comments about her project: "Modeling Ewing Tumor Initiation in Human Neural Crest Stem Cells". How do normal stem cells become cancer stem cells?

An example of a recent (OA) publication from her laboratory: CD133 expression in chemo-resistant Ewing sarcoma cells by
Xiaohua Jiang and 8 co-authors, including Elizabeth R Lawlor,
BMC Cancer 2010(Mar 26); 10: 116. [FriendFeed entry][PubMed citation][Full text via PMC].

Read More...

Innovative Researcher Vlog

Friday, July 16th, 2010

SU2C Innovative Researcher Vlog: Dr. Lawlor (Pt. 3). Video (3:09 min) posted July 13, 2010. Features Elizabeth R Lawlor, University of Michigan, an SU2C Innovative Research Grants Investigator. [About SU2C (Stand Up to Cancer)]. She provides brief comments about her project: "Modeling Ewing Tumor Initiation in Human Neural Crest Stem Cells". How do normal stem cells become cancer stem cells?

An example of a recent (OA) publication from her laboratory: CD133 expression in chemo-resistant Ewing sarcoma cells by
Xiaohua Jiang and 8 co-authors, including Elizabeth R Lawlor,
BMC Cancer 2010(Mar 26); 10: 116. [FriendFeed entry][PubMed citation][Full text via PMC].

Read More...

Two recent OA articles

Monday, July 12th, 2010

Two articles, with Open Access (OA) to the full text (PDF):

Putative cancer stem cells in malignant pleural mesothelioma show resistance to cisplatin and pemetrexed, Int J Oncol 2010(Aug); 37(2): 437-44. [PubMed citation].

Possible involvement of stem-like populations with elevated ALDH1 in sarcomas for chemotherapeutic drug resistance, Oncol Rep 2010(Aug); 24(2): 501-5. [PubMed citation].

Comment about these journals:

Spandidos Publications publishes six journals. Of these six, two are: International Journal of Oncology (2009 Impact Factor: 2.4) and Oncology Reports (2009 Impact Factor: 1.6). This publisher provides a hybrid open access option. The Information for Authors for all six journals includes, at the bottom of the page, this information: "Should authors prefer or require their article to be freely available as soon as it has been published, they may request open access immediately upon publication for a fee of EUR 450."

Read More...

Two recent OA articles

Monday, July 12th, 2010

Two articles, with Open Access (OA) to the full text (PDF):

Putative cancer stem cells in malignant pleural mesothelioma show resistance to cisplatin and pemetrexed, Int J Oncol 2010(Aug); 37(2): 437-44. [PubMed citation].

Possible involvement of stem-like populations with elevated ALDH1 in sarcomas for chemotherapeutic drug resistance, Oncol Rep 2010(Aug); 24(2): 501-5. [PubMed citation].

Comment about these journals:

Spandidos Publications publishes six journals. Of these six, two are: International Journal of Oncology (2009 Impact Factor: 2.4) and Oncology Reports (2009 Impact Factor: 1.6). This publisher provides a hybrid open access option. The Information for Authors for all six journals includes, at the bottom of the page, this information: "Should authors prefer or require their article to be freely available as soon as it has been published, they may request open access immediately upon publication for a fee of EUR 450."

Read More...

International Stem Cell Corporation and Sankara Nethralaya Launch Collaboration to Develop Stem Cell-Based Treatment for Corneal Vision Impairment

Thursday, July 8th, 2010

International Stem Cell Corporation (OTCBB:ISCO), http://www.internationalstemcell.com, and Sankara Nethralaya, http://www.sankaranethralaya.org, announced today commencement of a collaboration to develop ISCO's 'CytoCor™' stem cell-derived corneal tissue. The goal is to use CytoCor to treat corneal blindness and vision impairment. 'This is one more step in ISCO's stated plan of building its portfolio of therapeutic agents through strategic alliances throughout the world,' said Chairman, Ken Aldrich.

CytoCor consists of transparent human tissue derived from pluripotent human stem cells. These structures are produced in the laboratory and recent testing at Sankara Nethralaya and laboratories in the US has demonstrated a range of structural, biochemical and refractory properties characteristic of human cornea.

