header logo image


Page 7«..6789..2030..»

Archive for the ‘Regenerative Medicine’ Category

Osteoarthritis In The Hip Or Knee? Regenerative Medicine Revolutionizes Your Treatment – Nation World News

Friday, August 19th, 2022

With age, it is common joint degeneration, especially of the hips and knees, which support the greatest load in our day to day life and commonly develop which is known as osteoarthritis, This deterioration of articular cartilage causes pain, stiffness, and loss of function, Therefore, it may represent a significant reduction in the quality of life of those who suffer from it. There is no treatment capable of curing osteoarthritis, but therapeutic avenues have emerged in recent years to reduce its symptoms, slow its development, and achieve an improvement in the patients quality of life.

it is a matter loss Treatment with plasma and stem cells rich in growth factorsApplied to prevent the progression of osteoarthritis, especially in large load-bearing joints. But its benefits go even further, explains the doctor. Jesus Villa y RicoHead of the Orthopedic Surgery and Traumatology Service at the Ruber Juan Bravo Hospital Complex in Madrid. These treatments also promote cartilage repair and reduce typical symptoms of osteoarthritis, including synovial swelling, effusion, deformity, pain or loss of motion.

There are many patients who are benefiting from advances in regenerative medicine in areas such as aesthetic medicine, ophthalmology or dentistry, but also in traumatology. It finds its use not only in reducing recovery time in bone, muscle and tendon injuries, but in the treatment of cases of disabling osteoarthritis or where conservative treatments are not sufficient.

It has no side effects or risk of rejection or intolerance, because the plasma comes from the patients own blood

Dr. Jesus Villa y Rico in Madrid, Ruber Juan Bravo Hospital

Platelet-rich plasma from the patients own blood is able to promote the regeneration of tissues damaged by osteoarthritis, thanks to the proteins and substances it contains. Stem cell treatments also allow the regeneration of these tissues. Growth factors produce biological effects such as cell proliferation and differentiation, the generation of blood vessels and the migration of cells to sites where regeneration is necessary, explains Dr. Villa. No exogenous agent can mediate all of these processes so effectively.

Treatment is carried out under medical prescription, in a sterile environment and with local anesthesia. For its application, blood is first taken from the patient, then it is processed and part of the plasma rich in growth factors is infiltrated into the area to be treated. This process may take 25 to 40 minutes, says the traumatologist.

With regard to the number of infiltrates, the protocol varies depending on the pathology. The Head of the Orthopedic Surgery and Traumatology Service of the Ruber Juan Bravo Hospital Complex in Madrid specifies that, In the specific case of joint pathologyWhat happens most often, is done three sessions for three consecutive weeks, with a refresher session after six months or one year if growth is favourable. Infiltration does not mean a period of recovery, so that the patient can lead a normal life from the very first moment.

The main benefit of this type of treatment is improvement in symptoms, namely reduction of pain and swelling. In case of tendon and muscle injuries, it has been proven that it accelerates healing. Too No side effects or risk of rejection or intolerance, because the plasma comes from the patients own blood, Dr. Villa says. This treatment is contraindicated only in case of local infections, neoplastic processes, and certain blood diseases, he explains.

In the specific case of stem cell treatment, infiltration represents an alternative to reconstructive surgery for chronic tendinopathies, acute tendon tears, chronic tendon tears and ligament tears, and osteonecrosis. In ligament surgery, such as the anterior cruciate ligament of the knee, exceptional results have also been obtained. in case of muscle injuryMore important than the reduction in recovery time is the use of plasma rich in growth factors. Allows recovery without the formation of fibrous tissue, experts say. It is also used in adjuvant treatment of osteochondral injuries in favor of the regenerative process of fibrocartilage, as well as in patellar tendon pathology, acute or chronic tendinitis, and ligamentous injuries.

Health

A holistic approach about our health is essential for achieving complete well-being and the highest quality of life. Its not about something organic and isolated that can []

See the original post:
Osteoarthritis In The Hip Or Knee? Regenerative Medicine Revolutionizes Your Treatment - Nation World News

Read More...

3D Systems Announces Appointment of Dr. Toby Cosgrove and Dr. Bon Ku as Members of its Medical Advisory Board – Yahoo Finance

Friday, August 19th, 2022

3D Systems Inc.

New 3D Systems Medical Advisory Board Members

Dr. Toby Cosgrove & Dr. Bon Ku

ROCK HILL, S.C., Aug. 18, 2022 (GLOBE NEWSWIRE) -- 3D Systems (NYSE:DDD) today announced the appointment of Dr. Toby Cosgrove, former president & chief executive officer of the Cleveland Clinic, and Dr. Bon Ku, director of the Health Design Lab at Thomas Jefferson University, as the fourth and fifth members of the companys recently established Medical Advisory Board (MAB). Dr. Cosgrove and Dr. Ku will join former Health & Human Services Secretary Alex Azar, Dr. Stephen K. Klasko, and former U.S. Secretary of Veterans Affairs David J. Shulkin as members of the advisory board. The Boards primary mission is to provide strategic input, guidance, and recommendations for the companys expanding efforts in regenerative medicine.

Dr. Cosgrove has distinguished himself as a leader of one of the worlds most recognized healthcare institutions, a renowned medical practitioner, and as a forward-looking healthcare innovator. Having been affiliated with the Cleveland Clinic healthcare system for nearly 50 years, Dr. Cosgrove served as President and Chief Executive Officer from 2004 to 2017 and is currently an Executive Advisor to the Clinic. As President and CEO, Dr. Cosgrove oversaw a $6 billion annual revenue institution comprised of the Cleveland Clinic, over 20 Ohio-based hospitals, family health centers, and surgical facilities, as well as Cleveland Clinic affiliates in other U.S. states and internationally. During Dr. Cosgroves tenure leading the Cleveland Clinic, it was ranked among the top three hospitals in America by U.S. News and World Report, and he championed a broad range of initiatives to improve clinical outcomes, increase patient satisfaction, and focus the Clinics delivery of health care services around specific organ systems and diseases.

Prior to serving as the Cleveland Clinics top executive, Dr. Cosgrove was a cardiac surgeon at the Clinic and served as Chairman of its Department of Thoracic and Cardiovascular Surgery from 1989 to 2004. He has performed more than 22,000 operations over the course of his career and is widely regarded as a pioneer in the field of advanced surgical techniques. Deeply committed to medical innovation and to applying new technologies for the benefit of patients, Dr. Cosgrove has over 30 patents filed for new medical and clinical products used in surgical environments.

Story continues

Dr. Bon Ku has enjoyed a distinguished career as both a practicing medical clinician and as a visionary proponent of using technology-based innovations to solve pressing healthcare challenges. Dr. Ku is the Marta and Robert Adelson Professor of Medicine and Design at Thomas Jefferson University as well as an emergency physician at the Universitys Sidney Kimmel Medical College.

Dr. Ku is widely regarded as an authority on accelerating healthcare innovation through the use of modern technological tools such as virtualization, digital modeling, prototyping, and additive manufacturing. He is the co-founder and Director of Thomas Jefferson Universitys Health Design Lab, a unique institution that works with medical students, researchers, and physicians to develop new medical devices and innovative design concepts for the healthcare sector. The Health Design Lab led by Dr. Ku features a clinical 3D printing and bioprinting lab and is home to the JeffSolves MedTech initiative, which serves as a center for the incubation and commercialization of new medical technologies. Dr. Ku is also the author of numerous peer-reviewed publications focusing on the application of 3D-printed medical devices and digital models to improve surgical outcomes, optimize treatments, and make advancements in personalized medicine.

Commenting on the appointments of Drs. Cosgrove and Ku, 3D Systems President and CEO, Dr. Jeffrey Graves stated, We are exceptionally pleased to welcome Dr. Cosgrove and Dr. Ku to our Medical Advisory Board. These two professionals have impeccable track records of combining hands-on medical practice experience with a clear passion for utilizing innovative approaches and modern technology to transform healthcare outcomes. Both Dr. Cosgrove and Dr. Ku will be uniquely positioned to advise 3D Systems as we build a world-class regenerative medicine business and pursue 3D printing-based advancements in areas such as accelerated pharmaceutical development, human tissue and organ printing, medical device innovation, and personalized medicine.

