header logo image


Page 20«..10..19202122..»

Archive for the ‘Stem Cell Complications’ Category

4. The Adult Stem Cell [Stem Cell Information]

Friday, May 22nd, 2015

For many years, researchers have been seeking to understand the body's ability to repair and replace the cells and tissues of some organs, but not others. After years of work pursuing the how and why of seemingly indiscriminant cell repair mechanisms, scientists have now focused their attention on adult stem cells. It has long been known that stem cells are capable of renewing themselves and that they can generate multiple cell types. Today, there is new evidence that stem cells are present in far more tissues and organs than once thought and that these cells are capable of developing into more kinds of cells than previously imagined. Efforts are now underway to harness stem cells and to take advantage of this new found capability, with the goal of devising new and more effective treatments for a host of diseases and disabilities. What lies ahead for the use of adult stem cells is unknown, but it is certain that there are many research questions to be answered and that these answers hold great promise for the future.

Adult stem cells, like all stem cells, share at least two characteristics. First, they can make identical copies of themselves for long periods of time; this ability to proliferate is referred to as long-term self-renewal. Second, they can give rise to mature cell types that have characteristic morphologies (shapes) and specialized functions. Typically, stem cells generate an intermediate cell type or types before they achieve their fully differentiated state. The intermediate cell is called a precursor or progenitor cell. Progenitor or precursor cells in fetal or adult tissues are partly differentiated cells that divide and give rise to differentiated cells. Such cells are usually regarded as "committed" to differentiating along a particular cellular development pathway, although this characteristic may not be as definitive as once thought [82] (see Figure 4.1. Distinguishing Features of Progenitor/Precursor Cells and Stem Cells).

Figure 4.1. Distinguishing Features of Progenitor/Precursor Cells and Stem Cells. A stem cell is an unspecialized cell that is capable of replicating or self renewing itself and developing into specialized cells of a variety of cell types. The product of a stem cell undergoing division is at least one additional stem cell that has the same capabilities of the originating cell. Shown here is an example of a hematopoietic stem cell producing a second generation stem cell and a neuron. A progenitor cell (also known as a precursor cell) is unspecialized or has partial characteristics of a specialized cell that is capable of undergoing cell division and yielding two specialized cells. Shown here is an example of a myeloid progenitor/precursor undergoing cell division to yield two specialized cells (a neutrophil and a red blood cell).

( 2001 Terese Winslow, Lydia Kibiuk)

Adult stem cells are rare. Their primary functions are to maintain the steady state functioning of a cellcalled homeostasisand, with limitations, to replace cells that die because of injury or disease [44, 58]. For example, only an estimated 1 in 10,000 to 15,000 cells in the bone marrow is a hematopoietic (bloodforming) stem cell (HSC) [105]. Furthermore, adult stem cells are dispersed in tissues throughout the mature animal and behave very differently, depending on their local environment. For example, HSCs are constantly being generated in the bone marrow where they differentiate into mature types of blood cells. Indeed, the primary role of HSCs is to replace blood cells [26] (see Chapter 5. Hematopoietic Stem Cells). In contrast, stem cells in the small intestine are stationary, and are physically separated from the mature cell types they generate. Gut epithelial stem cells (or precursors) occur at the bases of cryptsdeep invaginations between the mature, differentiated epithelial cells that line the lumen of the intestine. These epithelial crypt cells divide fairly often, but remain part of the stationary group of cells they generate [93].

Unlike embryonic stem cells, which are defined by their origin (the inner cell mass of the blastocyst), adult stem cells share no such definitive means of characterization. In fact, no one knows the origin of adult stem cells in any mature tissue. Some have proposed that stem cells are somehow set aside during fetal development and restrained from differentiating. Definitions of adult stem cells vary in the scientific literature range from a simple description of the cells to a rigorous set of experimental criteria that must be met before characterizing a particular cell as an adult stem cell. Most of the information about adult stem cells comes from studies of mice. The list of adult tissues reported to contain stem cells is growing and includes bone marrow, peripheral blood, brain, spinal cord, dental pulp, blood vessels, skeletal muscle, epithelia of the skin and digestive system, cornea, retina, liver, and pancreas.

In order to be classified as an adult stem cell, the cell should be capable of self-renewal for the lifetime of the organism. This criterion, although fundamental to the nature of a stem cell, is difficult to prove in vivo. It is nearly impossible, in an organism as complex as a human, to design an experiment that will allow the fate of candidate adult stem cells to be identified in vivo and tracked over an individual's entire lifetime.

Ideally, adult stem cells should also be clonogenic. In other words, a single adult stem cell should be able to generate a line of genetically identical cells, which then gives rise to all the appropriate, differentiated cell types of the tissue in which it resides. Again, this property is difficult to demonstrate in vivo; in practice, scientists show either that a stem cell is clonogenic in vitro, or that a purified population of candidate stem cells can repopulate the tissue.

An adult stem cell should also be able to give rise to fully differentiated cells that have mature phenotypes, are fully integrated into the tissue, and are capable of specialized functions that are appropriate for the tissue. The term phenotype refers to all the observable characteristics of a cell (or organism); its shape (morphology); interactions with other cells and the non-cellular environment (also called the extracellular matrix); proteins that appear on the cell surface (surface markers); and the cell's behavior (e.g., secretion, contraction, synaptic transmission).

The majority of researchers who lay claim to having identified adult stem cells rely on two of these characteristicsappropriate cell morphology, and the demonstration that the resulting, differentiated cell types display surface markers that identify them as belonging to the tissue. Some studies demonstrate that the differentiated cells that are derived from adult stem cells are truly functional, and a few studies show that cells are integrated into the differentiated tissue in vivo and that they interact appropriately with neighboring cells. At present, there is, however, a paucity of research, with a few notable exceptions, in which researchers were able to conduct studies of genetically identical (clonal) stem cells. In order to fully characterize the regenerating and self-renewal capabilities of the adult stem cell, and therefore to truly harness its potential, it will be important to demonstrate that a single adult stem cell can, indeed, generate a line of genetically identical cells, which then gives rise to all the appropriate, differentiated cell types of the tissue in which it resides.

Go here to read the rest:
4. The Adult Stem Cell [Stem Cell Information]

Read More...

Veno-Occlusive Disease Is the Most Common Hepatic …

Friday, May 22nd, 2015

Autologous transplantation:patients receive their own stem cells after a course of myeloablative conditioning; about 12,000 are performed each year. Allogeneic transplantation:patients receive stem cells, bone marrow, or cord blood from a matched related or unrelated donor; about 8,000 are performed each year. Myeloablative conditioning:high-dose chemotherapy or total body irradiation given to kill cells in the bone marrow, including cancer cells, to prepare the body to receive healthy, autologous or allogeneic transplantations.

Although blood and marrow transplants can save patients lives, they can also result in numerous complications, including infections, renal failure, and liver complications, such as veno-occlusive disease (VOD). VOD can occur in as high as 70% of patients and is the most common hepatic complication in the immediate post-transplant period. Along with infections and graft-versus-host disease, it is also one of the most common causes of death after transplant.

In her article in the October 2012 issue of the Clinical Journal of Oncology Nursing, Sosa describes VOD and its causes, risk factors, prevention, interventions, and treatment options. Although no U.S. Food and Drug Administration-approved treatments currently exist for VOD, oncology nurses play a key role in early diagnosis and supportive care for patients with this complication.