CytoCor may offer a first-in-class opportunity for high-quality, cost-efficient transplantation tissue for the 10 million people world-wide suffering from corneal vision impairment, particularly in India and the rest of Asia, as well as in Europe. Standardized tissues derived from pluripotent stem cells, such as the CytoCor tissue, could eliminate the current problem that corneal tissue derived from donors may harbor diseases that could be transferred from the donor to the recipient. It may also provide a much needed alternative to the use of live and extracted animal eyes in the $500+million market for safety testing of drugs, chemicals and consumer products.

According to Professor Dr. S. Krishnakumar, 'Sankara Nethralaya is dedicated to the development and application of new state-of-the-art ophthalmic technologies. The need for high-volume, high-quality human corneal tissue is substantial, not only in India but across Asia and much of Europe. We appreciate the opportunity to join ISCO in their pursuit to create a new standard of care for the treatment of human corneal disease.' Initially, Dr. Krishnakumar and his team will be using the CytoCor tissue in preclinical studies to explore the ability of the tissue to withstand sutures and bio-compatible glues in order to validate the potential of the tissue for use in animal or human clinical trials.

According to Dr. Geetha Krishnan Iyer, who is involved in the management of ocular surface disease at Sankara Nethralaya, 'The team at Sankara Nethralaya is pleased to collaborate with ISCO on stem cell-derived corneal tissue. In vitro studies to evaluate safety and efficacy of the tissue, as well as surgical feasibility tests will be carried out, following which there could be clinical application in lamellar keratoplasty using the above mentioned tissue. With improvements in surgical techniques over the past few years, the indications for anterior lamellar keratoplasty have expanded significantly. With high demand for donor corneal tissue for the same but limited availability, there is definitely scope for utilizing ISCO's corneal tissue following relevant tests.'

Jeffrey Janus, Senior VP of Operations at ISCO, states: 'This collaboration with the excellent team of scientists and clinicians at Sankara Nethralaya has already proven to be productive. Sankara's ophthalmology expertise and ISCO's cell culture capabilities constitute a perfect match to perfect and advance CytoCor tissue towards future use in treating corneal disease and injuries.'

ABOUT INTERNATIONAL STEM CELL CORPORATION (ISCO.OB):

International Stem Cell Corporation is a California-based biotechnology company focused on therapeutic and research products. ISCO's core technology, parthenogenesis, results in creation of pluripotent human stem cells from unfertilized oocytes (eggs). These proprietary cells avoid ethical issues associated with use or destruction of viable human embryos and, unlike all other major stem cell types, can be immune matched and be a source of therapeutic cells with minimal rejection after transplantation into hundreds of millions of individuals across racial groups. ISCO also produces and markets specialized cells and growth media for therapeutic research worldwide through its subsidiary Lifeline Cell Technology and is developing a line of cosmeceutical products via its subsidiary Lifeline Skin Care. ISCO is advancing novel human stem cell-based therapies where cells have been proven to be efficacious but traditional small molecule and protein therapeutics have not. More information is available at ISCO's website, http://www.internationalstemcell.com.

To subscribe to receive ongoing corporate communications please click on the following link: http://www.b2i.us/irpass.asp?BzID=1468&to=ea&s=0.

FORWARD-LOOKING STATEMENTS

Statements pertaining to anticipated technological developments and therapeutic applications, the potential benefits of collaborations, and other opportunities for the company and its subsidiaries, along with other statements about the future expectations, beliefs, goals, plans, or prospects expressed by management constitute forward-looking statements. Any statements that are not historical fact (including, but not limited to statements that contain words such as "will," "believes," "plans," "anticipates," "expects," "estimates,") should also be considered to be forward-looking statements. Forward-looking statements involve risks and uncertainties, including, without limitation, risks inherent in the development and/or commercialization of potential products and the management of collaborations, uncertainty in the results of clinical trials or regulatory approvals, need and ability to obtain future capital, application of capital resources among competing uses, and maintenance of intellectual property rights. Actual results may differ materially from the results anticipated in these forward-looking statements and as such should be evaluated together with the many uncertainties that affect the company's business, particularly those mentioned in the cautionary statements found in the company's Securities and Exchange Commission filings. The company disclaims any intent or obligation to update these forward-looking statements.