Forward-Looking StatementsCertain statements made in this release that are not statements of historical or current facts are forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995. Forward-looking statements involve known and unknown risks, uncertainties and other factors that may cause the actual results, performance or achievements of the company to be materially different from historical results or from any future results or projections expressed or implied by such forward-looking statements. In many cases, forward-looking statements can be identified by terms such as "believes," "belief," "expects," "may," "will," "estimates," "intends," "anticipates" or "plans" or the negative of these terms or other comparable terminology. Forward-looking statements are based upon managements beliefs, assumptions, and current expectations and may include comments as to the companys beliefs and expectations as to future events and trends affecting its business and are necessarily subject to uncertainties, many of which are outside the control of the company. The factors described under the headings "Forward-Looking Statements" and "Risk Factors" in the companys periodic filings with the Securities and Exchange Commission, as well as other factors, could cause actual results to differ materially from those reflected or predicted in forward-looking statements. Although management believes that the expectations reflected in the forward-looking statements are reasonable, forward-looking statements are not, and should not be relied upon as a guarantee of future performance or results, nor will they necessarily prove to be accurate indications of the times at which such performance or results will be achieved. The forward-looking statements included are made only as of the date of the statement. 3D Systems undertakes no obligation to update or revise any forward-looking statements made by management or on its behalf, whether as a result of future developments, subsequent events or circumstances or otherwise, except as required by law.

About 3D Systems More than 35 years ago, 3D Systems brought the innovation of 3D printing to the manufacturing industry. Today, as the leading additive manufacturing solutions partner, we bring innovation, performance, and reliability to every interaction - empowering our customers to create products and business models never before possible. Thanks to our unique offering of hardware, software, materials, and services, each application-specific solution is powered by the expertise of our application engineers who collaborate with customers to transform how they deliver their products and services. 3D Systems solutions address a variety of advanced applications in healthcare and industrial markets such as medical and dental, aerospace & defense, automotive, and durable goods. More information on the company is available at http://www.3dsystems.com.

Investor Contact: investor.relations@3dsystems.comMedia Contact: press@3dsystems.com

A photo accompanying this announcement is available at https://www.globenewswire.com/NewsRoom/AttachmentNg/2b14f06b-98f9-4c66-8c02-b57375cab66d

Go here to see the original:
3D Systems Announces Appointment of Dr. Toby Cosgrove and Dr. Bon Ku as Members of its Medical Advisory Board - Yahoo Finance

Read More...

Many stem cell lines used for research and therapies carry large number of mutations, Cambridge researchers find – Cambridge Independent

Friday, August 19th, 2022

The remarkable power of stem cells - which can be programmed to become almost any type of cell in the body - means they are key to many scientific studies.

Increasingly, they are also being used for new cell-based therapies to treat a range of diseases.

While originally we could only get stem cells from embryos, now we can derive them from a range of adult tissues, including skin or blood, using Nobel Prize-winning technology.

But Cambridge researchers have found DNA damage caused by factors such as ultraviolet radiation affected 72 per cent of the stem cell lines they studied that had been derived from human skin cells. This has important implications for research and medicine.

Prof Serena Nik-Zainal, from the Department of Medical Genetics at the University of Cambridge, said: Almost three-quarters of the cell lines had UV damage. Some samples had an enormous amount of mutations sometimes more than we find in tumours. We were all hugely surprised to learn this, given that most of these lines were derived from skin biopsies of healthy people.

Induced pluripotent stem cells (iPSCs), as those derived from other cell types or tissues are known, hold huge potential for tackling diseases, including rare conditions.

It is even suggested that iPSCs programmed to grow into nerve cells could be used to replace those lost to neurodegeneration in diseases such as Parkinsons.

The new research, published in Nature Genetics, represents the largest genetic study to date of iPSCs to date.

Dr Foad Rouhani, who carried out the work while at the University of Cambridge and the Wellcome Sanger Institute, said: We noticed that some of the iPS cells that we were generating looked really different from each other, even when they were derived from the same patient and derived in the same experiment.

The most striking thing was that pairs of iPS cells would have a vastly different genetic landscape one line would have minimal damage and the other would have a level of mutations more commonly seen in tumours.

One possible reason for this could be that a cell on the surface of the skin is likely to have greater exposure to sunlight than a cell below the surface and therefore eventually may lead to iPS cells with greater levels of genomic damage.

[Read more: Evidence of new causes of cancer uncovered as genomic data of 12,000 NHS patients is studied by University of Cambridge researchers]

DNA comprises three billion pairs of nucleotides - molecules represented by the letters A, C, G and T.

Damage from sources such as ultraviolet radiation or smoking leads to mutations, meaning a letter C might change to T, for example.

Studying the mutational fingerprints on our DNA can reveal what is responsible for the damage.

An accumulation of mutations can have a profound effect on cell function and in some cases lead to tumours.

Using whole genome sequencing, the researchers inspected the entire DNA of stem cell lines from different sources, including the HipSci cohort at the Wellcome Sanger Institute.

They found blood-derived iPSCs - which are increasingly common, due to the ease with which blood can be taken - also carried mutations but at a lower level than skin-derived iPS cells, and they had no UV damage.

Some 26.9 per cent of them, however, carried mutations in a gene called BCOR, which is an important gene in blood cancers.

Next the researchers investigated whether these BCOR mutations had any functional impact.

They differentiated the iPSCs, turning them into neurons and tracking their progress along the way.

[Read more: 4m funding for Cambridge scientists under Cancer Grand Challenges initiative]

Dr Rouhani said: What we saw was that there were problems in generating neurons from iPSCs that have BCOR mutations they had a tendency to favour other cell types instead. This is a significant finding, particularly if one is intending to use those lines for neurological research.

Analysis of the blood samples showed the BCOR mutations were not present within the patient.

So it seemed that the process of culturing cells increased the frequency of the mutations, which could have implications for other researchers working with cells in culture.

Typically, scientists using cell lines will screen them at the chromosomal level checking, for example, that the requisite 23 pairs of chromosomes are present.

Such analysis would not pick up the potentially major problems that this new study has identified, however,

The researchers warn that without looking in detail at the genomes of these stem cells, researchers and clinicians would be unaware of the underlying damage in them.

The DNA damage that we saw was at a nucleotide level, explained Prof Nik-Zainal. If you think of the human genome as like a book, most researchers would check the number of chapters and be satisfied that there were none missing. But what we saw was that even with the correct number of chapters in place, lots of the words were garbled.

Using whole genome sequencing, however, would enable errors to be discovered at the outset..

The cost of whole genome sequencing has dropped dramatically in recent years to around 500 per sample, though it's the analysis and interpretation that's the hardest bit, said Prof Nik-Zainal.

If a research question involves cell lines and cellular models, and particularly if we're going to introduce these lines back into patients, we may have to consider sequencing the genomes of these lines to understand what we are dealing with and get a sense of whether they are suitable for use.

Dr Rouhani adds: In recent years we have been finding out more and more about how even our healthy cells carry many mutations and therefore it is not a realistic aim to produce stem cell lines with zero mutations.

The goal should be to know as much as possible about the nature and extent of the DNA damage to make informed choices about the ultimate use of these stem cell lines.

If a line is to be used for cell based therapies in patients for example, then we need to understand more about the implications of these mutations so that both clinicians and patients are better informed of the risks involved in the treatment.

The research was funded by Cancer Research UK, the Medical Research Council and Wellcome, and supported by NIHR Cambridge Biomedical Research Centre and the UK Regenerative Medicine Platform.

Continue reading here:
Many stem cell lines used for research and therapies carry large number of mutations, Cambridge researchers find - Cambridge Independent

Read More...

RECELL System Data to be Presented at the Controversies and Conversations in Laser & … – The Bakersfield Californian

Friday, August 19th, 2022

VALENCIA, Calif. and MELBOURNE, Australia, Aug. 17, 2022 (GLOBE NEWSWIRE) -- AVITA Medical, Inc. (NASDAQ: RCEL, ASX: AVH), a regenerative medicine company that is developing and commercializing a technology platform that enables point-of-care autologous skin restoration for multiple unmet needs, announced today that a poster presentation on cell characterization and potential clinical benefits of the RECELL Autologous Cell Suspension System (RECELL System) for the treatment of stable vitiligo will be shared at the Controversies and Conversations in Laser & Cosmetic Surgery Annual Meeting. The conference will be held in Santa Barbara, CA, on August 19-21 bringing experts together to discuss controversial issues in cutaneous and aesethetic surgery or challenging therapeutic problems within dermatology.

