header logo image


Page 23«..10..21222324

Archive for the ‘Stem Cell Negative’ Category

Egg-producing stem cells isolated from adult human ovaries

Tuesday, February 28th, 2012

ScienceDaily (Feb. 26, 2012) — For the first time, Massachusetts General Hospital (MGH) researchers have isolated egg-producing stem cells from the ovaries of reproductive age women and shown these cells can produce what appear to be normal egg cells or oocytes. In the March issue of Nature Medicine, the team from the Vincent Center for Reproductive Biology at MGH reports the latest follow-up study to their now-landmark 2004 Nature paper that first suggested female mammals continue producing egg cells into adulthood.

"The primary objective of the current study was to prove that oocyte-producing stem cells do in fact exist in the ovaries of women during reproductive life, which we feel this study demonstrates very clearly," says Jonathan Tilly, PhD, director of the Vincent Center for Reproductive Biology in the MGH Vincent Department of Obstetrics and Gynecology, who led the study. "The discovery of oocyte precursor cells in adult human ovaries, coupled with the fact that these cells share the same characteristic features of their mouse counterparts that produce fully functional eggs, opens the door for development of unprecedented technologies to overcome infertility in women and perhaps even delay the timing of ovarian failure."

The 2004 report from Tilly's team challenged the fundamental belief, held since the 1950s, that female mammals are born with a finite supply of eggs that is depleted throughout life and exhausted at menopause. That paper and a 2005 follow-up published in Cell showing that bone marrow or blood cell transplants could restore oocyte production in adult female mice after fertility-destroying chemotherapy were controversial; but in the intervening years, several studies from the MGH-Vincent group and other researchers around the world have supported Tilly's work and conclusions.

These supporting studies include a 2007 Journal of Clinical Oncology report from the MGH-Vincent team that showed female mice receiving bone marrow transplants after oocyte-destroying chemotherapy were able to have successful pregnancies, delivering pups that were their genetic offspring and not of the marrow donors. A 2009 study from a team at Shanghai Jiao Tong University in China, published in Nature Cell Biology, not only isolated and cultured oocyte-producing stem cells (OSCs) from adult mice but also showed that those OSCs, after transplantation into the ovaries of chemotherapy-treated female mice, gave rise to mature oocytes that were ovulated, fertilized and developed into healthy offspring.

"That study singlehandedly deflated many of the arguments from critics of our earlier Nature paper by showing that oocyte-producing stem cells exist in mice and could develop into fully functional eggs," says Tilly. Another paper from a west-coast biotechnology company, published in Differentiation in 2010, provided further independent confirmation of Tilly's earlier conclusions regarding the presence of oocyte-producing stem cells in ovaries of adult mice.

Tilly is quick to point out, however, "These follow-up studies, while providing definitive evidence that oocyte-producing stem cells exist in ovaries of adult female mammals, were not without their limitations, leaving the question open in some scientific circles of whether the adult oocyte pool can be renewed. For example, the protocol used to isolate OSCs in the 2009 Nature Cell Biology study is a relatively crude approach that often results in the contamination of desired cells by other cell types." To address this, the MGH-Vincent team developed and validated a much more precise cell-sorting technique to isolate OSCs without contamination from other cells.

The 2009 study from China also had isolated OSCs based on cell-surface expression of a marker protein called Ddx4 or Mvh, which previously had been found only in the cytoplasm of oocytes. This apparent contradiction with earlier studies raised concerns over the validity of the protocol. Using their state-of-the-art fluorescence-activated cell sorting techniques, the MGH-Vincent team verified that, while the marker protein Ddx4 was indeed located inside oocytes, it was expressed on the surface of a rare and distinct population of ovarian cells identified by numerous genetic markers and functional tests as OSCs.

To examine the functional capabilities of the cells isolated with their new protocol, the investigators injected green fluorescent protein (GFP)-labeled mouse OSCs into the ovaries of normal adult mice. Several months later, examination of the recipient mouse ovaries revealed follicles containing oocytes with and without the marker protein. GFP-labeled and unlabeled oocytes also were found in cell clusters flushed from the animals' oviducts after induced ovulation. The GFP-labeled mouse eggs retrieved from the oviducts were successfully fertilized in vitro and produced embryos that progressed to the hatching blastocyst stage, a sign of normal developmental potential. Additionally, although the Chinese team had transplanted OSCs into ovaries of mice previously treated with chemotherapy, the MGH-Vincent team showed that it was not necessary to damage the recipient mouse ovaries with toxic drugs before introducing OSCs.

In their last two experiments, which Tilly considers to be the most groundbreaking, the MGH-Vincent team used their new cell-sorting techniques to isolate potential OSCs from adult human ovaries. The cells obtained shared all of the genetic and growth properties of the equivalent cells isolated from adult mouse ovaries, and like mouse OSCs, were able to spontaneously form cells with characteristic features of oocytes. Not only did these oocytes formed in culture dishes have the physical appearance and gene expression patterns of oocytes seen in human ovaries -- as was the case in parallel mouse experiments -- but some of these in-vitro-formed cells had only half of the genetic material normally found in all other cells of the body. That observation indicates that these oocytes had progressed through meiosis, a cell-division process unique to the formation of mature eggs and sperm.

The researchers next injected GFP-labeled human OSCs into biopsied human ovarian tissue that was then grafted beneath the skin of immune-system-deficient mice. Examination of the human tissue grafts 7 to 14 days later revealed immature human follicles with GFP-negative oocytes, probably present in the human tissue before OSC injection and grafting, as well as numerous immature human follicles with GFP-positive oocytes that would have originated from the injected human OSCs.

"These experiments provide pivotal proof-of-concept that human OSCs reintroduced into adult human ovarian tissue performed their expected function of generating new oocytes that become enclosed by host cells to form new follicles," says Tilly, a professor of Obstetrics, Gynecology and Reproductive Biology at Harvard Medical School and chief of Research at the MGH Vincent Department of Obstetrics and Gynecology. "These outcomes are exactly what we see if we perform the same experiments using GFP-expressing mouse OSCs, and GFP-expressing mouse oocytes formed that way go on to develop into fully functional eggs.

"In this paper we provide the three key pieces of evidence requested by those who have been skeptical of our previous work," he adds. "We developed and extensively validated a cell-sorting protocol to reliably purify OSCs from adult mammalian ovaries, proving once again that these very special cells exist. We tested the function of mouse oocytes produced by these OSCs and showed that they can be fertilized to produce healthy embryos. And we identified and characterized an equivalent population of oocyte-producing stem cells isolated from adult human ovaries."

Among the many potential clinical applications for these findings that Tilly's team is currently exploring are the establishment of human OSC banks -- since these cells, unlike human oocytes, can be frozen and thawed without damage -- the identification of hormones and factors that accelerate the formation of oocytes from human OSCs, the development of mature human oocytes from OSCs for in vitro fertilization, and other approaches to improve the outcomes of IVF and other infertility treatments.

Tilly notes that an essential part of his group's accomplishment was collaboration with study co-author Yasushi Takai, MD, PhD, a former MGH research fellow on Tilly's team and now a faculty member at Saitama Medical University in Japan. Working with his clinical colleagues at Saitama, Takai was able to provide healthy ovarian tissue from consenting patients undergoing sex reassignment surgery, many in their 20s and early 30s. Co-lead authors of the Nature Medicine report are Yvonne White, PhD, and Dori Woods, PhD, of the Vincent Center for Reproductive Biology at MGH. Additional co-authors are Osamu Ishihara, MD, PhD, and Hiroyuki Seki, MD, PhD, of Saitama Medical University.