Key Words: Stem Cells, Biotechnology, Parthenogenesis

International Stem Cell Corporation
Kenneth C. Aldrich, Chairman
760-940-6383
kaldrich@intlstemcell.com
Or
Brian Lundstrom, President
760-640-6383
bl@intlstemcell.com

Read More...

International Stem Cell Corporation and Sankara Nethralaya Launch Collaboration to Develop Stem Cell-Based Treatment for Corneal Vision Impairment

Thursday, July 8th, 2010

International Stem Cell Corporation (OTCBB:ISCO), http://www.internationalstemcell.com, and Sankara Nethralaya, http://www.sankaranethralaya.org, announced today commencement of a collaboration to develop ISCO's 'CytoCor™' stem cell-derived corneal tissue. The goal is to use CytoCor to treat corneal blindness and vision impairment. 'This is one more step in ISCO's stated plan of building its portfolio of therapeutic agents through strategic alliances throughout the world,' said Chairman, Ken Aldrich.

CytoCor consists of transparent human tissue derived from pluripotent human stem cells. These structures are produced in the laboratory and recent testing at Sankara Nethralaya and laboratories in the US has demonstrated a range of structural, biochemical and refractory properties characteristic of human cornea.

CytoCor may offer a first-in-class opportunity for high-quality, cost-efficient transplantation tissue for the 10 million people world-wide suffering from corneal vision impairment, particularly in India and the rest of Asia, as well as in Europe. Standardized tissues derived from pluripotent stem cells, such as the CytoCor tissue, could eliminate the current problem that corneal tissue derived from donors may harbor diseases that could be transferred from the donor to the recipient. It may also provide a much needed alternative to the use of live and extracted animal eyes in the $500+million market for safety testing of drugs, chemicals and consumer products.

According to Professor Dr. S. Krishnakumar, 'Sankara Nethralaya is dedicated to the development and application of new state-of-the-art ophthalmic technologies. The need for high-volume, high-quality human corneal tissue is substantial, not only in India but across Asia and much of Europe. We appreciate the opportunity to join ISCO in their pursuit to create a new standard of care for the treatment of human corneal disease.' Initially, Dr. Krishnakumar and his team will be using the CytoCor tissue in preclinical studies to explore the ability of the tissue to withstand sutures and bio-compatible glues in order to validate the potential of the tissue for use in animal or human clinical trials.

According to Dr. Geetha Krishnan Iyer, who is involved in the management of ocular surface disease at Sankara Nethralaya, 'The team at Sankara Nethralaya is pleased to collaborate with ISCO on stem cell-derived corneal tissue. In vitro studies to evaluate safety and efficacy of the tissue, as well as surgical feasibility tests will be carried out, following which there could be clinical application in lamellar keratoplasty using the above mentioned tissue. With improvements in surgical techniques over the past few years, the indications for anterior lamellar keratoplasty have expanded significantly. With high demand for donor corneal tissue for the same but limited availability, there is definitely scope for utilizing ISCO's corneal tissue following relevant tests.'

Jeffrey Janus, Senior VP of Operations at ISCO, states: 'This collaboration with the excellent team of scientists and clinicians at Sankara Nethralaya has already proven to be productive. Sankara's ophthalmology expertise and ISCO's cell culture capabilities constitute a perfect match to perfect and advance CytoCor tissue towards future use in treating corneal disease and injuries.'

ABOUT INTERNATIONAL STEM CELL CORPORATION (ISCO.OB):

International Stem Cell Corporation is a California-based biotechnology company focused on therapeutic and research products. ISCO's core technology, parthenogenesis, results in creation of pluripotent human stem cells from unfertilized oocytes (eggs). These proprietary cells avoid ethical issues associated with use or destruction of viable human embryos and, unlike all other major stem cell types, can be immune matched and be a source of therapeutic cells with minimal rejection after transplantation into hundreds of millions of individuals across racial groups. ISCO also produces and markets specialized cells and growth media for therapeutic research worldwide through its subsidiary Lifeline Cell Technology and is developing a line of cosmeceutical products via its subsidiary Lifeline Skin Care. ISCO is advancing novel human stem cell-based therapies where cells have been proven to be efficacious but traditional small molecule and protein therapeutics have not. More information is available at ISCO's website, http://www.internationalstemcell.com.