Given the unique format of this meeting, we look forward to the presentation of RECELL and, more importantly, the conversation amongst dermatology experts as they discuss the unique attributes of this platform, including the potential for in-office point-of-care treatment in about 30 minutes, said Dr. Mike Perry, Chief Executive Officer of AVITA Medical. Following review by the FDA, we believe the RECELL System may well offer a welcome treatment option for patients seeking repigmentation for stable vitiligo lesions.

RECELL System Presentations

In the U.S., the RECELLSystem is indicated for the treatment of acute thermal burn wounds in patients 18 years of age and older or application in combination with meshed autografting for acute full-thickness thermal burn wounds in pediatric and adult patients. Physician-initiated research beyond the FDA approved indicationis not sponsored by AVITA Medicaland contains independentdata.

AVITA Medical is currently completing a pivotal trial for the use of the RECELL System for treatment of stable vitiligo. The vitiligo clinical trial aims to demonstrate safe and effective repigmentation when using the RECELL System in combination with phototherapy. AVITA anticipates FDA approval in 2023.

ABOUT AVITA MEDICAL, INC.

AVITA Medical, Inc. is a regenerative medicine company with a technology platform positioned to address unmet medical needs in burns, chronic wounds, and aesthetics indications. AVITA Medical Inc.s patented, and proprietary collection and application technology provides innovative treatment solutions derived from the regenerative properties of a patients own skin. The Companys lead product is the RECELL System, a device that enables healthcare professionals to Spray-On Skin Cells using a small sample of the patients own skin to create an autologous suspension. The RES Regenerative Epidermal Suspension is then sprayed onto the areas of the patient requiring treatment to regenerate natural healthy epidermis.

AVITA Medicals first U.S. product, the RECELL System, was approved by the U.S. Food and Drug Administration (FDA) in September 2018. The RECELL System is approved for acute partial-thickness thermal burn wounds in patients 18 years of age and older or application in combination with meshed autografting for acute full-thickness thermal burn wounds in pediatric and adult patients. In February 2022, the FDA reviewed and approved the PMA supplement for RECELL Autologous Cell Harvesting Device, an enhanced RECELL System aimed at providing clinicians a more efficient user experience and simplified workflow.

The RECELL System is used to prepare Spray-On Skin Cells using a small amount of a patients own skin, providing a new way to treat severe burns, while significantly reducing the amount of donor skin required. The RECELL System is designed to be used at the point of care alone or in combination with autografts depending on the depth of the burn injury. Compelling data from randomized, controlled clinical trials conducted at major U.S. burn centers and real-world use in more than 15,000 patients globally, reinforce that the RECELL System is a significant advancement over the current standard of care for burn patients and offers benefits in clinical outcomes and cost savings. Healthcare professionals should read the INSTRUCTIONS FOR USE - RECELL Autologous Cell Harvesting Device ( https://recellsystem.com/ ) for a full description of indications for use and important safety information including contraindications, warnings, and precautions.

In international markets, our products are approved under the RECELL System brand to promote skin healing in a wide range of applications including burns, chronic wounds, and aesthetics. The RECELL System is TGA-registered in Australia, received CE-mark approval in Europe, and received Japans Pharmaceuticals and Medical Devices Act (PMDA) approval for burns in Japan.

CAUTIONARY NOTE REGARDING FORWARD-LOOKING STATEMENTS

This press release includes forward-looking statements. These forward-looking statements generally can be identified by the use of words such as anticipate, expect, intend, could, may, will, believe, estimate, look forward, forecast, goal, target, project, continue, outlook, guidance, future, other words of similar meaning and the use of future dates. Forward-looking statements in this press release include, but are not limited to, statements concerning, among other things, our ongoing clinical trials and product development activities, regulatory approval of our products, the potential for future growth in our business, and our ability to achieve our key strategic, operational, and financial goal. Forward-looking statements by their nature address matters that are, to different degrees, uncertain. Each forward-looking statement contained in this press release is subject to risks and uncertainties that could cause actual results to differ materially from those expressed or implied by such statement. Applicable risks and uncertainties include, among others, the timing and realization of regulatory approvals of our products; physician acceptance, endorsement, and use of our products; failure to achieve the anticipated benefits from approval of our products; the effect of regulatory actions; product liability claims; risks associated with international operations and expansion; and other business effects, including the effects of industry, economic or political conditions outside of the companys control. Investors should not place considerable reliance on the forward-looking statements contained in this press release. Investors are encouraged to read our publicly available filings for a discussion of these and other risks and uncertainties. The forward-looking statements in this press release speak only as of the date of this release, and we undertake no obligation to update or revise any of these statements.

This press release was authorized by the review committee of AVITA Medical, Inc.

FOR FURTHER INFORMATION:

See the rest here:
RECELL System Data to be Presented at the Controversies and Conversations in Laser & ... - The Bakersfield Californian

Read More...

Integra LifeSciences Announces the Passing of Dr. Richard Caruso, Founder and Former Chairman and CEO – GlobeNewswire

Friday, August 19th, 2022

PRINCETON, N.J., Aug. 16, 2022 (GLOBE NEWSWIRE) -- Integra LifeSciences Holdings Corporation (NASDAQ:IART), a leading global medical technology company, today announced that Dr. Richard Caruso, founder and former chairman and CEO of Integra LifeSciences passed away over the past weekend.

Dr. Richard Caruso made an impact on not only the medical technology industry, but more importantly, on the countless lives around the world who have benefited from the products and technologies that Integra LifeSciences has today, said Stuart Essig, chairman of the board at Integra LifeSciences. His vision, transformative ideas and entrepreneurial spirit have revolutionized the way surgeons treat their patients in the field of regenerative medicine.

Dr. Caruso founded Integra LifeSciences in 1989 with a vision that the human body could be enabled to regenerate many of its own damaged or diseased tissues, paving the way for a new discipline back then known as regenerative medicine. Through his vision, Integra became the first company to develop and bring to market a tissue regeneration product, Integra Dermal Regeneration Template, which was approved by the FDA in 1996 as a skin replacement system with a claim for regeneration of dermal tissue for the treatment of life-threatening burns and repair of scar contractures. That technology led to the development of DuraGen Dural Graft Matrix, for repair of the dura mater, the protective covering of the brain after cranial and spine surgery, and NeuraGen Nerve Guide, which creates a conduit for axonal growth across a severed nerve.

Dr. Caruso served as Integra's chairman from 1992 until 2011, and served as CEO from 1992 to 1997. In addition, he served on the Board of Susquehanna University and the Baum School of Art. Dr. Caruso received his B.S. degree from Susquehanna University, an M.S.B.A. degree from Bucknell University, and a Ph.D. degree from the London School of Economics, University of London. He was also the founder and director of The Uncommon Individual Foundation, a non-profit foundation that encourages individuals to form and follow their dreams of personal success and become the entrepreneurs of their personal lives.

About Integra LifeSciencesIntegra LifeSciences is a global leader in regenerative tissue technologies and neurosurgical solutions dedicated to limiting uncertainty for clinicians so they can focus on providing the best patient care. Integra offers a comprehensive portfolio of high quality, leadership brands that include AmnioExcel, Aurora, Bactiseal,BioD, CerebroFlo, CereLinkCertasPlus, Codman, CUSA, Cytal, DuraGen, DuraSeal, Gentrix, ICP Express, Integra, Licox, MAYFIELD, MediHoney, MicroFrance, MicroMatrix, NeuraGen, NeuraWrap, PriMatrix, SurgiMend, TCC-EZand VersaTru. For the latest news and information about Integra and its products, please visitwww.integralife.com.

Investor Relations Contact:Chris Ward(609) 772-7736chris.ward@integralife.com

Media Contact:Laurene Isip(609) 208-8121laurene.isip@integralife.com

A photo accompanying this announcement is available at https://www.globenewswire.com/NewsRoom/AttachmentNg/fe4238dd-d2f8-487f-8f14-19e855e9b041.

More:
Integra LifeSciences Announces the Passing of Dr. Richard Caruso, Founder and Former Chairman and CEO - GlobeNewswire

Read More...

Tessa Therapeutics Starts Trial of CAR T-Cell Therapy, BMS’s Opdivo in Classical Hodgkin Lymphoma – Precision Oncology News

Friday, August 19th, 2022

NEW YORK Tessa Therapeutics said on Wednesday that it has dosed the first lymphoma patient in a Phase Ib trial of its investigational CAR T-cell therapy TT11 plus Bristol Myers Squibb's Opdivo (nivolumab).