The study was supported by a 10-year MERIT Award to Tilly from the National Institute on Aging, a Ruth L. Kirschstein National Research Service Award from the National Institutes of Health, the Henry and Vivian Rosenberg Philanthropic Fund, the Sea Breeze Foundation, and Vincent Memorial Hospital Research Funds.

Recommend this story on Facebook, Twitter,
and Google +1:

Other bookmarking and sharing tools:

Story Source:

The above story is reprinted from materials provided by Massachusetts General Hospital.

Note: Materials may be edited for content and length. For further information, please contact the source cited above.

Journal Reference:

Yvonne A R White, Dori C Woods, Yasushi Takai, Osamu Ishihara, Hiroyuki Seki, Jonathan L Tilly. Oocyte formation by mitotically active germ cells purified from ovaries of reproductive-age women. Nature Medicine, 2012; DOI: 10.1038/nm.2669

Note: If no author is given, the source is cited instead.

Disclaimer: This article is not intended to provide medical advice, diagnosis or treatment. Views expressed here do not necessarily reflect those of ScienceDaily or its staff.

Follow this link:
Egg-producing stem cells isolated from adult human ovaries

Read More...

The Lancet Publishes Results from Gentium's Phase III Defibrotide Trial for the Prevention of VOD in Paediatric Patients

Tuesday, February 28th, 2012

VILLA GUARDIA, Italy, Feb. 27, 2012 (GLOBE NEWSWIRE) -- Gentium S.p.A. (Nasdaq:GENT - News) (the "Company") announced today that results from a Phase III randomised controlled trial which evaluated Defibrotide for use in preventing hepatic veno-occlusive disease (VOD) in paediatric patients undergoing haemopoietic stem-cell transplantation (HSCT) were published in the medical journal, The Lancet (Vol 379). The results of Corbacioglu et al. show that Defibrotide leads to a 40% a reduction in the incidence of VOD thirty days after HSCT in patients receiving Defibrotide, compared with those who did not receive Defibrotide. Additionally, in allogeneic HSCT recipients (70% of study population), the incidence and severity of acute graft-versus-host disease (GvHD) were significantly lower in the Defibrotide arm. These finding supports the prophylactic use of Defibrotide in the HSCT transplant setting.

In a commentary article to the study, Drs. Uwe Platzbecker and Martin Bornhauser from Medizinische Klinik und Poliklinik I, Universitatsklinikum "Carl Gustav Carus" Dresden, Germany, conclude "Most importantly, defibrotide prophylaxis was well tolerated and did not lead to an increased risk of bleeding. Restriction by the legislative authorities means that there are few randomised trials in children, and thus Corbacioglu and colleagues' investigation is a pivotal European study, one that will hopefully change practice in paediatric patients and might also provide an impetus to investigate treatment options for adult patients."

About the Study Results

In the intention-to-treat analysis, 22 (12%) of 180 participants in the Defibrotide group had VOD by 30 days after HSCT compared with 35 (20%) of 176 controls (risk difference --7.7%, 95% CI --15.3 to --0.1; Z test for competing risk analysis p=0.048). In the per-protocol population, 18 (11%) of 159 participants in the Defibrotide group had VOD by 30 days after HSCT compared with 34 (20%) of 166 controls (risk difference --9.2%, 95% CI --17.0 to --1.3; Z test for competing risk analysis p=0.022). Additionally, in the intention-to-treat population, incidence and severity (grades 1--4) of acute graft-versus host disease were lower in the Defibrotide arm than they were in the control group (incidence p=0.006 and severity p=0.006 at 30 days and incidence p=0.005 and severity p=0.003 at 100 days after HSCT). The incidence of adverse events was similar between the Defibrotide and control arm, demonstrating that Defibrotide is well tolerated.

About the Study Design

The Phase III European pediatric prevention trial is a multi-center, open-label, randomized clinical trial to evaluate the prophylactic use of Defibrotide in pediatric patients undergoing stem cell transplantation who are at high risk for hepatic VOD. In the two-armed trial, patients were randomly assigned 1:1 to either receive Defibrotide prophylaxis or no prophylaxis (control arm) . Patients in the prophylaxis arm received 25 mg/kg/day of Defibrotide in four divided doses beginning at the time of conditioning. Patients in the control arm did not receive Defibrotide for VOD prophylactic measures. The primary endpoint of the study was development of VOD within 30 days post HSCT based on the modified Seattle criteria.

About VOD

Veno-occlusive disease is a potentially life-threatening condition, which typically occurs as a significant complication of stem cell transplantation. Certain high-dose conditioning regimens used as part of stem cell transplantation can damage the lining cells of hepatic blood vessels and result in VOD, a blockage of the small veins in the liver that leads to liver failure and can result in significant dysfunction in other organs such as the kidneys and lungs (so-called severe VOD). Stem cell transplantation is a frequently used treatment modality following high-dose chemotherapy and radiation therapy for hematologic cancers and other conditions in both adults and children. At present there is no approved agent for the treatment or prevention of VOD in the United States or the European Union.

About Gentium

Gentium S.p.A., located in Como, Italy, is a biopharmaceutical company focused on the development and manufacture of drugs to treat and prevent a variety of diseases and conditions, including vascular diseases related to cancer and cancer treatments. Defibrotide, the Company's lead product candidate, is an investigational drug that has been granted Orphan Drug status by the U.S. Food and Drug Administration (FDA) and Orphan Medicinal Product Designation by the European Medicines Agency, both to treat and to prevent VOD, as well as Fast Track Designation by the U.S. FDA to treat VOD.

Cautionary Note Regarding Forward-Looking Statements

This press release contains "forward-looking statements." In some cases, you can identify these statements by forward-looking words such as "may," "might," "will," "should," "expect," "plan," "anticipate," "believe," "estimate," "predict," "potential" or "continue," the negative of these terms and other comparable terminology. These statements are not historical facts but instead represent the Company's belief regarding future results, many of which, by their nature, are inherently uncertain and outside the Company's control. It is possible that actual results, including with respect to the possibility of any future regulatory approval, may differ materially from those anticipated in these forward-looking statements. For a discussion of some of the risks and important factors that could affect future results, see the discussion in our Form 20-F filed with the Securities and Exchange Commission under the caption "Risk Factors."

Go here to read the rest:
The Lancet Publishes Results from Gentium's Phase III Defibrotide Trial for the Prevention of VOD in Paediatric Patients

Read More...

Mass. General researchers isolate egg-producing stem cells from adult human ovaries

Monday, February 27th, 2012

Public release date: 26-Feb-2012
[ | E-mail | Share ]

Contact: Sue McGreevey
smcgreevey@partners.org
617-724-2764
Massachusetts General Hospital

For the first time, Massachusetts General Hospital (MGH) researchers have isolated egg-producing stem cells from the ovaries of reproductive age women and shown these cells can produce what appear to be normal egg cells or oocytes. In the March issue of Nature Medicine, the team from the Vincent Center for Reproductive Biology at MGH reports the latest follow-up study to their now-landmark 2004 Nature paper that first suggested female mammals continue producing egg cells into adulthood.

"The primary objective of the current study was to prove that oocyte-producing stem cells do in fact exist in the ovaries of women during reproductive life, which we feel this study demonstrates very clearly," says Jonathan Tilly, PhD, director of the Vincent Center for Reproductive Biology in the MGH Vincent Department of Obstetrics and Gynecology, who led the study. "The discovery of oocyte precursor cells in adult human ovaries, coupled with the fact that these cells share the same characteristic features of their mouse counterparts that produce fully functional eggs, opens the door for development of unprecedented technologies to overcome infertility in women and perhaps even delay the timing of ovarian failure."