VOD is not caused by the transplantation itself but rather the myeloablative conditioning regimen leading up to the procedure. Risk factors for VOD are outlined in Figure 1. Weight gain may occur before patients receive the actual transplant. Serum bilirubin often elevates to 2 mg/dl or higher within 610 days after the transplant, followed by edema and ascites. Patients may develop jaundice because of the increased bilirubin levels. If VOD is severe, weight gain and bilirubin levels increase at a faster rate.

Symptoms of VOD are not limited to the liver. Another indicator is increased platelet refractoriness, which may occur even before weight gain and liver enlargement are apparent. In addition, multiorgan failure may occur in severe cases. Serum creatinine may become elevated, resulting in renal failure, so patients may require hemodialysis. Because of fluid retention, patients may develop an enlarged heart, cardiac failure, or pleural effusions. As azotemia and hepatic encephalopathy develop, patients may experience confusion and altered mental status.

The gold standard for VOD diagnosis is histologically through a liver biopsy. However, the test can be dangerous in transplant recipients who are neutropenic or thrombocytopenic. Ultrasound is sometimes used as an alternative, but findings may be vague. Doppler ultrasound, which shows increased arterial resistance, may offer more specific results. Finally, differential diagnosis may be made based on clinical signs and symptoms.

Once VOD is diagnosed, it is classified according to severity.

Because no FDA-approved treatments currently exist for VOD, the nurses emphasis is on preventive measures and supportive care if VOD manifests.

Medications for prevention: When given as a low-dose continuous IV infusion starting before transplantation, heparin reduces the amount of clotting proteins in the hepatic venules. However, studies have not proven that it effectively prevents VOD.

See the article here:
Veno-Occlusive Disease Is the Most Common Hepatic ...

Read More...

Hematopoietic stem cell transplantation – Wikipedia, the …

Tuesday, May 19th, 2015

Hematopoietic stem cell transplantation (HSCT) is the transplantation of multipotent hematopoietic stem cells, usually derived from bone marrow, peripheral blood, or umbilical cord blood. It may be autologous (the patient's own stem cells are used) or allogeneic (the stem cells come from a donor). It is a medical procedure in the field of hematology, most often performed for patients with certain cancers of the blood or bone marrow, such as multiple myeloma or leukemia. In these cases, the recipient's immune system is usually destroyed with radiation or chemotherapy before the transplantation. Infection and graft-versus-host disease are major complications of allogeneic HSCT.

Hematopoietic stem cell transplantation remains a dangerous procedure with many possible complications; it is reserved for patients with life-threatening diseases. As the survival of the procedure increases, its use has expanded beyond cancer, such as autoimmune diseases.[1][2]

Indications for stem cell transplantation are as follows:

Many recipients of HSCTs are multiple myeloma[3] or leukemia patients[4] who would not benefit from prolonged treatment with, or are already resistant to, chemotherapy. Candidates for HSCTs include pediatric cases where the patient has an inborn defect such as severe combined immunodeficiency or congenital neutropenia with defective stem cells, and also children or adults with aplastic anemia[5] who have lost their stem cells after birth. Other conditions[6] treated with stem cell transplants include sickle-cell disease, myelodysplastic syndrome, neuroblastoma, lymphoma, Ewing's sarcoma, desmoplastic small round cell tumor, chronic granulomatous disease and Hodgkin's disease. More recently non-myeloablative, "mini transplantmicrotransplantation)," procedures have been developed that require smaller doses of preparative chemo and radiation. This has allowed HSCT to be conducted in the elderly and other patients who would otherwise be considered too weak to withstand a conventional treatment regimen.

A total of 50,417 first hematopoietic stem cell transplants were reported as taking place worldwide in 2006, according to a global survey of 1327 centers in 71 countries conducted by the Worldwide Network for Blood and Marrow Transplantation. Of these, 28,901 (57%) were autologous and 21,516 (43%) were allogeneic (11,928 from family donors and 9,588 from unrelated donors). The main indications for transplant were lymphoproliferative disorders (54.5%) and leukemias (33.8%), and the majority took place in either Europe (48%) or the Americas (36%).[7] In 2009, according to the World Marrow Donor Association, stem cell products provided for unrelated transplantation worldwide had increased to 15,399 (3,445 bone marrow donations, 8,162 peripheral blood stem cell donations, and 3,792 cord blood units).[8]

Autologous HSCT requires the extraction (apheresis) of haematopoietic stem cells (HSC) from the patient and storage of the harvested cells in a freezer. The patient is then treated with high-dose chemotherapy with or without radiotherapy with the intention of eradicating the patient's malignant cell population at the cost of partial or complete bone marrow ablation (destruction of patient's bone marrow function to grow new blood cells). The patient's own stored stem cells are then transfused into his/her bloodstream, where they replace destroyed tissue and resume the patient's normal blood cell production. Autologous transplants have the advantage of lower risk of infection during the immune-compromised portion of the treatment since the recovery of immune function is rapid. Also, the incidence of patients experiencing rejection (graft-versus-host disease) is very rare due to the donor and recipient being the same individual. These advantages have established autologous HSCT as one of the standard second-line treatments for such diseases as lymphoma.[9]

However, for others cancers such as acute myeloid leukemia, the reduced mortality of the autogenous relative to allogeneic HSCT may be outweighed by an increased likelihood of cancer relapse and related mortality, and therefore the allogeneic treatment may be preferred for those conditions.[10] Researchers have conducted small studies using non-myeloablative hematopoietic stem cell transplantation as a possible treatment for type I (insulin dependent) diabetes in children and adults. Results have been promising; however, as of 2009[update] it was premature to speculate whether these experiments will lead to effective treatments for diabetes.[11]

Allogeneics HSCT involves two people: the (healthy) donor and the (patient) recipient. Allogeneic HSC donors must have a tissue (HLA) type that matches the recipient. Matching is performed on the basis of variability at three or more loci of the HLA gene, and a perfect match at these loci is preferred. Even if there is a good match at these critical alleles, the recipient will require immunosuppressive medications to mitigate graft-versus-host disease. Allogeneic transplant donors may be related (usually a closely HLA matched sibling), syngeneic (a monozygotic or 'identical' twin of the patient - necessarily extremely rare since few patients have an identical twin, but offering a source of perfectly HLA matched stem cells) or unrelated (donor who is not related and found to have very close degree of HLA matching). Unrelated donors may be found through a registry of bone marrow donors such as the National Marrow Donor Program. People who would like to be tested for a specific family member or friend without joining any of the bone marrow registry data banks may contact a private HLA testing laboratory and be tested with a mouth swab to see if they are a potential match.[12] A "savior sibling" may be intentionally selected by preimplantation genetic diagnosis in order to match a child both regarding HLA type and being free of any obvious inheritable disorder. Allogeneic transplants are also performed using umbilical cord blood as the source of stem cells. In general, by transfusing healthy stem cells to the recipient's bloodstream to reform a healthy immune system, allogeneic HSCTs appear to improve chances for cure or long-term remission once the immediate transplant-related complications are resolved.[13][14][15]

A compatible donor is found by doing additional HLA-testing from the blood of potential donors. The HLA genes fall in two categories (Type I and Type II). In general, mismatches of the Type-I genes (i.e. HLA-A, HLA-B, or HLA-C) increase the risk of graft rejection. A mismatch of an HLA Type II gene (i.e. HLA-DR, or HLA-DQB1) increases the risk of graft-versus-host disease. In addition a genetic mismatch as small as a single DNA base pair is significant so perfect matches require knowledge of the exact DNA sequence of these genes for both donor and recipient. Leading transplant centers currently perform testing for all five of these HLA genes before declaring that a donor and recipient are HLA-identical.