To subscribe to receive ongoing corporate communications please click on the following link: http://www.b2i.us/irpass.asp?BzID=1468&to=ea&s=0.

FORWARD-LOOKING STATEMENTS

Statements pertaining to anticipated technological developments and therapeutic applications, the potential benefits of collaborations, and other opportunities for the company and its subsidiaries, along with other statements about the future expectations, beliefs, goals, plans, or prospects expressed by management constitute forward-looking statements. Any statements that are not historical fact (including, but not limited to statements that contain words such as "will," "believes," "plans," "anticipates," "expects," "estimates,") should also be considered to be forward-looking statements. Forward-looking statements involve risks and uncertainties, including, without limitation, risks inherent in the development and/or commercialization of potential products and the management of collaborations, uncertainty in the results of clinical trials or regulatory approvals, need and ability to obtain future capital, application of capital resources among competing uses, and maintenance of intellectual property rights. Actual results may differ materially from the results anticipated in these forward-looking statements and as such should be evaluated together with the many uncertainties that affect the company's business, particularly those mentioned in the cautionary statements found in the company's Securities and Exchange Commission filings. The company disclaims any intent or obligation to update these forward-looking statements.

Key Words: Stem Cells, Biotechnology, Parthenogenesis

International Stem Cell Corporation
Kenneth C. Aldrich, Chairman
760-940-6383
kaldrich@intlstemcell.com
Or
Brian Lundstrom, President
760-640-6383
bl@intlstemcell.com

Read More...

Melanoma-initiating cells identified

Friday, July 2nd, 2010

Melanoma-initiating cells identified by study by Krista Conger, News release, Stanford School of Medicine, June 30, 2010. Excerpt:

Scientists at the School of Medicine have identified a cancer-initiating cell in human melanomas. The finding is significant because the existence of such a cell in the aggressive skin cancer has been a source of debate. It may also explain why current immunotherapies are largely unsuccessful in preventing disease recurrence in human patients.

The news release is about this publication: Human melanoma-initiating cells express neural crest nerve growth factor receptor CD271 by Alexander D Boiko and 11 co-authors, including Irving L. Weissman, Nature 2010(Jul 1); 466(7302): 133-7. [FriendFeed entry].

A blog post about this same publication is: Stanford scientists identify a melanoma-initiating cell by Krista Conger, Scope blog, Stanford School of Medicine, June 20, 2010.

See also a commentary about the publication: Cancer stem cells: Invitation to a second round by Peter Dirks, Nature 2010(Jul 1); 466(7302): 40-1. Excerpt:

Boiko et al. study a type of human skin cancer called melanoma and, in particular, cancer cells enriched in a stem-cell marker called CD271. They find that, unlike other cells from the same tumour, CD271-expressing (CD271+) cells could initiate and maintain tumour growth in vivo — an observation consistent with the existence of a melanoma-cell functional hierarchy.

This finding reflects a view different from that of an earlier study by Quintana et al.[3], which demonstrated that, in some cases, as many as 50% of human melanoma cells have tumorigenic potential. In addition, no marker tested identified a tumorigenic subpopulation. The authors[3] concluded that the frequency of cancer cells that can initiate tumorigenesis depends, in part, on the assessment techniques and assays.

Another news item, based on the same publication, is: New hope in fight against skin cancer as deadly 'master cells' are identified for first time, Mail Online, July 1, 2010. Excerpt:

However Dr Alexander Boiko, who made the discovery at Stanford University, said the newly discovered 'stem cells' in advanced skin cancers were often missed by conventional immunotherapy.

'Without wiping out the cells at the root of the cancer, the treatment will fail,' he said.