The 2004 report from Tilly's team challenged the fundamental belief, held since the 1950s, that female mammals are born with a finite supply of eggs that is depleted throughout life and exhausted at menopause. That paper and a 2005 follow-up published in Cell showing that bone marrow or blood cell transplants could restore oocyte production in adult female mice after fertility-destroying chemotherapy were controversial; but in the intervening years, several studies from the MGH-Vincent group and other researchers around the world have supported Tilly's work and conclusions.

These supporting studies include a 2007 Journal of Clinical Oncology report from the MGH-Vincent team that showed female mice receiving bone marrow transplants after oocyte-destroying chemotherapy were able to have successful pregnancies, delivering pups that were their genetic offspring and not of the marrow donors. A 2009 study from a team at Shanghai Jiao Tong University in China, published in Nature Cell Biology, not only isolated and cultured oocyte-producing stem cells (OSCs) from adult mice but also showed that those OSCs, after transplantation into the ovaries of chemotherapy-treated female mice, gave rise to mature oocytes that were ovulated, fertilized and developed into healthy offspring.

"That study singlehandedly deflated many of the arguments from critics of our earlier Nature paper by showing that oocyte-producing stem cells exist in mice and could develop into fully functional eggs," says Tilly. Another paper from a west-coast biotechnology company, published in Differentiation in 2010, provided further independent confirmation of Tilly's earlier conclusions regarding the presence of oocyte-producing stem cells in ovaries of adult mice.

Tilly is quick to point out, however, "These follow-up studies, while providing definitive evidence that oocyte-producing stem cells exist in ovaries of adult female mammals, were not without their limitations, leaving the question open in some scientific circles of whether the adult oocyte pool can be renewed. For example, the protocol used to isolate OSCs in the 2009 Nature Cell Biology study is a relatively crude approach that often results in the contamination of desired cells by other cell types." To address this, the MGH-Vincent team developed and validated a much more precise cell-sorting technique to isolate OSCs without contamination from other cells.

The 2009 study from China also had isolated OSCs based on cell-surface expression of a marker protein called Ddx4 or Mvh, which previously had been found only in the cytoplasm of oocytes. This apparent contradiction with earlier studies raised concerns over the validity of the protocol. Using their state-of-the-art fluorescence-activated cell sorting techniques, the MGH-Vincent team verified that, while the marker protein Ddx4 was indeed located inside oocytes, it was expressed on the surface of a rare and distinct population of ovarian cells identified by numerous genetic markers and functional tests as OSCs.

To examine the functional capabilities of the cells isolated with their new protocol, the investigators injected green fluorescent protein (GFP)-labeled mouse OSCs into the ovaries of normal adult mice. Several months later, examination of the recipient mouse ovaries revealed follicles containing oocytes with and without the marker protein. GFP-labeled and unlabeled oocytes also were found in cell clusters flushed from the animals' oviducts after induced ovulation. The GFP-labeled mouse eggs retrieved from the oviducts were successfully fertilized in vitro and produced embryos that progressed to the hatching blastocyst stage, a sign of normal developmental potential. Additionally, although the Chinese team had transplanted OSCs into ovaries of mice previously treated with chemotherapy, the MGH-Vincent team showed that it was not necessary to damage the recipient mouse ovaries with toxic drugs before introducing OSCs.

In their last two experiments, which Tilly considers to be the most groundbreaking, the MGH-Vincent team used their new cell-sorting techniques to isolate potential OSCs from adult human ovaries. The cells obtained shared all of the genetic and growth properties of the equivalent cells isolated from adult mouse ovaries, and like mouse OSCs, were able to spontaneously form cells with characteristic features of oocytes. Not only did these oocytes formed in culture dishes have the physical appearance and gene expression patterns of oocytes seen in human ovaries ? as was the case in parallel mouse experiments ? but some of these in-vitro-formed cells had only half of the genetic material normally found in all other cells of the body. That observation indicates that these oocytes had progressed through meiosis, a cell-division process unique to the formation of mature eggs and sperm.

The researchers next injected GFP-labeled human OSCs into biopsied human ovarian tissue that was then grafted beneath the skin of immune-system-deficient mice. Examination of the human tissue grafts 7 to 14 days later revealed immature human follicles with GFP-negative oocytes, probably present in the human tissue before OSC injection and grafting, as well as numerous immature human follicles with GFP-positive oocytes that would have originated from the injected human OSCs.

"These experiments provide pivotal proof-of-concept that human OSCs reintroduced into adult human ovarian tissue performed their expected function of generating new oocytes that become enclosed by host cells to form new follicles," says Tilly, a professor of Obstetrics, Gynecology and Reproductive Biology at Harvard Medical School and chief of Research at the MGH Vincent Department of Obstetrics and Gynecology. "These outcomes are exactly what we see if we perform the same experiments using GFP-expressing mouse OSCs, and GFP-expressing mouse oocytes formed that way go on to develop into fully functional eggs.

"In this paper we provide the three key pieces of evidence requested by those who have been skeptical of our previous work," he adds. "We developed and extensively validated a cell-sorting protocol to reliably purify OSCs from adult mammalian ovaries, proving once again that these very special cells exist. We tested the function of mouse oocytes produced by these OSCs and showed that they can be fertilized to produce healthy embryos. And we identified and characterized an equivalent population of oocyte-producing stem cells isolated from adult human ovaries."

Among the many potential clinical applications for these findings that Tilly's team is currently exploring are the establishment of human OSC banks ? since these cells, unlike human oocytes, can be frozen and thawed without damage ? the identification of hormones and factors that accelerate the formation of oocytes from human OSCs, the development of mature human oocytes from OSCs for in vitro fertilization, and other approaches to improve the outcomes of IVF and other infertility treatments.

###

Tilly notes that an essential part of his group's accomplishment was collaboration with study co-author Yasushi Takai, MD, PhD, a former MGH research fellow on Tilly's team and now a faculty member at Saitama Medical University in Japan. Working with his clinical colleagues at Saitama, Takai was able to provide healthy ovarian tissue from consenting patients undergoing sex reassignment surgery, many in their 20s and early 30s. Co-lead authors of the Nature Medicine report are Yvonne White, PhD, and Dori Woods, PhD, of the Vincent Center for Reproductive Biology at MGH. Additional co-authors are Osamu Ishihara, MD, PhD, and Hiroyuki Seki, MD, PhD, of Saitama Medical University.

The study was supported by a 10-year MERIT Award to Tilly from the National Institute on Aging, a Ruth L. Kirschstein National Research Service Award from the National Institutes of Health, the Henry and Vivian Rosenberg Philanthropic Fund, the Sea Breeze Foundation, and Vincent Memorial Hospital Research Funds. Tilly is a co-founder of OvaScience, Inc. (www.ovascience.com), which has licensed the commercial potential of these and other patent-protected findings of the MGH-Vincent team for development of new fertility-enhancing procedures.

Massachusetts General Hospital (www.massgeneral.org), founded in 1811, is the original and largest teaching hospital of Harvard Medical School. The MGH conducts the largest hospital-based research program in the United States, with an annual research budget of more than $750 million and major research centers in AIDS, cardiovascular research, cancer, computational and integrative biology, cutaneous biology, human genetics, medical imaging, neurodegenerative disorders, regenerative medicine, reproductive biology, systems biology, transplantation biology and photomedicine.

[ | E-mail | Share ]

 

AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert! system.

Read more here:
Mass. General researchers isolate egg-producing stem cells from adult human ovaries

Read More...