Race and ethnicity are known to play a major role in donor recruitment drives, as members of the same ethnic group are more likely to have matching genes, including the genes for HLA.[16]

See the rest here:
Hematopoietic stem cell transplantation - Wikipedia, the ...

Read More...

What are Stem Cells? – Medical News Today

Tuesday, May 19th, 2015

knowledge center home stem cell research all about stem cells what are stem cells?

Stem cells are a class of undifferentiated cells that are able to differentiate into specialized cell types. Commonly, stem cells come from two main sources:

Both types are generally characterized by their potency, or potential to differentiate into different cell types (such as skin, muscle, bone, etc.).

Adult or somatic stem cells exist throughout the body after embryonic development and are found inside of different types of tissue. These stem cells have been found in tissues such as the brain, bone marrow, blood, blood vessels, skeletal muscles, skin, and the liver. They remain in a quiescent or non-dividing state for years until activated by disease or tissue injury.

Adult stem cells can divide or self-renew indefinitely, enabling them to generate a range of cell types from the originating organ or even regenerate the entire original organ. It is generally thought that adult stem cells are limited in their ability to differentiate based on their tissue of origin, but there is some evidence to suggest that they can differentiate to become other cell types.

Embryonic stem cells are derived from a four- or five-day-old human embryo that is in the blastocyst phase of development. The embryos are usually extras that have been created in IVF (in vitro fertilization) clinics where several eggs are fertilized in a test tube, but only one is implanted into a woman.

Sexual reproduction begins when a male's sperm fertilizes a female's ovum (egg) to form a single cell called a zygote. The single zygote cell then begins a series of divisions, forming 2, 4, 8, 16 cells, etc. After four to six days - before implantation in the uterus - this mass of cells is called a blastocyst. The blastocyst consists of an inner cell mass (embryoblast) and an outer cell mass (trophoblast). The outer cell mass becomes part of the placenta, and the inner cell mass is the group of cells that will differentiate to become all the structures of an adult organism. This latter mass is the source of embryonic stem cells - totipotent cells (cells with total potential to develop into any cell in the body).

In a normal pregnancy, the blastocyst stage continues until implantation of the embryo in the uterus, at which point the embryo is referred to as a fetus. This usually occurs by the end of the 10th week of gestation after all major organs of the body have been created.

However, when extracting embryonic stem cells, the blastocyst stage signals when to isolate stem cells by placing the "inner cell mass" of the blastocyst into a culture dish containing a nutrient-rich broth. Lacking the necessary stimulation to differentiate, they begin to divide and replicate while maintaining their ability to become any cell type in the human body. Eventually, these undifferentiated cells can be stimulated to create specialized cells.

Stem cells are either extracted from adult tissue or from a dividing zygote in a culture dish. Once extracted, scientists place the cells in a controlled culture that prohibits them from further specializing or differentiating but usually allows them to divide and replicate. The process of growing large numbers of embryonic stem cells has been easier than growing large numbers of adult stem cells, but progress is being made for both cell types.

View post:
What are Stem Cells? - Medical News Today

Read More...

Complications or Side Effects of Autologous Stem Cell …

Tuesday, May 19th, 2015

Home Complications or Side Effects of Autologous Stem Cell Transplantation Categories: Cancer Treatment Overview

The nature and severity of the side effects from high-dose chemotherapy and autologous stem cell transplantation are directly related to the type of high-dose chemotherapy treatment regimen used and are further influenced by the condition and age of the patient. The safety of autologous transplant has improved a great deal thanks to advancements in supportive care to manage the many potential side effects. While high doses of chemotherapy and radiation therapy can potentially affect any of the bodys normal cells or organs, the more common side effects are well described and include the following:

High-dose chemotherapy directly destroys the bone marrows ability to produce white blood cells, red blood cells and platelets. Patients experience side effects caused by low numbers of white blood cells (neutropenia), red blood cells (anemia) and platelets (thrombocytopenia). Patients usually need blood and platelet transfusions to treat anemia and thrombocytopenia until the new graft beings producing blood cells. The duration of bone marrow suppression can be shortened by infusing an optimal number of stem cells and administering growth factors that hasten the recovery of blood cell production.

During the two to three weeks it takes the new bone marrow to grow and produce white blood cells, patients are susceptible to infection and require the administration of antibiotics to prevent bacterial and fungal infections. Bacterial infections are the most common during this initial period of neutropenia. Stem cells collected from peripheral blood tend to engraft faster than bone marrow and may reduce the risk of infection by shortening the period of neutropenia. The growth factor Neupogen (filgrastim) also increases the rate of white blood cell recovery and has been approved by the Food and Drug Administration for use during autologous stem cell transplant.

The immune system takes even longer to recover than white blood cell production, with a resulting susceptibility to some bacterial, fungal and viral infections for weeks to months. After initial recovery from autologous stem cell transplant, patients are often required to take antibiotics for weeks to months to prevent infections from occurring. Prophylactic antibiotic administration can prevent Pneumocystis carinii pneumonia and some bacterial and fungal infections. Prophylactic antibiotics can also decrease the incidence of herpes zoster infection, which commonly occurs after high-dose chemotherapy and autologous stem cell transplant.

High-dose chemotherapy can result in damage to the liver, which can be serious and even fatal. This complication is increased in patients who have substantial amounts of previous chemotherapy and/or radiation therapy, a history of liver damage or hepatitis. Veno-occlusive disease (VOD) of the liver typically occurs in the first two weeks after high-dose chemotherapy treatment. Patients typically experience symptoms of abdominal fullness or swelling, liver tenderness and weight gain from fluid retention. Development of strategies to prevent or treat VOD is an active area of clinical investigation.

High-dose chemotherapy can directly damage the cells of the lungs. This may be more frequent in patients treated with certain types of chemotherapy and/or radiation therapy given prior to the transplant. This complication of transplant may occur anytime, from a few days after high-dose chemotherapy to several months after treatment. This often occurs after a patient has returned home from a transplant center and is being seen by a local oncologist.

Patients typically experience a dry non-productive cough or shortness of breath. Both patients and their doctors often misinterpret these early symptoms. Patients experiencing shortness of breath or a new cough after autologous transplant should bring this to the immediate attention of their doctor since this can be a serious and even fatal complication.

Graft failure is extremely unusual in autologous stem cell transplantation. Graft failure occurs when bone marrow function does not return. The graft may fail to grow in the patientresulting in bone marrow failurewith the absence of red blood cells, white blood cells and platelet production. This results in infection, anemia and bleeding. Graft failure may also occur in patients with extensive marrow fibrosis before transplantation, a viral illness or from the use of some drugs (such as methotrexate). In leukemia patients, graft failure often is associated with a recurrence of cancer; the leukemic cells may inhibit the growth of the transplanted cells. In some cases, the reasons for graft failure are unknown.

There are several long-term or late side effects that result from the chemotherapy and radiation therapy used in autologous stem cell transplant. The frequency and severity of these problems depends on the radiation or chemotherapy used to treat the patient. It is important to have the doctors providing your care explain the specific long-term side effects that can occur with the actual proposed treatment. Some examples of complications you should be aware of include the following:

Go here to read the rest:
Complications or Side Effects of Autologous Stem Cell ...

Read More...

Blood-Forming Stem Cell Transplants – National Cancer …

Tuesday, May 19th, 2015

What are bone marrow and hematopoietic stem cells?