The trial, dubbed ACTION, is designed to evaluate the autologous CD30-directed CAR T-cell therapy plus the PD-1 inhibitor as second-line treatment for up to 14 patients with CD30-positive relapsed or refractory classical Hodgkin lymphoma after chemotherapy.

Singapore-based Tessa Therapeutics is calling the treatment regimen evaluated in the trial a "sandwich" design. Patients enrolled in the trial will receive two cycles of Opdivo followed by a lymphodepleting chemotherapy regimen, then a single infusion of the autologous TT11 CAR T-cell therapy, then another two cycles of Opdivo. The primary goal of the trial is to evaluate the treatment's safety and tolerability, and secondary aims include overall response rate, duration of response, and progression-free survival.

Tessa is also evaluating TT11 as a monotherapy for CD30-positive relapsed or refractory classical Hodgkin lymphoma in the Phase II CHARIOT trial. Initial data from that study showed that the cell therapy had a favorable safety profile and promising efficacy, with a 57.1 percent complete response rate and a 71.4 percent overall response rate among 14 patients. Tessa expects to begin the pivotal Phase II portion of that trial later this year.

"We welcome the opportunity to capitalize on this clinical progress by investigating TT11 as a second-line combination therapy, which offers the opportunity to greatly increase the patient population who could potentially benefit from this course of care," John Ng, chief technology officer and acting CEO of Tessa, said in a statement.

The firm believes that combining the CAR T-cell therapy with Opdivo will improve its efficacy and offer classical Hodgkin lymphoma patients a second-line treatment option that is more tolerable than chemotherapy. The US Food and Drug Administration has designated TT11 a regenerative medicine advanced therapy and the European Medicines Agency has designated it a priority medicine.

View original post here:
Tessa Therapeutics Starts Trial of CAR T-Cell Therapy, BMS's Opdivo in Classical Hodgkin Lymphoma - Precision Oncology News

Read More...

Column: My summer research experience at Charles R. Drew University for Medicine and Science – Los Angeles Times

Friday, August 19th, 2022

Under-resourced high school students need to be familiarized with multiple components of research in order to give back to their communities, said Dolores Caffey Fleming, MS, MPH.

Fleming is the director of Project STRIDE (Students Training in Research Involving Disparity Elimination), Project STRIDE II, and Project ExSTRM (Exposing Students To Regenerative Medicine).

The STRIDE programs are funded by the Doris Duke Charitable Foundation while the ExSTRM program is funded by the California Institute of Regenerative Medicine (CIRM). According to Fleming, the goal of all the programs is to allow students to be exposed to research and various healthcare careers in order for them to give back to their communities.

This year, these programs were sort of combined as a lot of the activities that they did were interconnected. These research programs for high schoolers at Charles R. Drew University (CDU) have been consistently supported by Jay Vadgama, Ph.D., the Vice President for Research and Health Affairs (CDU), and have continued to operate for the past several years

Before actually going onto campus, we had to do CITI (Collaborative Institutional Training Initiative) training before we entered any labs or facilities. We took seven courses ranging from Biosafety for Researchers to Good Clinical Practice. After finishing, I had a virtual introduction with my mentor, Dr. Juanita Booker-Vaughns, and we talked about potential project ideas and her experience in research.

For the first week, Elizabeth Delgado, a project coordinator, taught us and administered quizzes from the university about lab safety, chemical hazards, and the Code of Conduct. The next week, I personally got to shadow some professionals in the Cancer Division lab and was able to watch them perform procedures like the Western Blot Test and Polymerase Chain Reactions (PCR). Although this was not related to my project, it was cool to learn and observe an important procedure. Many Tuesdays and Thursdays were also reserved for leadership training and resume-building classes.

A Polymerase Chain Reaction, or PCR. (Photo by Shaun Thomas)

My research project was centered around examining colorectal cancer (CRC) risk factors in a specific area of Los Angeles County known as Service Planning Area (SPA) 6. With my mentors help, we looked at public health data about all these risk factors in SPA 6, as opposed to L.A. County as a whole.

I first conducted literature about colorectal cancer risk factors in general ranging from biological factors like Inflammatory Bowel Disease (IBD) to behavioral health factors like diet. After that, using the data from the Key Indicators of Health Report (2017) by Los Angeles Countys Department of Public Health, I created graphs and analyzed the data. To put everything together, I created a poster showcasing my findings.

I had the chance to interview one student from each of the three cohorts.

I first interviewed Ivan Ixtlilco, a Project STRIDE senior at King Drew Magnet High School, whose project was about how urban ecology affects epigenetics and how this, in turn, increases the risk of cardiovascular disease, he said. He added on about how his mentor introduced him to a whole variety of careers in research that he had no idea about.

Afia Ahmed, a Project STRIDE II rising second-year student at UC Irvine said, Project STRIDE allowed [her] to gain a foundation for building a whole manuscript, skimming through articles for crucial information. She said these skills were beneficial for her public health classes at UCI.

She also pointed out some key differences between the two. Now that she is doing STRIDE II, she mentioned doing a manuscript and going more into depth with her research on the mental health of Asian American females who are infertile in order to build an abstract and submit her abstract to conferences. She noted that there was a significant literature gap between Asian American female infertility and female infertility in general.

Ricardo Rodriguez, an ExSTRM senior at St. John Bosco High School, focused on a project that involved more lab work: ancestry-specific expression of stem-like markers in breast cancer cells. He believes stem cells are the future of research and can even be key to processes like regeneration. However, he also believes that governments will decide the fate of using this research. He had the opportunity to present his poster at the CIRM SPARK conference which took place on August 3 in Oakland, Calif.

Shaun Thomas with Dr. Jay Vadgama at the symposium. (Photo courtesy of Shaun Thomas)

The climax of the program was the Charles Drew Symposium which took place on August 5. At the symposium, some of us were chosen to present our projects in front of guests, university faculty, and all of our mentors. After the presentations, we all presented our posters in a gallery. The two-hour event showcased the culmination of our work over.

Read more:
Column: My summer research experience at Charles R. Drew University for Medicine and Science - Los Angeles Times

Read More...

Regenative Labs announces groundbreaking Wharton’s Jelly research demonstrating HCT/P compliance after processing – PR Newswire

Friday, August 19th, 2022

This includes the analogous nature of articular cartilage, muscle fascia, and intervertebral disc confirmed by way of comparative Scanning Electron Microscope analysis

PENSACOLA, Fla., Aug. 15, 2022 /PRNewswire/ -- Regenative Labs, a leading HCT/P manufacturer, has co-authored a pioneering papertogether with experts from The Institute of Regenative Medicine and the Department of Pharmacology and Chemical Biology, Baylor College of Medicine.

"This paper is a market disruptorand will be our most significant paper released to date. This is the first literature thatwe are aware of to utilize Scanning Electron Microscope (SEM) images of actual tissue samples to objectively demonstrate on a qualitative and quantitative basis that collagen structural tissuematrices in our post-processed Wharton's Jelly allografts and those in articular cartilage, muscle fascia, and intervertebral discs are analogous," said Regenative Labs CEO, Tyler Barrett.

This research highlights our commitment to the Regenerative Medicine community. We believe the combination of our IRB-approved observational studies, peer-reviewed publications, ISO-certified laboratory processes, and our commitment to compliance with FDA and American Association of Tissue Banks (AATB) standards, sets the standard for HCT/P manufacturers. Regenative Labs has pioneered the use of perinatal tissue allografts and is pleased that this paper supports our current homologous use practices, consistent with our 361 status.

Currently, the treatments for the Intervertebral Disc (DDD) range in cost and effectiveness from an $8 bottle of Ibuprofen to $150,000 for spinal fusion (1). Neither of these treatment options target the foundational issue of ECM cartilage breakdown in the intervertebral discs. By age 35, 30% of people show signs of DDD; by age 60, this increases to 90% (2). That we are aware of, this is the first perinatal tissue allograft in the medical marketplace that may be applied in a homologous fashion per FDA 361 guidelines to replace or supplement missing or damaged connective tissue. All other non-surgical paradigms focus on symptom management and do not address the disc's collagen structural degeneration. In collaboration with medical providers across the country, we are actively investigating additional homologous use applications for this technology in tissue defects associated with the load-bearing joints of the knee, hip, shoulder, spine, ankle, and foot.

Billions of dollars are spent annually on the surgical care and treatment of patients suffering from degeneration of load-bearing joints and intravertebral discs. We are honored to offer patients evidence-based and structural tissue defect-specific non-surgical applications on a global scale.