Bacterin International Holdings, Inc. Schedules Fourth Quarter 2011 Financial Earnings Conference Call

Saturday, February 25th, 2012

BELGRADE, Mont., Feb. 24, 2012 /PRNewswire/ -- Bacterin International Holdings, Inc. (NYSE Amex: BONE), a leader in the development of revolutionary bone graft material and antimicrobial coatings for medical applications, will release its financial results for the three and 12 months ended December 31, 2011 after the close of regular market trading on Thursday, March 22, 2012. A conference call will follow at 4:30 p.m. Eastern Time (1:30 p.m. Pacific Time).

Conference Call Details:

Date: Thursday, March 22, 2012
Time: 4:30 p.m. Eastern time (1:30 p.m. Pacific time)
Dial-In Number: 1-877-941-1427
International: 1-480-629-9664
Conference ID#: 4519974

The conference call will be broadcast simultaneously and available for replay here and at the investor section of the company's Web site at http://www.bacterin.com/index.htm.

Please call the conference telephone number 5-10 minutes prior to the start time. An operator will register your name and organization. If you have any difficulty connecting with the conference call, please contact Hayden IR at 1-646-755-7412.

A replay of the call will be available after 7:30 p.m. Eastern time on the same day and until April 22, 2012.

International replay number: 1-858-384-5517
Replay pin number: 4519974

About Bacterin International Holdings

Bacterin International Holdings, Inc. (NYSE Amex: BONE) develops, manufactures and markets biologics products to domestic and international markets. Bacterin's proprietary methods optimize the growth factors in human allografts to create the ideal stem cell scaffold to promote bone, subchondral repair and dermal growth. These products are used in a variety of applications including enhancing fusion in spine surgery, relief of back pain, promotion of bone growth in foot and ankle surgery, promotion of cranial healing following neurosurgery and subchondral repair in knee and other joint surgeries.

Bacterin's Medical Device division develops, employs, and licenses bioactive coatings for various medical device applications. Bacterin's strategic coating initiatives include antimicrobial coatings designed to inhibit biofilm formation and microbial contamination. For further information, please visit http://www.bacterin.com.

Important Cautions Regarding Forward-looking Statements

This news release contains certain disclosures that may be deemed forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995 that are subject to significant risks and uncertainties. Forward-looking statements include statements that are predictive in nature, that depend upon or refer to future events or conditions, or that include words such as "continue," "efforts," "expects," "anticipates," "intends," "plans," "believes," "estimates," "projects," "forecasts," "strategy," "will," "goal," "target," "prospects," "potential," "optimistic," "confident," "likely," "probable" or similar expressions or the negative thereof. Statements of historical fact also may be deemed to be forward-looking statements. We caution that these statements by their nature involve risks and uncertainties, and actual results may differ materially depending on a variety of important factors, including, among others: the Company's ability to launch beta and full product releases, the Company's ability to obtain FDA concurrence use for anti-microbial coatings in a timely manner; the Company's ability to meet its obligations under existing and anticipated contractual obligations; the Company's ability to develop, market, sell and distribute desirable applications, products and services and to protect its intellectual property; the ability of the Company's sales force to achieve expected results; the ability of the Company's customers to pay and the timeliness of such payments, particularly during recessionary periods; the Company's ability to obtain financing as and when needed; changes in consumer demands and preferences; the Company's ability to attract and retain management and employees with appropriate skills and expertise; the impact of changes in market, legal and regulatory conditions and in the applicable business environment, including actions of competitors; and other factors. Additional risk factors are listed in the Company's Annual Report on Form 10-K under the heading "Risk Factors." The Company undertakes no obligation to release publicly any revisions to any forward-looking statements to reflect events or circumstances after the date hereof or to reflect the occurrence of unanticipated events, except as required by law.

Contact:

INVESTOR INQUIRIES:
Hayden IR
James Carbonara, Regional Vice President, 646-755-7412
james@haydenir.com 

Brett Maas, 646-536-7331
brett@haydenir.com

Read the rest here:
Bacterin International Holdings, Inc. Schedules Fourth Quarter 2011 Financial Earnings Conference Call

Read More...

Bone Marrow Prolotherapy at Caring Medical – Dr. Ross Hauser – Video

Thursday, February 23rd, 2012

28-12-2010 13:43 Ross Hauser, MD is a full time Prolotherapy physician in Chicago land. He offers comprehensive Prolotherapy, including Bone Marrow Prolotherapy, also known as Stem Cell Prolotherapy. In this video, he discusses the stem cell treatment and how the bone marrow is obtained and administered. If you are interested in Prolotherapy, please visit: http://www.caringmedical.com

Originally posted here:
Bone Marrow Prolotherapy at Caring Medical - Dr. Ross Hauser - Video

Read More...

Gentium Responds to the EMA's Day 120 List of Questions for Defibrotide MAA

Wednesday, February 22nd, 2012

VILLA GUARDIA, Italy, Feb. 21, 2012 (GLOBE NEWSWIRE) -- Gentium S.p.A. (Nasdaq:GENT - News) (the "Company") announced today that it has submitted its response to the Day 120 List of Questions (the "LoQs") issued by the European Medicines Agency's ("EMA") Committee for Medicinal Products for Human Use ("CHMP") with respect to the Company's Marketing Authorization Application for Defibrotide to treat and prevent hepatic veno-occlusive disease (VOD) in adults and children undergoing haematopoietic stem cell transplantation therapy.

"We are pleased to announce that we have finalized and submitted written responses to the LoQs," said Dr. Khalid Islam, Chairman & Chief Executive Officer of the Company. "We plan to continue working closely with the EMA towards the approval of Defibrotide."

Following the submission of the Day 120 LoQs responses, the CHMP will continue its review of the MAA and will either issue an opinion on the MAA or submit a List of Outstanding Issues (LoOIs) requiring further clarification, the latter of which will stop the review clock to permit the Company time to respond. The CHMP is expected to reach its final opinion no later than day 210 calculated based on the EMA review process timeline.

The Company submitted its MAA for Defibrotide to the EMA in May 2011 and the CHMP issued the LoQs at the end of September 2011.

About the EMA Review Process:

Following the submission of its response to the Day 120 LoQs, the Company may meet with the Rapporteur and Co-Rapporteur to clarify the intent behind the questions presented and obtain further information regarding the CHMP's concerns. The EMA's review will resume on day 121 with any further communication from the EMA anticipated by day 150 under the accelerated review timeline (or day 180 under the standard review timeline if accelerated review is not permitted). At that point, the EMA is expected to either submit an LoOI or issue an opinion on the MAA. EMA guidelines permit companies in receipt of an LoOI to respond within one month. More information can be obtained from the EMA website http://www.ema.europa.eu.

About VOD

Veno-occlusive disease is a potentially life-threatening condition, which typically occurs as a significant complication of stem cell transplantation. Certain high-dose conditioning regimens used as part of stem cell transplantation can damage the lining cells of hepatic blood vessels and result in VOD, a blockage of the small veins in the liver that leads to liver failure and can result in significant dysfunction in other organs such as the kidneys and lungs (so-called severe VOD). Stem cell transplantation is a frequently used treatment modality following high-dose chemotherapy and radiation therapy for hematologic cancers and other conditions in both adults and children. At present there is no approved agent for the treatment or prevention of VOD in the United States or the European Union.

About Gentium

Gentium S.p.A., located in Como, Italy, is a biopharmaceutical company focused on the development and manufacture of drugs to treat and prevent a variety of diseases and conditions, including vascular diseases related to cancer and cancer treatments. Defibrotide, the Company's lead product candidate, is an investigational drug that has been granted Orphan Drug status by the U.S. Food and Drug Administration (FDA) and Orphan Medicinal Product Designation by the European Medicines Agency, both to treat and to prevent VOD, as well as Fast Track Designation by the U.S. FDA to treat VOD.