Bone marrow is the soft, sponge-like material found inside bones. It contains immature cells known as hematopoietic or blood-forming stem cells. (Hematopoietic stem cells are different from embryonic stem cells. Embryonic stem cells can develop into every type of cell in the body.) Hematopoietic stem cells divide to form more blood-forming stem cells, or they mature into one of three types of blood cells: white blood cells, which fight infection; red blood cells, which carry oxygen; and platelets, which help the blood to clot. Most hematopoietic stem cells are found in the bone marrow, but some cells, called peripheral blood stem cells (PBSCs), are found in the bloodstream. Blood in the umbilical cord also contains hematopoietic stem cells. Cells from any of these sources can be used in transplants.

What are bone marrow transplantation and peripheral blood stem cell transplantation?

Bone marrow transplantation (BMT) and peripheral blood stem cell transplantation (PBSCT) are procedures that restore stem cells that have been destroyed by high doses of chemotherapy and/or radiation therapy. There are three types of transplants:

Why are BMT and PBSCT used in cancer treatment?

One reason BMT and PBSCT are used in cancer treatment is to make it possible for patients to receive very high doses of chemotherapy and/or radiation therapy. To understand more about why BMT and PBSCT are used, it is helpful to understand how chemotherapy and radiation therapy work.

Chemotherapy and radiation therapy generally affect cells that divide rapidly. They are used to treat cancer because cancer cells divide more often than most healthy cells. However, because bone marrow cells also divide frequently, high-dose treatments can severely damage or destroy the patients bone marrow. Without healthy bone marrow, the patient is no longer able to make the blood cells needed to carry oxygen, fight infection, and prevent bleeding. BMT and PBSCT replace stem cells destroyed by treatment. The healthy, transplanted stem cells can restore the bone marrows ability to produce the blood cells the patient needs.

In some types of leukemia, the graft-versus-tumor (GVT) effect that occurs after allogeneic BMT and PBSCT is crucial to the effectiveness of the treatment. GVT occurs when white blood cells from the donor (the graft) identify the cancer cells that remain in the patients body after the chemotherapy and/or radiation therapy (the tumor) as foreign and attack them.

What types of cancer are treated with BMT and PBSCT?

BMT and PBSCT are most commonly used in the treatment of leukemia and lymphoma. They are most effective when the leukemia or lymphoma is in remission (the signs and symptoms of cancer have disappeared). BMT and PBSCT are also used to treat other cancers such as neuroblastoma (cancer that arises in immature nerve cells and affects mostly infants and children) and multiple myeloma. Researchers are evaluating BMT and PBSCT in clinical trials (research studies) for the treatment of various types of cancer.

More here:
Blood-Forming Stem Cell Transplants - National Cancer ...

Read More...

Cordlife opens Chennai collection centre

Tuesday, October 16th, 2012

Chennai, Oct 16 (IBNS)

Cordlife, Asias largest and the most experienced network of stem cell banks in the Asia Pacific region, has announced the commencement of 49th collection centre in Chennai.

With its new centre coming up in Chennai, Cordlife has strengthened its foothold in South India with the presence in Karnataka, and Andhra Pradesh.

The addition of this new collection centre would further consolidate its presence as a leading player in the overall stem cell banking market.

The field of stemcell research is ever-growing as new diseases are coming under the purview of stemcell therapy.

The recent Nobel Prize win in physiology/medicine for work on stem cell has opened a new wave in the medical world.

The discoveries have showed that the body's mature, specialized cells can be reprogrammed into stem cells a discovery that scientists hope to turn into new treatments without destroying human embryos.

Scientists want to harness the reprogramming to create replacement tissues for treating diseases such as Parkinson's, cystic fibrosis and diabetes and for studying the roots of diseases in the laboratory.

Stem cell therapies are being developed for rare genetic disorders and for the treatment of terminal diseases like heart disease, orthopedic complications, breast cancer and other life threatening ailments.

With Cordlifes wide network, more number of individuals can opt for the unique patented technology now for storing their childs umbilical cord.

Read more from the original source:
Cordlife opens Chennai collection centre

Read More...

Significant Recovery Of Motor And Neurological Functions In Ischemic Stroke Rats With Neuralstem NSI-566 Cells

Monday, October 15th, 2012

ROCKVILLE, Md., Oct. 15, 2012 /PRNewswire/ --Neuralstem, Inc. (NYSE MKT: CUR) announced that data on Neuralstem's NSI-566 spinal cord-derived neural stem cell line in a rat model of ischemic stroke was presented in a poster, "Histopathological Assessment of Adult Ischemic Rat Brains after 4 Weeks of Intracerebral Transplantation of NSI-566RSC Cell Line," at The Society for Neurosciences Annual Meeting (http://www.sfn.org/AM2012/). This study was conducted independently in the laboratory of Dr. Cesar Borlongan, who is the director at the Center of Excellence for Aging and Brain Repair at the University of South Florida College of Medicine. Post-mortem histology was conducted in collaboration with Neuralstem. Rats that suffered ischemic stroke by middle cerebral artery occlusion, were transplanted 7 days post-stroke with increasing doses of NSI-566 into the stroke area. The animals were followed for safety and behavioral response for 56 days post-transplantation. Researchers reported Saturday that there was significant improvement in both motor and neurological tests in the stem cell-treated rats. There were significant dose-dependent differences in the behavioral improvement across treatment groups at post-transplantation periods, with the highest dose showing the most significant improvement in both motor and neurological tests. Similarly, there were significant differences in the behavioral performance among treatment groups at post-transplantation periods, with the most significant improvement in both motor and neurological tests seen at day 56 post-transplantation.

(Logo: http://photos.prnewswire.com/prnh/20061221/DCTH007LOGO )

"This study was designed to evaluate the potential therapeutic value of intracerbral dosing of human neural stem cells (NSI-566, supplied by Neuralstem) in an animal model of adult ischemic stroke," said Cesar V. Borlongan, Ph.D., University of South Florida College of Medicine, and the lead study author. "The results are very clear. The recovery of motor and neurological tests demonstrated by high-dose transplanted stroke animals was significantly better throughout the 56-day study period compared to vehicle-infused stroke animals, or low-dosed animals. In addition, there was stable improvement in the high-dose animals, and they showed a trend of better improvement over time."

A separate poster, "Survival and Differentiation of Human Neural Stem Cells (NSI-566RSC) After Grafting into Ischemia-Injured Porcine Brain," was also presented on Saturday. This study was independently carried out by Dr. Martin Marsala and his colleagues. Dr. Marsala is a professor and the head of the Neuroregeneration Laboratory at University of California San Diego and also a member of the Sanford Consortium for Regenerative Medicine. In this study, the same stem cells were transplanted into the brains of pigs that received an ischemic stroke on one side of the brain. 8-9 weeks after the ischemic event, which models chronic stroke in humans, feasibility and safety of escalating cell doses and injections were assessed. Body temperature, behavior, muscle tone and coordination, sensory function, food consumption, defecation, and micturition were monitored at least twice daily for the first 7 days, and once weekly thereafter, until termination. Up to 12 million cells in 25 cell injection deposits via 5 cannula penetrations were shown to be safe, which closely mimics the intended clinical route and method of delivery in future human clinical trials. At 6 weeks post-transplantation, there were no complications from the cell transplantation method or the cells. All animals recovered and showed progressive improvement with no distinction. All treated animals showed effective engraftment and neuronal maturation with extensive axonal projections. These data support the application of NSI-566RSC cell line to be transplanted into a chronic stage of previously ischemia-injured brain for treatment of motor deficits resulting from stroke.

"Our study was designed to evaluate the potential value of Neuralstem's cells in a chronic model of ischemic stroke and in a species that allowed for the use of human scale transplantation tools and dosing," said Martin Marsala, MD, at the University of California at San Diego Medical School, and the lead study author of the porcine study. "We have demonstrated clearly that both the route of administration and the cells are safe and well tolerated and that the cells survived and differentiated into mature neurons in the host brain tissue."