Additional Sources:

About Regenative Labs: Regenative Labs produces regenerative medicine products to address the root cause of a patient's conditions using Wharton's Jelly innovations rather than masking the pain with other treatments. Regenative Labs works closely with scientists, physicians, hospitals, and surgery centers to constantly monitor and improve patient progress and outcomes for new product development. Formed by veteran industry professionals familiar with daily challenges of innovations in healthcare, the company providesnon-addictive, non-invasive options for patients. Regenative Labs's expert product research and development team compliesFDA guidelines of minimal manipulation for homologous use. The company adheres to AATB and FDA guidelines. Learn more at Regenative's website: http://www.regenativelabs.com

SOURCE Regenative Labs

The rest is here:
Regenative Labs announces groundbreaking Wharton's Jelly research demonstrating HCT/P compliance after processing - PR Newswire

Read More...

Baylor College of Medicine recognizes research excellence with DeBakey Awards – Baylor College of Medicine News

Friday, August 19th, 2022

Each year, Baylor College of Medicine faculty are recognized for their outstanding published scientific contributions to clinical and basic science research over the past three years through the Michael E. DeBakey M.D. Award for Excellence in Research.

This years 2022 recipients are Dr. Peter Hotez and Dr. Maria Elena Bottazzi (joint awardees), Dr. Joseph Hyser, Dr. Katherine King, Dr. Irina Larina, Dr. Scott A. LeMaire and Dr. Ying Shen (joint awardees) and Dr. Sundeep Keswani.

Each year we celebrate and honor researchers from our Baylor community who have made significant contributions to improving healthcare, said Dr. Paul Klotman, Baylor president, CEO and executive dean. These awards celebrate the legacy of innovation in research and medicine set forth by Dr. DeBakey.

The awards, named in honor of pioneering heart surgeon Dr. Michael E. DeBakey, the first president of Baylor College of Medicine, and sponsored by the DeBakey Medical Foundation, include a commemorative medallion and funds to support further research.

The eight researchers were recognized and presented their work at a small in-person ceremony on Wednesday, Aug. 17.

It is an honor to recognize this group. They represent the continued work here at Baylor to improve health and humanity and each researcher demonstrates the impact to science and the community, said Dr. Mary Dickinson, senior vice president and dean of research at Baylor.

Dr. Maria Elena BottazziAssociate dean of the National School for Tropical Medicine at Baylor College of Medicine and co-director of the Texas Children's Hospital Center for Vaccine Development

Dr. Bottazzi is an internationally recognized tropical and emerging disease vaccinologist, global health advocate and co-creator of a patent-free, open science COVID-19 vaccine technology that led to the development of Corbevax, a COVID-19 vaccine for the world. She pioneers and leads the advancement of a robust infectious and tropical disease vaccine portfolio tackling diseases such as coronavirus, hookworm, schistosomiasis and Chagas that disproportionally affect the worlds poorest populations. She also has established innovative partnerships in Latin America, the Middle East and Southeast Asia, making significant contributions to innovative educational and research programs, catalyzing policies and disseminating science information to reach a diverse set of audiences.

As global thought-leader she has received national and international highly regarded awards, has more than 280 scientific papers and participated in more than 250 conferences worldwide. She is a member of the National Academy of Science of Honduras and an Emerging Leader in Health and Medicine of the National Academy of Medicine in the U.S.

Bottazzi is a fellow of the American Society of Tropical Medicine and Hygiene (ASTMH), the Executive Leadership in Academic Medicine (ELAM) and the Leshner Leadership Institute for Public Engagement and senior fellow of the American Leadership Forum (ALF). Forbes LATAM in 2020 and 2021 selected Bottazzi as one of 100 Most Powerful Women in Central America. Bottazzi has served in several national academies ad-hoc committees and serves as co-chair of the Vaccines and Therapeutics Taskforce of the Lancet Commission on COVID-19. In 2022, alongside Dr. Peter Hotez, she was nominated by Congresswoman Lizzie Fletcher of Texas for the Nobel Peace Prize.

Dr. Peter HotezDean of the National School of Tropical Medicine at Baylor College of Medicine and co-director of the Texas Childrens Hospital Center for Vaccine Development

Dr. Hotez is an internationally recognized physician-scientist in neglected tropical diseases and vaccine development. As co-director of the Texas Childrens Center for Vaccine Development, he leads a team and product development partnership for developing new vaccines for hookworm infection, schistosomiasis, leishmaniasis, Chagas disease and SARS/MERS/SARS-2 coronavirus, diseases affecting hundreds of millions of children and adults worldwide, while championing access to vaccines globally and in the U.S.

In December 2021, Hotez led efforts at the Texas Childrens Center for Vaccine Development to develop a low-cost recombinant protein COVID vaccine for global health, resulting in emergency use authorization in India. In 2022 Hotez and his colleague Dr. Maria Elena Bottazzi were nominated for the Nobel Peace Prize for their work to develop and distribute a low-cost COVID-19 vaccine to people of the world without patent limitation.

In 2014-16, he served in the Obama Administration as U.S. Envoy, focusing on vaccine diplomacy initiatives between the U.S. government and countries in the Middle East and North Africa. In 2018, he was appointed by the U.S. State Department to serve on the Board of Governors for the U.S.-Israel Binational Science Foundation, and he is frequently called on frequently to testify before U.S. Congress. He has served on infectious disease task forces for two consecutive Texas governors. For these efforts in 2017 he was named by FORTUNE Magazine as one of the 34 most influential people in healthcare, while in 2018 he received the Sustained Leadership Award from Research!America.

Most recently as both a vaccine scientist and autism parent, he has led national efforts to defend vaccines and to serve as an ardent champion of vaccines going up against a growing national antivax threat. In 2019, he received the Award for Leadership in Advocacy for Vaccines from the American Society of Tropical Medicine and Hygiene. In 2021 he was recognized by scientific leadership awards from the Association of American Medical Colleges and the American Medical Association, in addition to being recognized by the Anti-Defamation League with its annual Popkin Award for combating antisemitism.

Dr. Joseph HyserAssistant professor of molecular virology and microbiology and member of the Alkek Center for Metagenomics and Microbiome Research

Dr. Joseph Hysers research work is dedicated to improving our understanding of host-pathogen interactions. He has focused on characterizing host signaling pathways that enteric viruses, such as rotavirus, destabilize to cause gastrointestinal disease. His work stands out because it is shifting prevailing paradigms within the field.

In recent work, Hyser used calcium biosensor cell lines and organoids he developed to perform long-term live calcium imaging throughout rotavirus infections. This work is paradigm shifting because it firmly established that rotavirus increase calcium through hundreds of discrete calcium signaling events rather than a general, monophasic increase in cytosolic calcium levels. This study also led to the discovery of multiple distinct types of calcium signals present at different stages of the infection.Another study showed that calcium-conducting viroporins are a broadly conserved strategy used by viruses to exploit host calcium signaling pathways. This finding has opened the door to identify commonly exploited host pathways for which host-targeted antiviral drugs could be developed.

Recently, Hyser published the first direct evidence that viruses can trigger aberrant calcium signaling in uninfected cells by exploiting a host paracrine signaling pathway. Live imaging data show calcium signals coming from rotavirus-infected cells and spreading to surrounding uninfected cellsa type of signal called intercellular calcium waves. He found that eliminating the calcium waves severely reduced rotavirus replication, suggesting that rotavirus has evolved to co-opt this host intercellular signal to increase its replication. Taken together, Hysers work establishes a new mechanism by which viruses commandeer nearby uninfected cells to contribute to pathogenesis through paracrine signaling.

Dr. Katherine KingAssociate professor of pediatrics infectious diseases and member of the Dan L Duncan Comprehensive Cancer Center and Center for Cell and Gene Therapy

Dr. Kings research focuses on the effects of infection and inflammation on primitive hematopoiesis. As a pediatric infectious diseases physician at Texas Childrens Hospital, King recognized the need to understand bone marrow suppressive effects of chronic infection, and she led the field to characterize hematopoietic stem cell responses in the context of animal models of infection. Her review on the topic of inflammatory modulation of hematopoietic stem cells altered the way the field views the interactions between systemic inflammation and stem cells, with continuing repercussions in the fields of malignant and nonmalignant hematology, aging and immunology.