Cautionary Note Regarding Forward-Looking Statements

This press release contains "forward-looking statements." In some cases, you can identify these statements by forward-looking words such as "may," "might," "will," "should," "expect," "plan," "anticipate," "believe," "estimate," "predict," "potential" or "continue," the negative of these terms and other comparable terminology. These statements are not historical facts but instead represent the Company's belief regarding future results, many of which, by their nature, are inherently uncertain and outside the Company's control. It is possible that actual results, including with respect to the possibility of any future regulatory approval, may differ materially from those anticipated in these forward-looking statements. For a discussion of some of the risks and important factors that could affect future results, see the discussion in our Form 20-F filed with the Securities and Exchange Commission under the caption "Risk Factors."

Read more:
Gentium Responds to the EMA's Day 120 List of Questions for Defibrotide MAA

Read More...

Nasal Stem Cells Show Promise in Repairing Spinal Cord Damage Caused by Contusion

Wednesday, February 22nd, 2012

An important new study by a team of scientists at RhinoCyte™ Inc., Louisville, Ky., details promising results on the effectiveness of olfactory (nasal) stem cells in repairing spinal cord damage resulting from the most common cause of these injuries — contusions (bruising) due to major trauma such as is seen in auto accidents, falls or combat. This could have major implication for the estimated 5 million people worldwide affected by spinal cord injuries – 1.275 million of them in the United States alone, where the cost of treatment exceeds $40.5 billion each year.

Louisville, Kentucky (PRWEB) February 22, 2012

An important new study released by a team of scientists at RhinoCyte™ Inc., Louisville, Ky., details promising results on the effectiveness of olfactory (nasal) stem cells in repairing spinal cord damage resulting from the most common cause of these injuries — contusions (bruising) due to major trauma. Their study is featured in the current issue of the Journal of Neurodegeneration and Regeneration.

The study, led by Dr. Fred Roisen, has great implication for the estimated 5 million people worldwide affected by spinal cord injuries – 1.275 million of them in the United States alone, where the cost of treatment exceeds $40.5 billion each year. Current treatment options are limited to retaining and retraining mobility; no drug therapies are available, but studies pertaining to stem cell treatments are showing great promise for these as well as other neurodegenerative conditions.

A previous study by the group made national headlines when lab rats whose spinal cords had been partially cut in the region of the animal’s neck in a way that disabled their front right paws were able to regain significant use of their paws after being injected with olfactory stem cells. The investigative team took the cells from the olfactory neurosensory epithelium — the part of the nose that controls the sense of smell — in adult volunteer donors who were already undergoing elective sinus surgery. The removal of the stem cells has no effect on the patients’ ability to smell. Also, the minimally invasive surgery is frequently done on an outpatient basis so the cells are readily available and, as such, are a potentially promising source of therapeutic stem cells.

The researchers isolated the stem cells and increased their numbers in the laboratory by growing them in an enriched solution. The cells were then injected into a group of lab rats. Twelve weeks later, these animals had regained control of their affected paws while a control group that received no cells had not.

This latest study continued that original work, by concentrating on contusions caused by blunt force trauma such as that resulting from an automobile accident or a fall. Spinal cord and head trauma are common among soldiers suffering serious combat injuries, too.

Two independent sets of experiments were conducted, beginning two weeks after the rats had received contusions administered in a computer-controlled surgery. In the first group, 27 out of 41 rats were injected with olfactory stem cells, while the remainder received none. In the second group, 16 rats were treated with olfactory stem cells, 11 received no treatment and 10 received stem cells grown from human skin to see how the olfactory cells compared with another stem cell source.

The results once again showed great promise, with 40 percent of the rats treated with the olfactory-derived stem cells showing significant improvement after just six weeks, compared to 30 percent of those treated with human skin-derived cells and only 9 percent of those receiving no treatment. In addition, the olfactory stem cell-treated rats showing the highest rate of improvement recovered much faster than the other groups.

“This is very exciting on numerous levels,” said Dr. Roisen. “As an autologous cell source — that is, the patient is both the donor and the recipient — olfactory stem cells bypass the time a patient must wait while a suitable donor is found, which can be critical to the outcome of the patient’s treatment. They also eliminate the need for immunosuppressive drugs, which have numerous negative side effects.

“And just as importantly, stem cells taken from the nose of an adult do away with the ethical concerns associated with using embryonic stem cells.”

The researchers are in the final stages of their enabling studies, which are scheduled to be completed by summer; Phase 1 safety studies could begin as soon as early next year.

Dr. Roisen is chief science officer and co-founder of RhinoCtye™, and a professor and chair of the University of Louisville School of Medicine’s Department of Anatomical Sciences and Neurobiology. The original work forming the basis for the contusion study was conducted by Dr. Roisen’s group at UofL and has been licensed to RhinoCtye™ (http://www.rhinocyte.com), a company he co-founded in 2005 with Dr. Chengliang Lu and Dr. Kathleen Klueber to develop and commercialize diagnostic tools and therapies for stem cell treatment of multiple degenerative and traumatic neurological diseases. RhinoCyte™ currently has three patents for olfactory stem cell treatments approved in the United States, Australia and Israel, with others pending worldwide.

###

Laurel Harper
Laurel92@msn.com
502-550-0089
Email Information

Originally posted here:
Nasal Stem Cells Show Promise in Repairing Spinal Cord Damage Caused by Contusion

Read More...

Bioheart to Present at BioFlorida's Saturday Exchange

Wednesday, February 15th, 2012

SUNRISE, Fla., Feb. 15, 2012 (GLOBE NEWSWIRE) -- Bioheart (BHRT.OB), a leader in developing stem cell therapies to treat cardiovascular diseases, today announced that they have been chosen as a presenter in the BioFlorida Saturday Exchange conference later this month.

The Saturday Exchange is a reprise of the successful Biomed Exchange meeting, held for many years during the 1980-90's. Well over 100 life science professionals gathered in Miami on a Saturday morning each month to learn about various aspects of the community's growing life sciences cluster. The Exchange will take place at University of Miami's Life Science & Technology Park.

The Keynote Speaker is Bioheart's Chairman William P. Murphy Jr., MD. Dr. Murphy will share his career experiences and insights as a leading entrepreneur in the medical device industry, spanning the founding of Cordis Corporation to more recent ventures. In addition, Mike Tomas, Bioheart's president and CEO and Kristin Comella, Bioheart's CSO will present the use of stem cells in degenerative diseases

"The Saturday Exchange brings together many professionals to discuss the field of biotechnology," said Mike Tomas. "Bioheart is excited about the opportunity to represent the South Florida community and share our experiences in the field of regenerative medicine."

About Bioheart

Bioheart (BHRT.OB) is committed to developing stem cell therapies to treat congestive heart failure, lower limb ischemia, chronic heart ischemia, acute myocardial infarctions and other medical problems. The company focuses on the discovery and development of therapies that will improve patients' quality of life and reduce health care costs and hospitalizations. Bioheart's leading product, MyoCell, is a muscle-derived cell therapy designed to populate regions of scar tissue within a patient's heart to improve cardiac function.

For more information on Bioheart, visit http://www.bioheartinc.com.

Forward-Looking Statements: Except for historical matters contained herein, statements made in this press release are forward-looking statements. Without limiting the generality of the foregoing, words such as "may," "will," "to," "plan," "expect," "believe," "anticipate," "intend," "could," "would," "estimate," or "continue" or the negative other variations thereof or comparable terminology are intended to identify forward-looking statements.

Forward-looking statements involve known and unknown risks, uncertainties and other factors which may cause our actual results, performance or achievements to be materially different from any future results, performance or achievements expressed or implied by the forward-looking statements. Also, forward-looking statements represent our management's beliefs and assumptions only as of the date hereof. Except as required by law, we assume no obligation to update these forward-looking statements publicly, or to update the reasons actual results could differ materially from those anticipated in these forward-looking statements, even if new information becomes available in the future.