Comments: Boiko et al. and Dirks suggest reasons why results different from those of Quintana et al. were obtained. One possibility is that the melanomas that the latter authors studied were at an advanced stage. If, as a cancer progresses, more cells acquire the attributes of cancer stem cells, then advanced melanomas may contain very high frequencies of tumorigenic cells.

As Boiko et al. point out in their publication, "The most crucial test of the tumour stem cell hypothesis is that markers or pathways restricted to tumour stem cells can be targets for curative therapies in the patient, which has not yet been done."

Read More...

Melanoma-initiating cells identified

Friday, July 2nd, 2010

Melanoma-initiating cells identified by study by Krista Conger, News release, Stanford School of Medicine, June 30, 2010. Excerpt:

Scientists at the School of Medicine have identified a cancer-initiating cell in human melanomas. The finding is significant because the existence of such a cell in the aggressive skin cancer has been a source of debate. It may also explain why current immunotherapies are largely unsuccessful in preventing disease recurrence in human patients.

The news release is about this publication: Human melanoma-initiating cells express neural crest nerve growth factor receptor CD271 by Alexander D Boiko and 11 co-authors, including Irving L. Weissman, Nature 2010(Jul 1); 466(7302): 133-7. [FriendFeed entry].

A blog post about this same publication is: Stanford scientists identify a melanoma-initiating cell by Krista Conger, Scope blog, Stanford School of Medicine, June 20, 2010.

See also a commentary about the publication: Cancer stem cells: Invitation to a second round by Peter Dirks, Nature 2010(Jul 1); 466(7302): 40-1. Excerpt:

Boiko et al. study a type of human skin cancer called melanoma and, in particular, cancer cells enriched in a stem-cell marker called CD271. They find that, unlike other cells from the same tumour, CD271-expressing (CD271+) cells could initiate and maintain tumour growth in vivo — an observation consistent with the existence of a melanoma-cell functional hierarchy.

This finding reflects a view different from that of an earlier study by Quintana et al.[3], which demonstrated that, in some cases, as many as 50% of human melanoma cells have tumorigenic potential. In addition, no marker tested identified a tumorigenic subpopulation. The authors[3] concluded that the frequency of cancer cells that can initiate tumorigenesis depends, in part, on the assessment techniques and assays.

Another news item, based on the same publication, is: New hope in fight against skin cancer as deadly 'master cells' are identified for first time, Mail Online, July 1, 2010. Excerpt:

However Dr Alexander Boiko, who made the discovery at Stanford University, said the newly discovered 'stem cells' in advanced skin cancers were often missed by conventional immunotherapy.

'Without wiping out the cells at the root of the cancer, the treatment will fail,' he said.

Comments: Boiko et al. and Dirks suggest reasons why results different from those of Quintana et al. were obtained. One possibility is that the melanomas that the latter authors studied were at an advanced stage. If, as a cancer progresses, more cells acquire the attributes of cancer stem cells, then advanced melanomas may contain very high frequencies of tumorigenic cells.

As Boiko et al. point out in their publication, "The most crucial test of the tumour stem cell hypothesis is that markers or pathways restricted to tumour stem cells can be targets for curative therapies in the patient, which has not yet been done."

Read More...

International Stem Cell Corporation – Excerpt from Agora Financial’s Breakthrough Technology Alert by Patrick Cox

Thursday, July 1st, 2010



The following is an excerpt from the June 29, 2010 Breakthrough Technology Alert, published by Agora Financial. Agora Financial is a fully independent publisher and has no financial connections to companies listed below. Breakthrough Technology Alert’s editor is industry expert Patrick Cox. Patrick is renowned for his innovative forecasts and keeping readers “ahead of the story”.



For more information about Patrick Cox and Breakthrough Technology Alert please visit http://www.agorafinancial.com

Q&A with ISCO



International Stem Cell Corp. (OTCBB: ISCO) has also been the target of rumor campaigns. ISCO, incidentally, recently announced further positive IP news. Specifically, Advanced Cell Technology, Inc. (ACT) was just issued U.S. Patent Number 7736896 covering a method for producing retinal pigment epithelial cells. ISCO, however, had previously acquired rights to this technology from ACT, so the award solidifies their position in stem cell eye therapies.