Using a multidisciplinary approach, she has pioneered the concept that hematopoietic stem cells are extremely sensitive to inflammatory signals in the bone marrow environment. Her research has defined a role for inflammatory signaling in bone marrow suppression following chronic infection and in the emergence of clonal hematopoiesis, a recently defined phenomenon that drives cancer risk and cardiovascular disease in advanced age.

Over the past three years, her research efforts have resulted in 9 senior-author research articles in leading journals in her field including Cell Stem Cell, Cell Reports, and eLife. Kings highly innovative and impactful work at the intersection of immunology and hematology has made her an international leader in the field of stem cell biology. She is a skilled clinician, a healthcare advocate, scientist, administrative leader and trusted mentor.

Dr. Irina LarinaAssociate professor of integrative physiology

Dr. Irina Larinas lab is dedicated to the development of new biophotonic technologies to define pathways involved in live embryo progression and, specifically, cardiac development. She also applies her new biophotonic methods to image developmental processes in various mouse models to elucidate pathophysiological mechanisms underlying reproductive disorders. Larina also develops data processing methods that enable her to uncover new information about congenital defects and reproductive disorders that reveal the dynamics of developmental processes, which have not been accessible before.

Most recently she used second harmonic generation microscopy to image collage fibers in embryonic hearts, revealing a link between structural collagen and regional contractility that suggested a regulatory role for cardiomyocyte contractility in establishing mechanical homeostasis in the developing heart. These findings revealed new features of the biochemical alterations found in congenital heart defects and heart failure. In addition, her lab recently established a method to study the interactions between genetic and mechanical factors in both normal and pathogenic cardiogenesis in vivo, such as arrhythmias.

In the area of reproduction, Larinas innovative biophotonics technology provided direct visualization of the movement of oocytes and embryos in the fallopian tube. Identifying abnormalities in this process is critical for defining defects in mammalian fertilization and embryogenesis. Using her new approach, which combines optical coherence tomography with intravital imaging, Larina showed that cilia do not drive directional oocyte/embryo transport. The timing of the oocyte/embryo transport is primarily regulated by smooth muscle dynamics at different locations within the oviduct.

Dr. Scott A. LeMaireJimmy and Roberta Howell Professor of Cardiovascular Surgery, vice chair for research in the Michael E. DeBakey Department of Surgery, director of research in the Division of Cardiothoracic Surgery and professor of molecular physiology and biophysics

Dr. LeMaires primary clinical interest focuses on the management of patients with thoracic aortic disease, with a particular emphasis on treatment of aortic dissection and thoracoabdominal aortic aneurysms. His corresponding research program focuses on organ protection during aortic surgery, genetic aspects of thoracic aortic disease and molecular mechanisms of aortic degeneration.

He has received funding from the National Institutes of Health, the American Heart Association, the Thoracic Surgery Foundation and the Marfan Foundation for his research studying the pathobiology of thoracic aortic aneurysms and aortic dissection. LeMaire is a past-president of the Association for Academic Surgery and is the current editor-in-chief of the Journal of Surgical Research.

LeMaire also serves as a physician associate in the Department of Cardiovascular Surgery at the Texas Heart Institute and Baylor St. Lukes Medical Center.

Dr. Ying ShenProfessor of surgery and director of the Aortic Disease Research Laboratory

Dr. Shens research focuses on understanding the development of vascular diseases. She became the director of the Aortic Disease Research Laboratory in 2008, and has since focused on aortic aneurysms and dissections, highly lethal but poorly understood diseases. She has worked closely with collaborator Dr. Scott LeMaire and together, they have built a translational research program and developed several research directions to investigate the mechanisms of aortic injury, repair and remodeling. The ultimate goal of her research is to develop pharmacological treatments to prevent progressive aortic destruction, maladaptive remodeling and disease deterioration.

Dr. Sundeep KeswaniProfessor of surgery, pediatrics and obstetrics and gynecology, division chief of pediatric surgery and surgical director of basic science research at Texas Childrens Hospital

Dr. Sundeep Keswanis lab, the Laboratory for Regenerative Tissue Repair, is focused on understanding the molecular mechanism that underlies the fetus ability to regeneratively heal cutaneous wounds, as well as the development of novel therapies to achieve scarless wound healing in postnatal tissues, specifically the interaction of inflammation and extracellular matrix to drive fibrotic responses within human skin in response to injury. Most recently he has shown that bacteriophage trigger antiviral immunity and prevent clearance of bacterial infection and that Interleukin-10 producing T lymphocytes (TR1 cells) reduce dermal scarring. In addition to his work in skin, his group also has discovered that hyaluronan attenuates tubulointerstitial scarring in kidney injury.During the last three years, he has published his research outcomes in highly prestigious journals such as Science, Annals of Surgery and JCI Insight.

Keswani also serves as a governor of the American College of Surgeons and continually publishes articles that examine the state of research and surgery, keeping surgeon-scientists highly relevant nationally.

The rest is here:
Baylor College of Medicine recognizes research excellence with DeBakey Awards - Baylor College of Medicine News

Read More...

Framework for the Regulation of Regenerative Medicine Products

Friday, July 8th, 2022

The U.S. Food and Drug Administration has publishedfour final guidance documents that are part of a comprehensive policy framework to address how the agency plans to support and expedite the development of regenerative medicine products, including human cells, tissues, and cellular and tissue-based products (HCT/Ps). These guidance documents build upon FDAs risk-based, flexible regulatory framework, and underscore the agencys commitment to help bring new and innovative treatment options to patients.

The first two final guidance documents are:

The final guidance on minimal manipulation and homologous use are intended to provide clarity in the determination of whether HCT/Ps are subject to FDAs premarket review requirements. The final guidance on the same surgical procedure exception is intended to provide clarity as to whether an establishment may qualify for an exception from the requirements under Part 1271 by meeting the exception in 21 CFR 1271.15(b).

The FDA also published twofinal guidances intended to aid in the effort to bring innovative, safe, and effective products to patients as efficiently as possible:

Thefinal guidance on expedited programs describes several programs, such as Fast Track designation and Breakthrough Therapy designation, that are available to sponsors of regenerative medicine therapies, and information about the requirements for, and benefits of, the new RMAT designation program that was created by the 21st Century Cures Act. The final device guidance, which FDA is publishing as required by section 3034 of the 21st Century Cures Act, provides the agencys current thinking about concepts related to the evaluation of devices used in the recovery, isolation and delivery of RMATs.

05/21/2019

Read the original here:
Framework for the Regulation of Regenerative Medicine Products

Read More...

Regenerative Medicine is an Early Treatment for Osteoarthritis – Digital Journal

Friday, July 8th, 2022

CHARLOTTE, NC, July 08, 2022 /24-7PressRelease/ An estimated 30 million Americans suffer from osteoarthritis. Osteoarthritis or degenerative arthritis is the most common type of arthritis. Its a painful, often debilitating, a condition caused when the cartilage or cushion between our joints breaks down, leaving bone to rub on bone. Osteoarthritis is a leading cause of hospitalization, resulting in over 600,000 joint replacement surgeries annually.

Baby boomers want to stay active, but there is an added factor to developing osteoarthritis from prior injuries. You have an increased risk of developing arthritis from injuries, such as a cartilage tear in the knee, even minor ones, in your 20s or 30s.

Once osteoarthritis sets in, common treatments include over-the-counter pain relievers, prescription medications, physical therapy, or chiropractic adjustmentsnone help improve the joints quality. When the pain gets too great, the last option is joint replacement.

For years, orthopedic surgeons have used regenerative medicine, such as Platelet-Rich Plasma (PRP), to help patients recover faster. As the field of regenerative medicine has grown, experienced physicians are emerging.

Dr. James Altizer, MD, is a board-certified medical doctor who has performed thousands of stem cell and PRP procedures since January 2016, making him the most experienced doctor in the Carolinas.

Osteoarthritis and Regenerative Medicine Treatment

Typically, traditional osteoarthritis treatment aims to control the symptoms and cover up the pain until its too late to save the joint. Dr. Altizer treats underlying arthritis by stimulating the bodys natural healing process using regenerative medicine.

Regenerative medicine deals with the process of replacing or regenerating human cells or tissues to restore normal function naturally. This new therapeutic strategy helps prevent osteoarthritis from advancing by stimulating tissue regeneration in the joints and reducing inflammation, which leads to a significant reduction in pain and improved physical activity levels.

At Neogenix, a leading regenerative medicine provider, we treat the patient, not just the pain. Our team provides a personalized treatment plan to improve the lives of those suffering from osteoarthritis using natural regenerative therapies. The first step is where we get to know the patient and give a thorough assessment to determine the root cause of their pain.