The Company is subject to the risks and uncertainties described in its filings with the Securities and Exchange Commission, including the section entitled "Risk Factors" in its Annual Report on Form 10-K for the year ended December 31, 2010, and its Quarterly Report on Form 10-Q for the quarter ended September 30, 2011.

Read the original here:
Bioheart to Present at BioFlorida's Saturday Exchange

Read More...

Life Technologies Scientist Uma Lakshmipathy presents, "Solving Challenges in the Generation of Induced Pluripotent …

Wednesday, February 15th, 2012

Dr. Uma Lakshmipathy speaks at various conferences about work on the creation of integration-free induced pluripotent stem cells at high efficiency with Sendai Virus using the CytoTune™ -iPS Reprogramming Kit. Uma Lakshmipathy's next speaking engagement will be in Mid February at the Stem Cell Banking Conference in London.

Carlsbad, California (PRWEB) February 14, 2012

Uma's last presentation about the Generation of Induced Pluripotent Stem Cells summarized here was also recorded for viewing and placed on the Life Technologies website. (http://find.lifetechnologies.com/stemcells/umavideo/article)

The CytoTune™ - iPS Reprogramming Kit is a high efficiency, integration- free, easy-to-use somatic cell reprogramming kit used in the generation of induced pluripotent stem cells. This kit utilizes Sendai Virus particles of the four Yamanaka factors, which have been shown to be critical in the successful generation of induced pluripotent stem cells.

In her presentations, Uma Lakshmipathy discusses two current challenges faced when generating iPSC including low efficiency and expertise of users.

Low Efficiency

The most common method for generation of induced pluripotent stem cells is the transfection of the four Yamanaka factors using lentivirus or retrovirus. One of the biggest challenges for scientists right now is the low efficiency of iPSC generation. With difficult to transfect cell types or cells from older patients, efficiencies can be 0.001% or lower when using lentiviral or retroviral methods.

Expertise of Users

The second challenge is for users with little expertise that have a difficult time detecting these emerging iPSC colonies. When looking for pluripotent stem cells, people can either pick them up really easily or have trouble deciding what clones to place their bet on.

Efficiency & Safety of IPSC Generation

There are several methods which improve reprogramming efficiency including viral non-integrating and small molecule methods such as mRNA, microRNA and small molecules. The developers of the CytoTune™ -iPS Reprogramming Kit concentrated on a non-integrating viral method utilizing Sendai Virus, a negative sense RNA virus. Sendai Virus is able to infect a wide variety of cell types and generates induced pluripotent stem cells at efficiencies 100-fold higher than lentiviral or retroviral methods.

When comparing efficiency vs. safety of reprogramming methods, small molecules like microRNA, RNA and protein which don’t leave a footprint are safer for cell therapy research; however, the efficiency of generating induced pluripotent stem cells with these methods is pretty low at this point in time.

The highest efficiency so far has been achieved with viral methods such as Retrovirus and Lentivirus. More recently the CytoTune™ -iPS Reprogramming Kit actually exceeds the efficiency that can be obtained with these traditional viral systems and at the same time it is much safer because it is a non-integrating RNA virus. Therefore it will not leave a footprint in the iPSCs that are created.

The CytoTune™ -iPS Reprogramming Kit will:

    Reduce hands on time - enables successful iPS reprogramming in one simple transduction     Generate more cells - high efficiency reprogramming offers more iPS cells from a single experiment     Use in a broad range of experiments - lack of genomic integration and viral remnants allows use from basic to clinical research

Ease of Use

The CytoTune™ -iPS Reprogramming Kit provides a simple system for somatic cell reprogramming. For most cell types, the CytoTune™ -iPS Reprogramming Kit requires only one application of the virus for successful cell reprogramming, unlike other methods such as Lentivirus and mRNA which can require multiple rounds of transduction to produce iPS cells. Selection of colonies is also easier with the CytoTune™ –iPS Reprogramming Kit due to the lower number of non-induced pluripotent stem cells that are generated.

To view this presentation visit http://find.lifetechnologies.com/stemcells/umavideo/article

Uma Lakshmipathy's protocol, "Transfection of Human Embryonic Stem Cells" can be seen here http://bit.ly/y91Gpd

###

Jennifer Hornstein
Life Technologies
(760) 602-4577
Email Information

View original post here:
Life Technologies Scientist Uma Lakshmipathy presents, "Solving Challenges in the Generation of Induced Pluripotent ...

Read More...

Salk Scientists Use an Old Theory to Discover New Targets in the Fight Against Breast Cancer

Monday, February 13th, 2012

Similarities between genetic signatures in developing organs and breast cancer could predict and personalize cancer therapies

Newswise — La Jolla, CA---- Reviving a theory first proposed in the late 1800s that the development of organs in the normal embryo and the development of cancers are related, scientists at the Salk Institute for Biological Studies have studied organ development in mice to unravel how breast cancers, and perhaps other cancers, develop in people. Their findings provide new ways to predict and personalize the diagnosis and treatment of cancer.

In a paper published February 3 in Cell Stem Cell, the scientists report striking similarities between genetic signatures found in certain types of human breast cancer and those of stem cells in breast tissue in mouse embryos. These findings suggest that cancer cells subvert key genetic programs that guide immature cells to build organs during normal growth.

"Stem cells in a healthy developing embryo have a GPS system to alert them about their position in the organ," says Geoffrey Wahl, a professor in Salk's Gene Expression Laboratory, who led the research. "The system depends on internal instructions and external signals from the environment to tell the stem cell what to do and where to go in the body. It stimulates the stem cells to grow and form more stem cells, or to change into different cells that form complex organs, such as the breast. Our findings tell us that this GPS system is broken during cancer development, and that may explain why we detect stem-like cells in breast cancers."

The relationship between cancer and embryonic tissues was first proposed in the 1870s by Francesco Durante and Julius Cohnheim, who thought that cancers originated from cells in adults that persist in an immature, embryonic-like state. More recently, scientists including Benjamin Spike, a co-first author on the current work and post-doctoral fellow in the Wahl lab, have discovered that tumors often contain cells with stem cell characteristics revealed by their genetic signatures.

As a result, many scientists and physicians are pursuing ways to destroy stem-like cells in cancer, since such cells may make cancer more resistant to treatment and may lead to cancer recurrence. The Salk scientists are now characterizing the stem-like cells in certain forms of breast cancer to arrest their growth.

Studying the genetic activity of organ-specific stem cells is very difficult because the cells are very rare, and it is hard to separate them from other cells in the organ. But, by focusing on tissue obtained from mouse embryos, the Salk researchers were able for the first time to identify and isolate a sufficiently large number of fetal breast stem cells to begin to understand how their GPS works.

The Salk scientists first made the surprising finding that these fetal breast stem cells were not fully functional until just prior to birth. This observation suggested that a very special landscape is needed for a cell to become a stem cell. The breast stem cells at this late embryonic stage were sufficiently abundant to simplify their isolation. This enabled their genetic signature to be determined, and then compared to that of the stem-like cells in breast cancers.

The signatures of the breast stem cells in the fetus were stunningly similar to the stem-like cells found in aggressive breast cancers, including a significant fraction of a virulent cancer subtype known as "triple-negative." This is important as this type of breast cancer has until now lacked the molecular targets useful for designing personalized therapeutic strategies.

"The cells that fuel the development of tumors in the adult are unlikely to 'invent' entirely new patterns of gene expression," says Benjamin Spike. "Instead, some cancer cells seem to reactivate and corrupt programs that govern fetal tissue stem cell function, including programs from their neighboring cells that constitute the surrounding fetal stem cell landscape, or microenvironment."