"We have demonstrated safety and efficacy of NSI-566RSC in a subacute model of ischemic stroke in rats and feasibility and safety in a chronic model of ischemic stroke in mini-pigs," said Karl Johe, PhD, Chairman of Neuralstem's Board of Directors and Chief Scientific Officer. "Together, these two studies demonstrate strong proof of principle data that our NSI-566 cells are ready to go into humans to treat paralysis in stroke patients."

Neuralstem has recently completed a Phase I trial testing the safety of NSI-566 in the treatment of amyotrophic lateral sclerosis (ALS or Lou Gehrig's disease) and has been approved to initiate a human clinical trial in ischemic stroke in China, through its subsidiary, Suzhou Neuralstem.

About Neuralstem

Neuralstem's patented technology enables the ability to produce neural stem cells of the human brain and spinal cord in commercial quantities, and the ability to control the differentiation of these cells constitutively into mature, physiologically relevant human neurons and glia. Neuralstem has recently treated the last patient in an FDA-approved Phase I safety clinical trial for amyotrophic lateral sclerosis (ALS), often referred to as Lou Gehrig's disease, and has been awarded orphan status designation by the FDA.

In addition to ALS, the company is also targeting major central nervous system conditions with its NSI-566 cell therapy platform, including spinal cord injury, ischemic stroke and glioblastoma (brain cancer). The company has submitted an IND (Investigational New Drug) application to the FDA for a Phase I safety trial in spinal cord injury.

Read the original here:
Significant Recovery Of Motor And Neurological Functions In Ischemic Stroke Rats With Neuralstem NSI-566 Cells

Read More...

Early Results Show Promise for Stem Cells in Treating Chronic Liver Failure

Friday, October 12th, 2012

Stem cell transfusions may someday replace the need for transplants in patients who suffer from liver failure caused by hepatitis B, according to a new study coming out of Beijing. . The results are published in the October issue of STEM CELLS Translational Medicine. Worldwide more than 500,000 people die each year from this condition.

Durham, NC (PRWEB) October 11, 2012

In China, hepatitis B virus (HBV) infection accounts for the highest proportion of liver failure cases. While liver transplantation is considered the standard treatment, it has several drawbacks including a limited number of donors, long waiting lists, high cost and multiple complications. Our study shows that mesenchymal stem cell (MSCs) transfusions might be a good, safe alternative, said Fu-Sheng Wang, Ph.D., M.D., the studys lead author and director of the Research Center for Biological Therapy (RCBT) in Beijing.

Wang along with RCBT colleague, Drs. Ming Shi and Zheng Zhang of the Research Center for Biological Therapy, The Institute of Translational Hepatology led the group of physician-scientists from the centers and Beijing 302 Hospital who conducted the study.

MSC transfusions had already been shown to improve liver function in patients with end-stage liver diseases. This time, the researchers wanted to gauge the safety and initial efficacy of treating acute-on-chronic liver failure (ACLF) with MSCs. The American Association for the Study of Liver Diseases and the European Association for the Study of the Liver define ACLF as an acute deterioration of pre-existing chronic liver disease usually related to a precipitating event and associated with increased mortality at three months due to multisystem organ failure. The short-term mortality rate for this condition is more than 50 percent.

MSCs have self-renewing abilities and the potential to differentiate into various types of cells. More importantly, they can interact with immune cells and cause the immune system to adjust to the desired level.

Of the 43 patients in this pilot study each of whom had liver failure resulting from chronic HBV infection 24 were treated with MSCs taken from donated umbilical cords and 19 were treated with saline as the control group. All received conventional therapy as well. The liver function, adverse events and survival rates were then evaluated during the 48-week or 72-week follow-up period.

Along with increased survival rates, the patients liver function improved and platelet count increased. No significant side effects were observed throughout the treatment and follow-up period.

While the results are preliminary and this pilot study includes a small number of patients, MSC transfusions appear to be safe and may serve as a novel therapeutic approach for HBV-associated ACLF patients, Dr. Shi said.

The study also highlights several key issues that will need to be considered in the design of future clinical studies, such as the optimal type of stem cells that will be infused, the minimum effective number of the cells and the best route of administration, Dr. Wang added.

More here:
Early Results Show Promise for Stem Cells in Treating Chronic Liver Failure

Read More...

Nobel Prize goes to pioneers of induced stem cell research

Tuesday, October 9th, 2012

John Gurdon and Shinya Yamanaka were jointly awarded the Nobel Prize in Physiology or Medicine on Monday for their research on resetting cells to their earliest developmental stages.The work has yet to yield a clear breakthrough in medical treatment, but it has revolutionized scientists ability to study both normal and diseased development.

Gurdon, 79, performed his seminal work in the late 1950s and early 1960sa good deal of it before Yamanaka was born. In his most famous study, Gurdon showed that replacing the nucleus of an adult cell with the nucleus of an embryonic cell reset the adult cell to an embryonic state: Many of the cells became tadpoles. This strongly suggested that embryonic-state DNA and the molecules that controlled gene expression in the nucleus were sufficient to make a cell "pluripotent" againor capable of turning into any type of tissue in the body.

Some40 years later, Yamanaka took this further by showing that adult mouse skin cells could be reset to their embryonic state just by adding a set of genes into the cells nuclei, and he later reduced this number to just four genes. The cells are now referred to as induced pluripotent stem cells, or iPS cells, and are a common tool in the study of development and disease.

With Yamanakas discovery, researchers suddenly had a way of studying pluripotent stem cells without destroying embryosa limitation that had caused countless headaches at the time of Yamanakas breakthrough, as President George W. Bush had instituted severe limitations on such research.

Since Yamanakas seminal finding, researchers have used the approach to demonstrate some stunning feats: They have turned the skin cells of people who have Parkinsons disease into disease in a dish models that allow them to watch the development of the disease over time and to observe what genes go wrong when and why, and, just last week, a team of scientists published research that used the approach to turn mouse skin cells back into mouse eggs, which then produced baby mice.

The technique has not been without complications: Because one of the four genes is also highly implicated in cancer, the iPS cells are more likely to become cancerous than true embryonic stem cells. The issue has slowed research in the field.

Today, Gurdon works at the Gurdon Institute in Cambridge, England, which he founded, and Yamanaka has appointments at UC San Franciscos Gladstone Institute and at Kyoto University.

You can read all about the winners here.

Return to the Science Now blog.

Go here to read the rest:
Nobel Prize goes to pioneers of induced stem cell research

Read More...

Skin stem cells may help avoid blindness

Sunday, October 7th, 2012

Published: Oct. 7, 2012 at 1:05 AM

NEW YORK, Oct. 7 (UPI) -- An experimental treatment using skin cells to improve the vision of blind mice may help those with macular degeneration, U.S. researchers say.

Dr. Stephen Tsang of the Columbia University Medical Center in New York and colleagues said the findings suggest induced pluripotent stem cells -- derived from adult human skin cells but with embryonic properties -- could soon be used to restore vision in people with macular degeneration.

"With eye diseases, I think we're getting close to a scenario where a patient's own skin cells are used to replace retina cells destroyed by disease or degeneration," Tsang said in a statement. "It's often said that induced pluripotent stem cells transplantation will be important in the practice of medicine in some distant future, but our paper suggests the future is almost here."

Like embryonic stem cells, induced pluripotent stem cells can develop into any type of cell.

None of these cells has been transplanted into people, but many ophthalmologists said the eye is the ideal testing ground.