ISCO's corneal research also got an unexpected boost last week, though it's not clear how many people know it yet. A stem cell breakthrough from Italy made quite a few headlines. The article that provoked the coverage was in the June 23 online version of The New England Journal of Medicine (NEJM). Specifically, it featured clinical research from professor Graziella Pellegrini et al. titled "Limbal Stem-Cell Therapy and Long-Term Corneal Regeneration." A helpful video by ABC News can be viewed here.



The coverage of the journal article is, however, incomplete. So let me put it in perspective.

The procedure made use of the well-established practice of extracting and cultivating limbal stem cells. Each of the patients, in effect, had stem cells removed from at least one eye. Once the adult stem cells were multiplied in the lab, they were applied to the cornea. There, they regenerated the corneal epithelium (the outermost thin layer of the cornea), restoring sight.

This is wonderful proof of the power of stem cells, but it doesn't represent a breakthrough in terms of basic science or investment possibilities. This is because the cost of extracting these surviving stem cells is very high. So is multiplying and reattaching them. The only reason the experiments were even allowed to proceed is that all the cell materials come from the subjects of the procedures. They would not have been allowed if, for example, scientists wanted to use the stem cells from one patient to treat another patient. Nor is it clear to what extent, if any, a company can patent these procedures.

On the other hand, the Italian procedures were most successful when they were combined with the implantation of replacement corneal structures. Those replacement corneas cannot be regenerated from limbal stem cells. In fact, they came from cadavers.

ISCO, however, is now able to grow them in the lab to produce cheaper, safer corneas. ISCO is involved in discussions with various companies to commercialize those parthenogenic corneal structures.

For most patients, who have enough of their own stem cells to regenerate the corneal epithelium, ISCO's corneas are all that are required to recover sight. Eventually, in fact, I suspect that ISCO will also have off-the-shelf limbal stem cells that will regenerate the corneal epithelial too. These cells would be from each of ISCO's cell bank lines. Now being established, it will include 50-100 cell lines that immune match most of the world's population. No other company has this ability to provide inexpensive stem cells for the masses.

Now allow me to debunk some of the rumors currently being spread about ISCO. Normally, as you know, I don't like to dignify these attacks, but I do make exceptions when it's important. I'm doing this, by the way, in a question-and-answer format that board chairman Ken Aldrich was kind enough to answer. The questions deal with some of the unfounded rumors circulating. If these don't concern you, feel free to skip them. Q1. Did ISCO close its financing?



A1. Yes, they did a $10 million financing, and then used $2.5 million as part of a balance sheet cleanup that removed approximately $15 million of 10% preferred stock and still left them with an additional $7.5 million in cash on the balance sheet, in addition to whatever cash was already there.

Q2. Doesn't Socius hold a lot of preferred stock that will be a future burden to ISCO?



A2. No, all of that has been retired as part of the capital restructuring announced in an 8-K filed June 11, 2010. As a result, Socius and its predecessor company, Optimus, hold no preferred shares of ISCO at all.

Q3. Is the company running out of money?



A3. Based on the monthly "burn" rate of about $550,000 for the last 15 months ($562,000 for the last quarter), the proceeds of the company's most recent financing of $7.5 million after the repayment of the outstanding preferred stock of Socius and Optimus would give the company at least 12 months of "runway," even without any additional revenues from operations, licensing or partnerships.



I could go on, but this is pretty long. Next week, I'll have more updates.

For transformational profits,

Patrick Cox

To learn more about Patrick Cox and Breakthrough Technology Alert please click here. © 2010 by Agora Financial, LLC. 808 St. Paul Street, Baltimore, MD 21202. All rights reserved. No part of this report may be reproduced by any means or for any reason without the consent of the publisher. The information contained herein is obtained from sources believed to be reliable; however, its accuracy cannot be guaranteed.

Read More...