The discovery of the shared genetic signatures provides a new avenue for scientists to explore the links between development and cancer. By uncovering new biological markers, the scientists hope to develop tests that individualize treatment by showing how the GPS system of a tumor operates. This should help doctors to determine which patients may benefit from treatment, and the correct types of treatment to administer.

Doctors are already using drugs, such as Herceptin, that specifically target malfunctioning genetic pathways in tumors, but no such therapies are currently available for certain aggressive forms of the disease, such as the triple negative subtype.

Although triple negative cancer cells lack the three critical genetic markers that are currently used to guide breast cancer treatment, the scientists' analysis suggests a strong reliance on signaling through pathways similar to those that affect fetal breast stem cell growth.

They found that the fetal breast stem cells are sensitive to a class of targeted therapies that already exists, so these therapies might also work in triple negative breast cancers. Laboratory studies and clinical trials are currently underway to test this possibility.

"Substantial effort is being expended to personalize cancer treatment by gaining a better understanding of the genetics of an individual patient's cancer," Wahl says. "Our findings offer a way to discover new targets and new drugs for humans by studying the primitive stem cells in a mouse."

In addition to Spike, Dannielle Engle and Jennifer Lin, both postdoctoral researchers in Wahl's laboratory, were also co-first authors on the paper.

The research was sponsored by the Breast Cancer Research Foundation, the U.S. Department of Defense, the G. Harold & Leila Y. Mathers Foundation and Susan G. Komen for the Cure.
About the Salk Institute for Biological Studies:
The Salk Institute for Biological Studies is one of the world's preeminent basic research institutions, where internationally renowned faculty probe fundamental life science questions in a unique, collaborative, and creative environment. Focused both on discovery and on mentoring future generations of researchers, Salk scientists make groundbreaking contributions to our understanding of cancer, aging, Alzheimer's, diabetes and infectious diseases by studying neuroscience, genetics, cell and plant biology, and related disciplines.

Faculty achievements have been recognized with numerous honors, including Nobel Prizes and memberships in the National Academy of Sciences. Founded in 1960 by polio vaccine pioneer Jonas Salk, M.D., the Institute is an independent nonprofit organization and architectural landmark.

Comment/Share

More:
Salk Scientists Use an Old Theory to Discover New Targets in the Fight Against Breast Cancer

Read More...

Scientists use old theory to discover new targets in fight against breast cancer

Monday, February 13th, 2012

ScienceDaily (Feb. 7, 2012) — Reviving a theory first proposed in the late 1800s that the development of organs in the normal embryo and the development of cancers are related, scientists at the Salk Institute for Biological Studies have studied organ development in mice to unravel how breast cancers, and perhaps other cancers, develop in people. Their findings provide new ways to predict and personalize the diagnosis and treatment of cancer.

In a paper published February 3 in Cell Stem Cell, the scientists report striking similarities between genetic signatures found in certain types of human breast cancer and those of stem cells in breast tissue in mouse embryos. These findings suggest that cancer cells subvert key genetic programs that guide immature cells to build organs during normal growth.

"Stem cells in a healthy developing embryo have a GPS system to alert them about their position in the organ," says Geoffrey Wahl, a professor in Salk's Gene Expression Laboratory, who led the research. "The system depends on internal instructions and external signals from the environment to tell the stem cell what to do and where to go in the body. It stimulates the stem cells to grow and form more stem cells, or to change into different cells that form complex organs, such as the breast. Our findings tell us that this GPS system is broken during cancer development, and that may explain why we detect stem-like cells in breast cancers."

The relationship between cancer and embryonic tissues was first proposed in the 1870s by Francesco Durante and Julius Cohnheim, who thought that cancers originated from cells in adults that persist in an immature, embryonic-like state. More recently, scientists including Benjamin Spike, a co-first author on the current work and post-doctoral fellow in the Wahl lab, have discovered that tumors often contain cells with stem cell characteristics revealed by their genetic signatures.

As a result, many scientists and physicians are pursuing ways to destroy stem-like cells in cancer, since such cells may make cancer more resistant to treatment and may lead to cancer recurrence. The Salk scientists are now characterizing the stem-like cells in certain forms of breast cancer to arrest their growth.

Studying the genetic activity of organ-specific stem cells is very difficult because the cells are very rare, and it is hard to separate them from other cells in the organ. But, by focusing on tissue obtained from mouse embryos, the Salk researchers were able for the first time to identify and isolate a sufficiently large number of fetal breast stem cells to begin to understand how their GPS works.

The Salk scientists first made the surprising finding that these fetal breast stem cells were not fully functional until just prior to birth. This observation suggested that a very special landscape is needed for a cell to become a stem cell. The breast stem cells at this late embryonic stage were sufficiently abundant to simplify their isolation. This enabled their genetic signature to be determined, and then compared to that of the stem-like cells in breast cancers.

The signatures of the breast stem cells in the fetus were stunningly similar to the stem-like cells found in aggressive breast cancers, including a significant fraction of a virulent cancer subtype known as "triple-negative." This is important as this type of breast cancer has until now lacked the molecular targets useful for designing personalized therapeutic strategies.

"The cells that fuel the development of tumors in the adult are unlikely to 'invent' entirely new patterns of gene expression," says Benjamin Spike. "Instead, some cancer cells seem to reactivate and corrupt programs that govern fetal tissue stem cell function, including programs from their neighboring cells that constitute the surrounding fetal stem cell landscape, or microenvironment."

The discovery of the shared genetic signatures provides a new avenue for scientists to explore the links between development and cancer. By uncovering new biological markers, the scientists hope to develop tests that individualize treatment by showing how the GPS system of a tumor operates. This should help doctors to determine which patients may benefit from treatment, and the correct types of treatment to administer.

Doctors are already using drugs, such as Herceptin, that specifically target malfunctioning genetic pathways in tumors, but no such therapies are currently available for certain aggressive forms of the disease, such as the triple negative subtype.

Although triple negative cancer cells lack the three critical genetic markers that are currently used to guide breast cancer treatment, the scientists' analysis suggests a strong reliance on signaling through pathways similar to those that affect fetal breast stem cell growth.

They found that the fetal breast stem cells are sensitive to a class of targeted therapies that already exists, so these therapies might also work in triple negative breast cancers. Laboratory studies and clinical trials are currently underway to test this possibility.

"Substantial effort is being expended to personalize cancer treatment by gaining a better understanding of the genetics of an individual patient's cancer," Wahl says. "Our findings offer a way to discover new targets and new drugs for humans by studying the primitive stem cells in a mouse."

In addition to Spike, Dannielle Engle and Jennifer Lin, both postdoctoral researchers in Wahl's laboratory, were also co-first authors on the paper.

The research was sponsored by the Breast Cancer Research Foundation, the U.S. Department of Defense, the G. Harold & Leila Y. Mathers Foundation and Susan G. Komen for the Cure.

Recommend this story on Facebook, Twitter,
and Google +1:

Other bookmarking and sharing tools:

Story Source:

The above story is reprinted from materials provided by Salk Institute for Biological Studies, via Newswise.

Note: Materials may be edited for content and length. For further information, please contact the source cited above.

Journal Reference:

Benjamin T. Spike, Dannielle D. Engle, Jennifer C. Lin, Samantha K. Cheung, Justin La, Geoffrey M. Wahl. A Mammary Stem Cell Population Identified and Characterized in Late Embryogenesis Reveals Similarities to Human Breast Cancer. Cell Stem Cell, 2012; 10 (2): 183 DOI: 10.1016/j.stem.2011.12.018

Note: If no author is given, the source is cited instead.