"The eye is a transparent and accessible part of the central nervous system, and that's a big advantage," Tsang said. "We can put cells into the eye and monitor them every day with routine non-invasive clinical exams and in the event of serious complications, removing the eye is not a life-threatening event."

The study was published online in advance the print edition of Molecular Medicine

Excerpt from:
Skin stem cells may help avoid blindness

Read More...

Patients' own skin cells could restore vision in elderly with macular degeneration

Wednesday, October 3rd, 2012

Washington, October 2 (ANI): A new study has suggested that induced pluripotent stem (iPS) cells - which are derived from adult human skin cells but have embryonic properties - could soon be used to restore vision in people with macular degeneration and other diseases that affect the eye's retina.

In the study conducted by Columbia ophthalmologists and stem cell researchers, adult stem cells developed from a patient's skin cells improved the vision of blind mice.

"With eye diseases, I think we're getting close to a scenario where a patient's own skin cells are used to replace retina cells destroyed by disease or degeneration," said the study's principal investigator, Stephen Tsang, MD, PhD, associate professor of ophthalmology and pathology and cell biology.

"It's often said that iPS transplantation will be important in the practice of medicine in some distant future, but our paper suggests the future is almost here," he stated.

The advent of human iPS cells in 2007 was greeted with excitement from scientists who hailed the development as a way to avoid the ethical complications of embryonic stem cells and create patient-specific stem cells.

Like embryonic stem cells, iPS cells can develop into any type of cell. Thousands of different iPS cell lines from patients and healthy donors have been created in the last few years, but they are almost always used in research or drug screening.

In Tsang's new preclinical iPS study, human iPS cells - derived from the skin cells of a 53-year-old donor - were first transformed with a cocktail of growth factors into cells in the retina that lie underneath the eye's light-sensing cells.

The primary job of the retina cells is to nourish the light-sensing cells and protect the fragile cells from excess light, heat, and cellular debris. If the retina cells die - which happens in macular degeneration and retinitis pigmentosa - the photoreceptor cells degenerate and the patient loses vision.

Macular degeneration is a leading cause of vision loss in the elderly, and it is estimated that 30 percent of people will have some form of macular degeneration by age 75.

In their study, the researchers injected the iPS-derived retina cells into the right eyes of 34 mice that had a genetic mutation that caused their retina cells to degenerate.

See the original post here:
Patients' own skin cells could restore vision in elderly with macular degeneration

Read More...

World Sickle Cell Day

Friday, June 22nd, 2012

On June 19 at noon, the Mississippi Sickle Cell Foundation will join millions around the world to commemorate World Sickle Cell Awareness Day. Courtesy Mississippi Sickle Cell Foundation

On June 19 at noon, the Mississippi Sickle Cell Foundation will join millions around the world to commemorate World Sickle Cell Awareness Day. MSCF will pray for patients with sickle cell disease and for families who have lost loved ones due to the illness. It encourages all Mississippians to join in an effort to bring awareness to the disease.

MSCF aims to educate Mississippians about the disease, encourage everyone to get tested for the trait and donate to sickle cell research. "In the past we've done vigils and balloon releases and that's great; but we really need people to be aware of the disease," MSCF Program Director Jefforey Stafford said. The MSCF reports there are currently at least 2,500 African Americans with the disease living in Mississippi.

The Centers for Disease Control reports that sickle cell disease affects approximately 90,000 to 100,000 Americans. The center estimates SCD occurs in 1 of every 500 black or African American births and in 1 of every 36,000 Hispanic American births. It is most commonly called sickle cell anemia.

In 2008, the United Nations deemed SCD a public health concern and declared June 19 as World Sickle Cell Day to bring awareness to the disease and its affects.

SCD is a hereditary disease of the red blood cells, which carry oxygen to all parts of the body. Here are a few facts about SCD:

People cannot catch it by being around someone who has it. The only cure is through a stem-cell or bone-marrow transplant. It can cause such problems as stroke, eye disease and severe infections. The goal of treatment is to relieve pain and prevent further complications.

For more information on how to assist MSCF visit http://www.mssicklecellfoundation.com or contact them at 601-366-5874.

Original post:
World Sickle Cell Day

Read More...

Neuralstem Pioneering Efforts In ALS – Analyst Blog

Tuesday, June 19th, 2012

By Jason Napodano, CFA

Neuralstem, Inc. (NYSE MKT: CUR ) has developed a technology that allows large-scale expansion of human neural stem cells ("hNSC") from all areas of the developing human brain and spinal cord. The company owns of has exclusive license to 25 patients and 29 patent applications pending worldwide in the field of regenerative medicine and cell therapy. Management is currently focusing the company's efforts on replacing damaged, malfunctioning, or dead neural cells with fully functional ones that may be useful in treating many central nervous system diseases and neurodegenerative disorders.

Neuralstem's lead development program is for Amyotrophic Lateral Sclerosis ("ALS"), also known as Lou Gehrig 's disease, named after the famous New York Yankee first baseman who was diagnosed with the disease in 1939, and passed in 1941 at the age of only 37.

ALS Background

ALS is a rapidly progressive neurodegenerative disease characterized by weakness, muscle atrophy and twitching, spasticity, dysarthria (difficulty speaking), dysphagia (difficulty swallowing), and respiratory compromise. The disease is almost always fatal, typically due to respiratory compromise or pneumonia, in two to four years. Initial symptoms of ALS include weakness and/or stiffness followed by muscle atrophy in the arms and legs. This is followed by slurred speech or difficulty swallowing, and loss of tongue mobility. Approximately a third of ALS patients also experience pseudobulbar affect (uncontrollable emotions). As the disease progresses, worsening dysphagia and respiratory failure leads to death. A small percentage of patients may also experience cognitive affects such as frontotemporal dementia and anxiety.

The vast majority (~95%) of cases are idiopathic, although there is a known hereditary factor that leads to familial ALS associated with a defect on the 21st chromosome that accounts for approximately 1.5% of all cases. There are also suspected environmental causative factors, including exposure to a dietary neurotoxin called BMAA and cyanobacteria, and use of pesticides. However, in all cases, the defining factor of ALS is rapid and progressive death of upper and lower motor neurons in the motor cortex of the brain, brain stem, and spinal cord. Prior to their destruction, motor neurons develop proteinaceous inclusions in their cell bodies and axons. This may be partly due to defects in protein degradation.

Treatment for ALS is limited, and as of today only riluzole, marketed by Sanofi-Aventis as Rilutek, has been found to improve survival to a modest extent (several months). Riluzole preferentially blocks TTX-sensitive sodium channels, which are associated with damaged neurons. This reduces influx of calcium ions and indirectly prevents stimulation of glutamate receptors. Together with direct glutamate receptor blockade, the effect of the neurotransmitter glutamate on motor neurons is greatly reduced. Riluzole does not reverse the damage already done to motor neurons, and people taking it must be monitored for liver damaged (about 10% incidence).

The remaining treatments for ALS are designed to relieve symptoms and improve quality of life. This supportive care includes a multidisciplinary approach that may include medications to reduce fatigue, control spasticity, reduce excess saliva and phlegm, limit sleep disturbances, reduce depression, and limit constipation. As noted above, median survival is two to four years. In the U.S., approximately 30,000 persons are currently living with ALS.

Neuralstem's Approach For ALS

Neuralstem is seeking to treat the symptoms of ALS via transplantation of its hNSCs directly into the gray matter of the patient's spinal cord. In ALS, motor neurons die, leading to paralysis. In preclinical animal work, Neuralstem cells both made synaptic contact with the host motor neurons and expressed neurotrophic growth factors, which are protective of cells.