We are at a tipping point in medicine when it comes to using our bodies to heal ourselves, says Dr. Altizer. Our patients see a significant reduction in their arthritis pain level and improvement in overall function, which can prolong their active lifestyle for many years.

If you are suffering from arthritis pain and want to put off future joint replacement surgery, schedule a consultation with Dr. Altizer. Find out now if regenerative medicine can help repair tissue damage in your joints.

ABOUT NEOGENIXNeogenix has been a leading regenerative medicine provider in the Carolinas since 2020. Dr. James Altizer, MD, is a board-certified medical doctor who has performed thousands of stem cell and growth factor procedures since January 2016, making him the most experienced doctor in the Carolinas. These powerful, all-natural treatments regenerate and heal damaged tissues to get you back to living the life you deserve. They offer realistic assessments, not false hope or high-pressure sales tactics. Patients experience little to no downtime, and these all-natural, non-surgical treatments carry none of the potentially life-threatening risks of surgery.

Press release service and press release distribution provided by http://www.24-7pressrelease.com

See the original post here:
Regenerative Medicine is an Early Treatment for Osteoarthritis - Digital Journal

Read More...

Mogrify and Astellas link up on regenerative medicine approaches in sensorineural hearing loss – The Pharma Letter

Friday, July 8th, 2022

Privately-held UK-based company Mogrify and Japanese drugmaker Astellas (TYO: 4503) have signed a collaborative research agreement on in vivo regenerative medicine approaches to address sensorineural hearing loss.

Using Mogrifys proprietary direct cellular reprogramming platform, the collaboration will seek to identify novel combinations of transcription factors involved in cell differentiation to generate new cochlear hair cells.

As part of the

This article is accessible to registered users, to continue reading please register for free. A free trial will give you access to exclusive features, interviews, round-ups and commentary from the sharpest minds in the pharmaceutical and biotechnology space for a week. If you are already a registered user pleaselogin. If your trial has come to an end, you cansubscribe here.

Try before you buy

All the news that moves the needle in pharma and biotech. Exclusive features, podcasts, interviews, data analyses and commentary from our global network of life sciences reporters. Receive The Pharma Letter daily news bulletin, free forever.

Become a subscriber

Unfettered access to industry-leading news, commentary and analysis in pharma and biotech. Updates from clinical trials, conferences, M&A, licensing, financing, regulation, patents & legal, executive appointments, commercial strategy and financial results. Daily roundup of key events in pharma and biotech. Monthly in-depth briefings on Boardroom appointments and M&A news. Choose from a cost-effective annual package or a flexible monthly subscription.

View post:
Mogrify and Astellas link up on regenerative medicine approaches in sensorineural hearing loss - The Pharma Letter

Read More...

Global Stem Cell Assays Market Projected to Reach $4.5 Billion by 2027 – GlobeNewswire

Friday, July 8th, 2022

Dublin, July 06, 2022 (GLOBE NEWSWIRE) -- The "Stem Cell Assays Market by Type (Viability, Proliferation, Differentiation, Apoptosis), Cell Type (Mesenchymal, iPSCs, HSCs, hESCs), Product & Service (Instrument), Application (Regenerative Medicine, Clinical Research), End User - Global Forecast to 2027" report has been added to ResearchAndMarkets.com's offering.

The stem cell assay market is projected to reach USD 4.5 Billion by 2027 from USD 1.9 Billion in 2022, at a CAGR of 17.7% during the forecast period.

The growth of the market is projected to be driven by collaborations and agreements among market players for stem cell assay products & services, the launch of new stem cell analysis systems such as flow cytometers, and increase in R&D expenditure by biopharmaceutical and biotechnology companies.The viability/cytotoxicity assays accounted for the largest share of the type segment in the stem cell assays market in 2021Cell viability assays help to determine the number of live and dead cells in a culture medium. The viability/cytotoxicity assays include various types such as tetrazolium reduction assays, resazurin cell viability assays, calcein-AM cell viability assays, and other viability/cytotoxicity assays. The cell viability/cytotoxicity market is likely to be driven by rising R&D spending on stem cell research, an increase in demand for stem cell assays in drug discovery, and development of new stem cell therapies..The adult stem cells segment accounted for the largest share of the cell type segment in the stem cell assays market in 2021.Adult stem cells account for the largest share of the stem cell assay market. The adult stem cells include mesenchymal stem cells, induced pluripotent stem cells, hematopoietic stem cells, umbilical cord stem cells, and neural stem cells. The growth of the adult stems cells segment is driven by the increasing usage of adult stem cells in regenerative medicine and the development of advanced therapies.Asia Pacific: The fastest-growing region in the stem cell assays marketThe Asia Pacific is estimated to be the fastest-growing segment of the market, owing to the rising prevalence of cancer & other diseases, increasing R&D spending on biopharmaceutical projects, and focus on developing stem cell-based therapies. In this region, China and Japan are the largest markets.

Key Topics Covered:

1 Introduction

2 Research Methodology

3 Executive Summary

4 Premium Insights4.1 Stem Cell Assays Market Overview4.2 North America: Stem Cell Assays Market, by Product & Service and Country (2021)4.3 Stem Cell Assays Market Share, by Type, 2022 Vs. 20274.4 Stem Cell Assays Market Share, by Application, 20214.5 Stem Cell Assays Market: Geographic Growth Opportunities

5 Market Overview5.1 Introduction5.2 Market Dynamics5.2.1 Drivers5.2.1.1 Increasing Awareness About Therapeutic Potency of Stem Cells5.2.1.2 Increasing Funding for Stem Cell Research5.2.1.3 Rising Demand for Cell-Based Assays in Drug Discovery5.2.1.4 Collaborations and Agreements Among Market Players for Stem Cell Assay Products & Services5.2.1.5 Rising Incidence of Cancer5.2.2 Restraints5.2.2.1 Issues in Embryonic Stem Cell Research5.2.2.2 High Cost of Stem Cell Analysis Instruments5.2.3 Opportunities5.2.3.1 Emerging Economies5.2.3.2 Government Initiatives to Boost Stem Cell Research5.2.4 Challenges5.2.4.1 Lack of Infrastructure for Stem Cell Research in Emerging Economies5.2.4.2 Dearth of Trained and Skilled Professionals5.3 Ranges/Scenarios5.4 Impact of COVID-19 on Stem Cell Assays Market5.5 Trends/Disruptions Impacting Customers' Business5.6 Pricing Analysis5.6.1 Average Selling Prices of Products Offered by Key Players5.6.2 Average Selling Price Trend5.7 Technology Analysis

6 Stem Cell Assays Market, by Type6.1 Introduction6.2 Viability/Cytotoxicity Assays6.3 Isolation & Purification Assays6.4 Cell Identification Assays6.5 Proliferation Assays6.6 Differentiation Assays6.7 Function Assays6.8 Apoptosis Assays

7 Stem Cell Assays Market, by Cell Type7.1 Introduction7.2 Adult Stem Cells7.3 Human Embryonic Stem Cells

8 Stem Cell Assays Market, by Product & Service8.1 Introduction8.2 Instruments8.3 Kits8.4 Services

9 Stem Cell Assays Market, by Application9.1 Introduction9.2 Regenerative Medicine & Therapy Development9.3 Drug Discovery & Development9.4 Clinical Research

10 Stem Cell Assays Market, by End-User

11 Stem Cell Assays Market, by Region

12 Competitive Landscape

13 Company Profiles

Companies Mentioned

For more information about this report visit https://www.researchandmarkets.com/r/2i79h7

Read the original:
Global Stem Cell Assays Market Projected to Reach $4.5 Billion by 2027 - GlobeNewswire

Read More...

Diabetic foot treatment: Here’s all you need to know about stem cell therapy – Hindustan Times

Friday, July 8th, 2022

Diabetes is nothing less than a pandemic as according to the World Health Organization, about 422 million people have diabetes worldwide. High blood sugar levels affect different organs and tissues of the body leading to a compromised quality of life for example, you might have experienced or heard of tingling sensation, numbness, or pain in the legs/feet of patients with diabetes which as per the health experts, occur due to nerve and blood circulation-related problems caused by the negative effects of high glucose levels on cells and tissues.