International Stem Cell Corporation – Excerpt from Agora Financial’s Breakthrough Technology Alert by Patrick Cox

Thursday, July 1st, 2010



The following is an excerpt from the June 29, 2010 Breakthrough Technology Alert, published by Agora Financial. Agora Financial is a fully independent publisher and has no financial connections to companies listed below. Breakthrough Technology Alert’s editor is industry expert Patrick Cox. Patrick is renowned for his innovative forecasts and keeping readers “ahead of the story”.



For more information about Patrick Cox and Breakthrough Technology Alert please visit http://www.agorafinancial.com

Q&A with ISCO



International Stem Cell Corp. (OTCBB: ISCO) has also been the target of rumor campaigns. ISCO, incidentally, recently announced further positive IP news. Specifically, Advanced Cell Technology, Inc. (ACT) was just issued U.S. Patent Number 7736896 covering a method for producing retinal pigment epithelial cells. ISCO, however, had previously acquired rights to this technology from ACT, so the award solidifies their position in stem cell eye therapies.

ISCO's corneal research also got an unexpected boost last week, though it's not clear how many people know it yet. A stem cell breakthrough from Italy made quite a few headlines. The article that provoked the coverage was in the June 23 online version of The New England Journal of Medicine (NEJM). Specifically, it featured clinical research from professor Graziella Pellegrini et al. titled "Limbal Stem-Cell Therapy and Long-Term Corneal Regeneration." A helpful video by ABC News can be viewed here.



The coverage of the journal article is, however, incomplete. So let me put it in perspective.

The procedure made use of the well-established practice of extracting and cultivating limbal stem cells. Each of the patients, in effect, had stem cells removed from at least one eye. Once the adult stem cells were multiplied in the lab, they were applied to the cornea. There, they regenerated the corneal epithelium (the outermost thin layer of the cornea), restoring sight.

This is wonderful proof of the power of stem cells, but it doesn't represent a breakthrough in terms of basic science or investment possibilities. This is because the cost of extracting these surviving stem cells is very high. So is multiplying and reattaching them. The only reason the experiments were even allowed to proceed is that all the cell materials come from the subjects of the procedures. They would not have been allowed if, for example, scientists wanted to use the stem cells from one patient to treat another patient. Nor is it clear to what extent, if any, a company can patent these procedures.

On the other hand, the Italian procedures were most successful when they were combined with the implantation of replacement corneal structures. Those replacement corneas cannot be regenerated from limbal stem cells. In fact, they came from cadavers.

ISCO, however, is now able to grow them in the lab to produce cheaper, safer corneas. ISCO is involved in discussions with various companies to commercialize those parthenogenic corneal structures.

For most patients, who have enough of their own stem cells to regenerate the corneal epithelium, ISCO's corneas are all that are required to recover sight. Eventually, in fact, I suspect that ISCO will also have off-the-shelf limbal stem cells that will regenerate the corneal epithelial too. These cells would be from each of ISCO's cell bank lines. Now being established, it will include 50-100 cell lines that immune match most of the world's population. No other company has this ability to provide inexpensive stem cells for the masses.

Now allow me to debunk some of the rumors currently being spread about ISCO. Normally, as you know, I don't like to dignify these attacks, but I do make exceptions when it's important. I'm doing this, by the way, in a question-and-answer format that board chairman Ken Aldrich was kind enough to answer. The questions deal with some of the unfounded rumors circulating. If these don't concern you, feel free to skip them. Q1. Did ISCO close its financing?



A1. Yes, they did a $10 million financing, and then used $2.5 million as part of a balance sheet cleanup that removed approximately $15 million of 10% preferred stock and still left them with an additional $7.5 million in cash on the balance sheet, in addition to whatever cash was already there.

Q2. Doesn't Socius hold a lot of preferred stock that will be a future burden to ISCO?



A2. No, all of that has been retired as part of the capital restructuring announced in an 8-K filed June 11, 2010. As a result, Socius and its predecessor company, Optimus, hold no preferred shares of ISCO at all.

Q3. Is the company running out of money?