See original here:
Neuralstem Pioneering Efforts In ALS - Analyst Blog

Read More...

Chicago woman cured of sickle cell disease

Tuesday, June 19th, 2012

ScienceDaily (June 18, 2012) Chicagoan Ieshea Thomas is the first Midwest patient to receive a successful stem cell transplant to cure her sickle cell disease without chemotherapy in preparation for the transplant.

University of Illinois Hospital & Health Sciences System physicians performed the procedure using medication to suppress her immune system and one small dose of total body radiation right before the transplant.

The transplant technique is relatively uncommon and is a much more tolerable treatment for patients with aggressive sickle cell disease who often have underlying organ disease and other complications, says Dr. Damiano Rondelli, professor of medicine at UIC, who performed Thomas's transplant.

The procedure initially allows a patient's own bone marrow to coexist with that of the donor. Since the patient's bone marrow is not completely destroyed by chemotherapy or radiation prior to transplant, part of the immune defense survives, lessening the risk of infection. The goal is for the transplanted stem cells to gradually take over the bone marrow's role to produce red blood cells -- normal, healthy ones.

Thomas, 33, had her first sickle cell crisis when she was just 8 months old. Her disease became progressively worse as an adult, particularly after the birth of her daughter. She has spent most of her adult life in and out of hospitals with severe pain and has relied on repeated red blood cell transfusions. Her sickle cell disease also caused bone damage requiring two hip replacements.

"I just want to be at home with my daughter every day and every night," said Thomas, who depends on family to help care for her daughter during her frequent hospitalizations.

This type of stem cell transplant is only possible for patients who have a healthy sibling who is a compatible donor.

Thomas' sister was a match and agreed to donate blood stem cells through a process called leukapheresis. Several days prior to leukapheresis, Thomas' sister was given drugs to increase the number of stem cells released into the bloodstream. Her blood was then processed through a machine that collects white cells, including stem cells. The stem cells were frozen until the transplant.

Last Nov. 23, four bags of frozen stem cells were delivered to the hospital's blood and marrow transplant unit. One by one, the bags were thawed and hung on an IV pole for infusion into Thomas. The procedure took approximately one hour. Her 13-year-old daughter, Miayatha, was at her bedside.

Six months after the transplant, Thomas is cured of sickle cell disease and no longer requires blood transfusions.

Read more from the original source:
Chicago woman cured of sickle cell disease

Read More...

Tissue Engineered Vein Transplant On Child Patient A Success Â

Friday, June 15th, 2012

Editor's Choice Main Category: Transplants / Organ Donations Also Included In: Pediatrics / Children's Health;Cardiovascular / Cardiology Article Date: 15 Jun 2012 - 11:00 PDT

Current ratings for: 'Tissue Engineered Vein Transplant On Child Patient A Success '

1.67 (6 votes)

4.5 (2 votes)

According to the results featured Online First in The Lancet, this pioneering technique may provide a new alternative for patients with unhealthy veins who require dialysis or heart bypass surgery without having to encounter the problems of synthetic grafts, which are prone to clots and blockages, or needing lifelong immunosuppressive treatment.

Martin Birchall and George Hamilton from the UK's University College London explain in an associated comment:

The hepatic portal vein is a large vein, through which all venous blood from the gastrointestinal system is carried to the inferior surface of the liver. A blockage of the hepatic portal vein can lead to serious complications, including lethal variceal bleeding, enlarged spleen, developmental retardation, and even death. Until now, clinicians only managed to achieve mixed success in attempting to restore portal blood flow by using umbilical veins and artificial grafts to build a bridge around the blockage (meso Rex bypass).

The researchers from the University of Gothenburg surgically removed a 9cm segment of iliac (groin) vein from a living human donor. After removing all living cells, they were left with a tube that consisting of just the protein scaffolding, which they injected with stem cells they took from the girl's own bone marrow. The graft was reimplanted in a meso Rex bypass procedure two weeks after seeding.

The girl developed no post-operative complications and the blood flow was immediately restored to normal function. A year after the operation the girl's height had increased from 137 to 143 cm and her weight increased from 30 to 35kg.

At the one-year follow up, the team observed a decreased portal blood flow, which required a second stem cell-based graft. The patient is doing well since the second graft and is capable of walking increasing long distances of 2 to 3 km in addition to doing light gymnastics.

Read more:
Tissue Engineered Vein Transplant On Child Patient A Success Â

Read More...

ViaCyte Appoints Dr. Paul Laikind Chief Executive Officer

Friday, June 15th, 2012

SAN DIEGO, June 15, 2012 /PRNewswire/ --ViaCyte, Inc. today announced the appointment of seasoned entrepreneur, Paul Laikind, Ph.D., as President & Chief Executive Officer. Allan Robins, Ph.D., who was serving as Acting CEO, will continue in his role as Vice President & Chief Technology Officer. ViaCyte is a leading pre-clinical company developing a novel cell therapy product for the treatment of insulin dependent diabetes.

Dr. Laikind brings over 25 years of leadership experience in the biotechnology and life sciences industry to ViaCyte. He is a serial entrepreneur, who co-founded three San Diego companies, Gensia Pharmaceuticals Inc., Viagene Inc., and Metabasis Therapeutics Inc., serving in various executive positions including President and CEO. All three companies went public and were eventually acquired. Most recently, he served as Chief Business Officer and Senior Vice President of Business Development at the Sanford-Burnham Medical Research Institute.

"Paul brings to ViaCyte a wealth of experience in managing new businesses based on highly innovative life sciences technologies," said Fred Middleton, Chairman of ViaCyte. "We are pleased to have him join to lead ViaCyte through our next phase of development in bringing our transformative stem cell therapy to patients with diabetes. We believe Paul's leadership and business development skills will greatly assist us in our strategy to be a leader in regenerative medicine therapy and to capitalize on our current technology leadership position in the development of stem cell therapy."

As Sanford-Burnham's first Chief Business Officer, Dr. Laikind set a new direction for the Institute's business development activity through a combination of licensing and strategic partnerships with large pharmaceutical organizations, including collaborations with Pfizer's Centers for Therapeutic Innovation, Ortho-McNeil-Janssen Pharmaceuticals, Inc., a division of Johnson & Johnson, and Takeda Pharmaceutical. Working with the Institute's leadership team he helped establish a sophisticated infrastructure for advanced drug discovery and development at Sanford-Burnham.

Prior to Sanford-Burnham, Dr. Laikind served as President & CEO from 1999-2008 for Metabasis Therapeutics, which developed new therapies for metabolic and liver diseases. Dr. Laikind co-founded Gensia Pharmaceuticals in 1986, was a board member of the company and held various executive leadership positions. While at Gensia he was responsible for establishing a number of important strategic partnerships. In 1997, he was part of a team that restructured Gensia to focus on specialty pharmaceuticals. The restructured company was renamed Gensia Sicor and went on to be acquired for over $3 billion by Teva Pharmaceutical Industries in 2004. Soon after founding Gensia, he was co-founder of Viagene, a gene therapy company. Viagene completed an initial public offering in 1993 and was acquired in 1995 by Chiron Inc., now a subsidiary of Novartis Vaccines & Diagnostics.

Dr. Laikind earned his Ph.D. in biochemistry from the University of California, San Diego and is the inventor on a number of key patents.

"ViaCyte addresses one of the largest commercial and medical opportunities in stem-cell-derived therapeutics, and its team is internationally recognized for its scientific leadership," said Dr. Laikind. "I look forward to working with ViaCyte through clinical development and market launch of its first important product that promises to change the way we treat insulin dependent diabetes."