Disclaimer: This article is not intended to provide medical advice, diagnosis or treatment. Views expressed here do not necessarily reflect those of ScienceDaily or its staff.

Go here to see the original:
Scientists use old theory to discover new targets in fight against breast cancer

Read More...

Frank Young Joins Bioheart as Financial Consultant

Tuesday, January 31st, 2012

SUNRISE, Fla., Jan. 30, 2012 (GLOBE NEWSWIRE) -- Bioheart (OTCBB:BHRT.OB - News), a leader in developing stem cell therapies to treat cardiovascular diseases, today announced that Frank Young will join Bioheart to be a financial consultant. Young will provide financial oversight of the company's capital fundraising efforts and cultivate relationships within the financial and health care communities to support Bioheart's business goals.

Young previously served as chief financial officer (CFO) with Bioheart from 2003 to 2005. He has more than 30 years' experience launching and managing venture-backed companies in the technology and health care industries.

"Frank's entrepreneurial spirit and successful fundraising strategies, combined with his previous accomplishments at Bioheart, make him an ideal fit for Bioheart," said Mike Tomas, Bioheart's president and CEO. "Frank has a proven track record launching, managing and financially advising numerous companies across the healthcare industry."

Previously Young worked as CFO with CURNA,a health care company known for its discovery of new therapeutic compounds. He engineered the sale of the company in fewer than two years for more than five times the invested capital. He also worked as CFO with Mitral Solutions and Hyperion. As CFO with Bioheart, Young assisted in raising more than $9.5 million from investors in addition to negotiating international manufacturing arrangements and joint ventures.

"I have always been impressed with Bioheart and its success with stem cell research," Young said. "I look forward to becoming an integral part of Bioheart's financial future as it continues to develop life-saving technologies for victims of heart disease."

About Bioheart

Bioheart (OTCBB:BHRT.OB - News) is committed to developing stem cell therapies to treat congestive heart failure, lower limb ischemia, chronic heart ischemia, acute myocardial infarctions and other medical problems. The company focuses on the discovery and development of therapies that will improve patients' quality of life and reduce health care costs and hospitalizations. Bioheart's leading product, MyoCell, is a muscle-derived cell therapy designed to populate regions of scar tissue within a patient's heart to improve cardiac function. For more information, visit http://www.bioheartinc.com.

For more information on Bioheart, visit http://www.bioheartinc.com.

Forward-Looking Statements: Except for historical matters contained herein, statements made in this press release are forward-looking statements. Without limiting the generality of the foregoing, words such as "may," "will," "to," "plan," "expect," "believe," "anticipate," "intend," "could," "would," "estimate," or "continue" or the negative other variations thereof or comparable terminology are intended to identify forward-looking statements.

Forward-looking statements involve known and unknown risks, uncertainties and other factors which may cause our actual results, performance or achievements to be materially different from any future results, performance or achievements expressed or implied by the forward-looking statements. Also, forward-looking statements represent our management's beliefs and assumptions only as of the date hereof. Except as required by law, we assume no obligation to update these forward-looking statements publicly, or to update the reasons actual results could differ materially from those anticipated in these forward-looking statements, even if new information becomes available in the future.

The Company is subject to the risks and uncertainties described in its filings with the Securities and Exchange Commission, including the section entitled "Risk Factors" in its Annual Report on Form 10-K for the year ended December 31, 2010, and its Quarterly Report on Form 10-Q for the quarter ended September 30, 2011.

See original here:
Frank Young Joins Bioheart as Financial Consultant

Read More...

Dr Tony Talebi discusses treatment of multiple myeloma patients with Dr Ratzan – Video

Monday, January 2nd, 2012

18-11-2011 14:34 Dr Tony Talebi discusses treatment of multiple myeloma in non stem cell transplantation candidate patients with Dr Ratzan. For further discussion visit http://www.HemOnc101.com Treatment of multiple myeloma Multiple myeloma is characterized by the neoplastic proliferation of a single clone of plasma cells producing a monoclonal immunoglobulin antibody. This clone of plasma cells proliferates in the bone marrow and often results in extensive skeletal destruction with osteolytic lesions, and/or pathologic fractures.

Continue reading here:
Dr Tony Talebi discusses treatment of multiple myeloma patients with Dr Ratzan - Video

Read More...

Dr Tony Talebi discusses stem cell transplantation in Myeloma with Dr Ratzan – Video

Monday, January 2nd, 2012

18-11-2011 14:29 Dr Tony Talebi discusses stem cell transplantation in Myeloma with Dr Ratzan.

Go here to see the original:
Dr Tony Talebi discusses stem cell transplantation in Myeloma with Dr Ratzan - Video

Read More...

StemFlo – Blood Circulation Enhancer, Antioxidant and More!.flv – Video

Sunday, January 1st, 2012

04-05-2011 09:15 StemFlo® is a cutting-edge blend of antioxidants and enzymes that support optimal blood circulation. gmp.stemtechbiz.com Designed to support the "flow" of adult stem cells and nutrients to all parts of the body, StemFlo assists and supports your body's adult stem cell nutrition needs.

Read more:
StemFlo - Blood Circulation Enhancer, Antioxidant and More!.flv - Video

Read More...

Dr. Uma Lakshimipathy presents Generation of Transgene-Free Induced Pluripotent Stem Cells – Video

Wednesday, December 28th, 2011

Learn more at http://www.invitrogen.com Dr. Uma Lakshmipathy presents work on the creation of integration-free induced pluripotent stem cells at high efficiency with Sendai Virus using the CytoTune™ -iPS Sendai Reprogramming Kit. So to start with the most common method for generating iPSC is transduction of the four factors and shown here is the Yamanaka factors and after a black box in which takes anywhere between three to four weeks you end up with iPSC colonies.

Read the original here:
Dr. Uma Lakshimipathy presents Generation of Transgene-Free Induced Pluripotent Stem Cells - Video

Read More...

Cord Blood Stem Cell Transfusion Saves 3-Year-Old Child – Video

Wednesday, December 7th, 2011

Diagnosed at birth with aplastic anemia, Titus Chang was saved by a cord blood transplant from his newborn brother. For info about cord blood, go to cordblood.com and request a free info kit.

Original post:
Cord Blood Stem Cell Transfusion Saves 3-Year-Old Child - Video

Read More...

Adult stem cell treatment, quality and testing – Video

Saturday, November 26th, 2011

Before a stem cell treatment is performed, the umbilical cord cells, the umbilical cord itself and the donors are tested in several stages. Even if the cells are free from contamination, they are checked for quality and discarded should the quality of the cells be too low.

Go here to see the original:
Adult stem cell treatment, quality and testing - Video

Read More...

The Power of Stem Cells – Video

Thursday, November 10th, 2011

Description and use for different types of stem cells: Multipotent

Read the original:
The Power of Stem Cells - Video

Read More...

VistaGen’s Cardiac OrganDots(TM) Produced for Drug Rescue – Video

Thursday, November 10th, 2011

Human pluripotent stem cell derived cardiomyocytes (cardiac tissue) grown on an "air-liquid-interface" culture system to produce "microheart" OrganDots™. These OrganDots™, a core technology supporting VistaGen's drug rescue programs, are used to evaluate the positive ("efficacy") and negative ("toxicity") of drugs and drug candidates on the electrical functions and beating rates of the microhearts.

Here is the original post:
VistaGen's Cardiac OrganDots(TM) Produced for Drug Rescue - Video

Read More...

Page 23«..10..21222324


2025 © StemCell Therapy is proudly powered by WordPress
Entries (RSS) Comments (RSS) | Violinesth by Patrick