A3. Based on the monthly "burn" rate of about $550,000 for the last 15 months ($562,000 for the last quarter), the proceeds of the company's most recent financing of $7.5 million after the repayment of the outstanding preferred stock of Socius and Optimus would give the company at least 12 months of "runway," even without any additional revenues from operations, licensing or partnerships.



I could go on, but this is pretty long. Next week, I'll have more updates.

For transformational profits,

Patrick Cox

To learn more about Patrick Cox and Breakthrough Technology Alert please click here. © 2010 by Agora Financial, LLC. 808 St. Paul Street, Baltimore, MD 21202. All rights reserved. No part of this report may be reproduced by any means or for any reason without the consent of the publisher. The information contained herein is obtained from sources believed to be reliable; however, its accuracy cannot be guaranteed.

Read More...

Treating Adult Artritis with Stem Cells Shows Incredible Promise

Tuesday, June 29th, 2010

Arthritis Patient Successfully Treated With Fat Stem Cells Tells His Story

SAN DIEGO, CA--(Marketwire - June 28, 2010) - Medistem Inc. (PINKSHEETS: MEDS). Medistem collaborator Dr. Jorge Paz Rodriquez was invited to give a talk at Del Mar College in Texas by arthritis patient Dusty Durrill. The patient described a profound recovery after treatment with stem cells from his own fat tissue. Mr Durrill underwent a procedure in which a small amount of fat tissue was extracted by liposuction, stem cells where purified, and subsequently injected intravenously.

This procedure has been used successfully to treat thousands of animals suffering from arthritis in the United States (www.vet-stem.com). Use of patient's own stem cells is currently being performed in the United States (www.regenexx.com). Recently Dr. Paz published a paper describing scientific mechanisms of this treatment in collaboration with scientists from the University of California San Diego, University of Western Ontario, and Medistem Inc (Ichim et al. Autologous stromal vascular fraction cells: A tool for facilitating tolerance in rheumatic disease. Cell Immunol. 2010 Apr 8).

"I had treatment for my arthritis, I was not wheelchair bound but I was getting there... after stem cell treatment my arthritis symptoms disappeared," stated Mr. Durrill.

More than 200 people attended the lecture including the general public, patients and medical doctors. The lecture was focused on US and European clinical trials supporting the use of adult stem cells in conditions ranging from multiple sclerosis, to heart failure, to diabetes. A video of part of the lecture is available at http://www.kiiitv.com/younews/97165699.html.

Dr. Paz commented, "Mr. Durrill suffered from arthritis for more than ten years with severe pain in both knees and hips. He had difficulty standing and limited mobility. After stem cell therapy he started showing significant reduction in pain. Now about a month after therapy he is pain free and can move around easily."

Drs. Robert Harman, CEO of Vet-Stem and Thomas Ichim, CEO of Medistem, recently released a video discussing their publication on fat stem cell therapy for arthritis. The video is available at http://www.youtube.com/watch?v=3QQrwtp-KQQ.

About Medistem Inc.

Medistem Inc. is a biotechnology company developing technologies related to adult stem cell extraction, manipulation, and use for treating inflammatory and degenerative diseases. The company's lead product, the endometrial regenerative cell (ERC), is a "universal donor" stem cell being developed for critical limb ischemia. A publication describing the support for use of ERC for this condition may be found at http://www.translational-medicine.com/content/pdf/1479-5876-6-45.pdf

Cautionary Statement

This press release does not constitute an offer to sell or a solicitation of an offer to buy any of our securities. This press release may contain certain forward-looking statements within the meaning of Section 27A of the Securities Act of 1933, as amended, and Section 21E of the Securities Exchange Act of 1934, as amended. Forward-looking statements are inherently subject to risks and uncertainties, some of which cannot be predicted or quantified. Future events and actual results could differ materially from those set forth in, contemplated by, or underlying the forward-looking information. Factors which may cause actual results to differ from our forward-looking statements are discussed in our Form 10-K for the year ended December 31, 2007 as filed with the Securities and Exchange Commission.

Read More...

Page 122«..1020..121122123124..»


2025 © StemCell Therapy is proudly powered by WordPress
Entries (RSS) Comments (RSS) | Violinesth by Patrick