About ViaCyte

ViaCyte is a preclinical cell therapy company focused on diabetes. The Company's technology is based on pancreatic beta cell progenitors derived from human pluripotent stem cells. These cells are implanted using a durable and retrievable encapsulation device. Once implanted and matured, these cells secrete insulin in response to blood glucose levels. ViaCyte's goal is long term insulin independence without immune suppression, and without hypoglycemia and other diabetes-related complications.

ViaCyte is a private company headquartered in San Diego, California with additional operations in Athens, Georgia. The Company is funded in part by the California Institute for Regenerative Medicine.

More here:
ViaCyte Appoints Dr. Paul Laikind Chief Executive Officer

Read More...

Doctors Use Stem Cells To Grow Vein For Young Patient

Thursday, June 14th, 2012

June 14, 2012

Brett Smith for redOrbit.com

A successful transplant operation in Sweden points to a medical future where your doctor can grow a transplant organ from your own cells, making organ donation a thing of the past.

Doctors have now successfully transplanted a vein grown with a patients own stem cells without complications or the need for immunosuppressants, according to a report published this week in The Lancet. The patient was a 10-year-old girl in Sweden who was suffering from a potentially fatal blockage in the vein which drains blood from the intestines and spleen to the liver.

Last March, a team of doctors at the University of Gothenburg decided to grow the new blood vessel used to bypass the blocked vein instead of using an invasive neck or leg surgery to extract one of her own.

The young girl in this report was spared the trauma of having veins harvested from the deep neck or leg with the associated risk of lower limb disorders, and avoided the need for a liver or multivisceral transplantation, Martin Birchall and George Hamilton of University College London wrote in The Lancet.

To start the procedure, doctors took a three-inch section of a cadaver groin vein and stripped it of all living cells, leaving only an inert protein structure. The team then injected it with blood-forming stem cells taken from the girls bone marrow. After growing the vein for two weeks in an incubator, the stem cells had multiplied and converted into vein wall cells, to create a biologically-engineered replacement. The new vein was then implanted into the patient a year ago.

The new stem-cells derived graft resulted not only in good blood flow rates and normal laboratory test values but also, in strikingly improved quality of life for the patient, the report said.

In noting the success of the transplant, the doctors reported that the patient grew 2 inches and gained 11 pounds over the following year. In addition, her parents said that she was more physically active, had improved articulated speech, and had concentrated better on her studies.

The only major complication was the slight constriction of the vein nine months after the operation, which was corrected in a follow-up procedure. During the course of following up on the operation, scientists found no antibodies for the donor vein in the girls blood. This meant her body was not rejecting the transplant because it was recognized as being made of her own cells.

More here:
Doctors Use Stem Cells To Grow Vein For Young Patient

Read More...

Vein grown from girl's own stem cells transplanted

Thursday, June 14th, 2012

For the first time doctors have successfully transplanted a vein grown with a patient's own stem cells, another example of scientists producing human body parts in the lab.

In this case, the patient was a 10-year-old girl in Sweden who was suffering from a severe vein blockage to her liver. Last March, the girl's doctors decided to make her a new blood vessel to bypass the blocked vein instead of using one of her own or considering a liver transplant.

They took a 9-centimetre section of vein from a deceased donor, which was stripped of all its cells, leaving just a hollow tube. Using stem cells from the girl's bone marrow, scientists grew millions of cells to cover the vein, a process that took about two weeks. The new blood vessel was then transplanted into the patient.

Because the procedure used her own cells, the girl did not have to take any drugs to stop her immune system from attacking the new vein, as is usually the case in transplants involving donor tissue.

"This is the future for tissue engineering, where we can make tailor-made organs for patients," said Suchitra Sumitran-Holgersson of the University of Gothenburg, one of the study's authors.

She and colleagues published the results of their work online Thursday in the British medical journal Lancet. The work was paid for by the Swedish government.

The science is still preliminary and one year after the vein was transplanted, it needed to be replaced with another lab-grown vein when doctors noticed the blood flow had dropped. Experts from University College London raised questions in an accompanying commentary about how cost-effective the procedure might be, citing "acute pressures" on health systems that might make these treatments impractical for many patients.

Sumitran-Holgersson estimated the cost at between $6,000 and $10,000.

Similar methods have already been used to make new windpipes and urethras for patients. Doctors in Poland have also made blood vessels grown from donated skin cells for dialysis patients.

Patients with the girl's condition are usually treated with a vein transplant from their own leg, a donated vein, or a liver transplant. Those options can be complicated in children and using a donated vein or liver also requires taking anti-rejection medicines.

Go here to read the rest:
Vein grown from girl's own stem cells transplanted

Read More...

'GMA' host Roberts on illness: 'I will beat this'

Wednesday, June 13th, 2012

Getty Images file

By Lisa Flam

Good Morning America anchor Robin Roberts made some news of her own today: Shes been diagnosed with a rare blood and bone marrow disease called myelodysplastic syndrome (MDS), a condition once known as pre-leukemia. Roberts, a breast cancer survivor, said she received the diagnosis several months ago and will receive a bone marrow transplant from her older sister later this year.My doctors tell me Im going to beat this and I know its true,she wrotewhen she announced her diagnosis. MDS is a pre-cancerous disorder half way between benign and malignant, said Dr. Martin Tallman, chief of the leukemia service at New Yorks Memorial Sloan-Kettering Cancer Center. It occurs when the bone marrow produces blood cells that break apart and disintegrate when they enter the blood stream.

When the marrow produces blood cells, theyre cracked, theyre fragile and faulty and they disappear, he said.Those disappearing blood cells leave patients with a low blood count, Tallman told msnbc.com, which can leave patients feeling fatigued from anemia, susceptible to infections like pneumonia and suffering from internal bleeding. The condition is curable, though it can also lead to fatal complications, primarily through infection, and some MDS patients develop leukemia.

MDS is more common in people over 60, and in most cases, doctors dont know why they developed the disorder, though genetic changes that take place as people get older are thought to be the cause. A minority of MDS patients develop the disorder following chemotherapy for cancer treatment.

Sometimes treatment for cancer can lead to other serious medical issues and thats what Im facing right now, Roberts said on the air this morning, noting that she beat breast cancer five years ago. Tallman explains that as chemotherapy drugs are killing cancer cells, they can also cause genetic changes in healthy cells, which can lead to whats called treatment-related MDS. We are able to cure certain disease but we pay a price, he said.

About 12,000 people a year are diagnosed with MDS in the U.S. each year, according to the American Cancer Society. The number of cases of MDS is rising, according to the Memorial Sloan-Kettering website, because there is a growing population of older people, and because patients are living longer after being treated for their first cancer.

For years, patients with MDS were treated with antibiotics and blood transfusions, but three new types of chemotherapy drugs to fight MDS became available starting in about 2004, said Tallman, a hematologist-oncologist.They are effective in about 30 percent to 40 percent of patients, he said. Some patients dont require treatments at all and can live with the disease; others are cured with the chemotherapy drugs alone. The only proven cure for MDS is a stem cell transplant, Tallman said, describing what it also called a bone marrow transplant.

Roberts says she is beginning a pre-treatment regimen of chemotherapy today before undergoing the bone marrow transplant. Her doctors gave her a good outlook, she wrote.

They say Im younger and fitter than most people who confront this disease and will be cured.

Originally posted here:
'GMA' host Roberts on illness: 'I will beat this'

Read More...

Page 20«..10..19202122..»


2024 © StemCell Therapy is proudly powered by WordPress
Entries (RSS) Comments (RSS) | Violinesth by Patrick