Foot-related problems occur commonly in patients with diabetes like if we hurt our toe/foot and have an open wound or cut, the nerve endings from the affected part send signals to the brain and cause pain. In case a person with uncontrolled and long-standing diabetes, the sensation of pain may not be transmitted properly due to nerve issues, leading to the patient ignoring the problem and in such cases, even a small cut can progress to a large size wound (as we know wound healing is affected in diabetic patients).

Infection can spread from the feet through the blood to other parts of the body as well and in the feet specifically, increased severity of the issue can lead to gangrene, ultimately necessitating amputation of the toes/foot. It is therefore important to look out for issues such as cuts, bruises, red spots, warm areas, swelling, blisters, corn, etc. in the feet to identify any issue at the earliest and initiate treatment.

From an advanced treatment perspective, Dr Pradeep Mahajan, Regenerative Medicine Researcher at Navi Mumbai's StemRx Bioscience Solutions Pvt Ltd, talked about regenerative medicine for diabetic foot in an interview with HT Lifestyle. He explained, Regenerative medicine is about using biological molecules to enhance the healing potential of the body. These molecules are cells, growth factors, exosomes, peptides, all of which function to enhance the function of other cells in the body, reduce inflammation, regulate the immune system, provide a constant pool of healthy cells, and clear tissue damage, among other functions.

He highlighted that the treatment for diabetic foot includes a combination of mesenchymal stem cells, growth factors that improve nerve health and blood vessel formation, oxygen therapy, as well as allied stimulation-based treatments. He said, We have seen successful outcomes in diabetic foot conditions following cell-based therapy. Patients experience relief from abnormal sensations in the feet, better wound healing and pain along with better control of diabetes.

Dr Mahajan added, When we target the pathology, we get more definitive treatment outcomes. Our patients with diabetic foot do not progress to develop gangrene. In fact, they even achieve better control of blood glucose levels, which prevents further complication and improves their quality of life. The key is a regenerative (not symptomatic) treatment along with lifestyle modifications.

Visit link:
Diabetic foot treatment: Here's all you need to know about stem cell therapy - Hindustan Times

Read More...

PROMISING STEM CELL THERAPY IN THE MANAGEMENT OF HIV & AIDS | BTT – Dove Medical Press

Friday, July 8th, 2022

Introduction

Stem cells are highly specialized cell types with an impressive ability to self-renew, able to transform into one or even more specific cell types that play a significant role in the regulation and tissue healing process.17 To self-renew, a stem divides into two identical daughter stem cells and a progenitor cell and the embryonic and adult cells contain stem cells.1,2,8

Curing patients with serious medical conditions has been the focus of all disciplines of medical research for many years. Stem cell treatment has evolved into a highly exciting and progressed field of scientific research. Major advances have recently been introduced in fundamental and translational stem-cell-based treatment studies. As stem cell research progressed, many therapeutic options were investigated. The development of therapeutic procedures has sparked a great deal of interest.1,9 Humanity has known for many years that it is possible to regenerate lost tissue. Recently, the regenerative medicine research has taken hold, defying the tremendous scientific advances in the molecular biology sciences only. Technological advances provide limitless opportunities for transformational and potentially restorative therapies for many of humanitys most illnesses. A variety of human organs have successfully yielded stem cells. Besides this, the cell therapy is rapidly bringing good advancements in the healthcare system, intending to restore and possibly replace injured tissue, as well as organs, and ultimately restore the functional capacity of the body.2,10,11

The stem cells can be obtained from various sources of Adult (Adult body tissues), Embryonic (Embryos), Mesenchyma (Connective tissue or stroma), and Induced pluripotent stem [ips] cells (Skin cells or tissue-specific cells).3,68,1215

Due to various stem cells cellular characteristics, the therapeutic clinical possibilities of stem-cell-based treatment are considered promising. These cells can regrow and restore various types of body tissues, for this reason, they are recognized as precursor cells to all kinds of cells.15 The following are the distinguishing features: 1. Self-renewal- Divide without distinction to generate an infinite supply, 2. Multi-potency- One mature cell may distinguish more than one, 3. Pluripotency- Create all sorts of cells except for embryonic membrane cells, 4. Toti- potency- Produce various sorts of cells, including embryonic stem cells.1,2,6,7,16

Stem cells are essential human cells that really can self-renew and make a distinction into particular mature cell types.3,6 The different types of stem cells are embryonic, induced pluripotent, and adult kind of cell types. They all share the important feature of self-renewal, and the ability to discern themselves. It should be mentioned that, the stem cells are not homogeneous, but instead appear in a progressive order. Totipotent stem cells are the most basic and immature stem cells. The above cells can form a complete embryo and also extra-embryonic tissue. This one-of-a-kind efficiency is only present for a short period, starting with ovum development and completing whenever the embryo achieves the 4 to 8 cell phases. Having followed that, cells that divide until they approach the blastocyst, about which point they end up losing their totipotency and acquire a pluripotent character trait, at which cells can only distinguish through each embryonic germ stack. After a few divisions, the pluripotency character trait starts to fade and the distinguishing ability has become more lineage constrained, where its cells are becoming multipotent, indicating they could only transform into the cells connected to a cell or tissue of origin.10 Many researchers believe that adult stem cells should be used in stem cell therapies.6,17

The stem cells can be transformed into a wide range of specialized functional cell types.3,18 In response to injury or maturation, those same stem cells can propagate in massive quantities.19 Adult, embryonic, and induced pluripotent stem cells are examples of stem cell-based therapies.14,15,1921 The stem cells, due to their capability to distinguish the specific cell types requisite for a diseased tissue regeneration, can provide an effective solution, while tissue and organ transplantation are considered necessary.10 The sophistication of stem cell-based treatment interventions, on the other hand, probably leads researchers to seek stable, credible, and readily available stem cell sources capable of converting into numerous lineages. As an outcome, it is critical to exercise caution when selecting the type of stem cells to be used in therapeutic trials.12,14,22

Only with the explosive growth of basic stem cell research in recent years, the comparatively recent study sector of Translational Research had also grown exponentially, starting to build on major research knowledge and insight to advance new therapies. Once the necessary regulatory clearances have been obtained, the clinical translation process can start. Translational research is important because it acts as a filtration system, ensuring that only safe and effective therapeutic approaches start making it to the clinic.23 Recent research illustrating, the successful application of stem cell transplantation to patient populations suggests that, such restorative approaches have been used to address a wide variety of complicated ailments of future concerns.19,24

Currently, clinical trials are available for a variety of stem cell-based treatments based on adult stem cells. To date, the WHO International Clinical Experiments Registration process has recorded more than 3000 experiments involved based on adult stem cells. Furthermore, preliminary trials involving novel and intriguing pluripotent stem cell therapies have been registered. These studies findings will assist the ability to comprehend and the timeframes required to obtain effective treatments and it will contribute to a better knowledge of the different disorders or abnormalities.10

The role of stem cells in modern medicine is vital, both for their widespread application in basic research and for the opportunities they provide for developing new therapeutic strategies in clinical practice.6,16 In recent times, the number of studies involving stem cells has expanded tremendously. Globally, thousands of studies claiming to use stem cells in experimental therapies have now been in the investigation field. This may give the impression that such treatments have already been shown to be extremely effective in the context of healthcare. Despite some promising results, the vast majority of stem cell-based therapeutic applications are still in the experimental stage itself.6,25

The stem cells are a valuable resource for understanding organogenesis as well as the bodys continual regenerative capacity. These cells have brought up enormous anticipations among doctors, investigators, patients, and the public at large because of their ability to distinguish into a variety of cell types.25 These cells are necessary for living beings for a variety of reasons and can play a distinguishable role. Several stem cells can play all cell types roles, and when stimulated effectively, they can also repair damaged tissue. This capability has the potential to save lives as well as treat human injuries and tissue destruction. Moreover, different kinds of stem cells could be used for several purposes, including tissue formation, cell deficiency therapeutic interventions, and stem cell donation or retrieval.3,6,26

New research demonstrating that the successful application of stem cell treatments to patients has expressed hope that such regenerative strategies might very well one day is being used to address a wide variety of problematic ailments. Furthermore, clinical trials incorporating stem cell-based therapeutics have advanced at an alarming rate in recent years. Some of these studies had a significant impact on a wide range of medical conditions.10 As a regenerative medicine strategy, cell-based treatment is widely regarded as the most fascinating field of study in advanced science and medicine. Such technological innovation paves the way for an infinite number of transformational and potentially curable solutions to some of humanitys most pressing survival issues. Moreover, it is gradually becoming the next major concern in medical services.11

Modern data, which shows that the successful stem cell transplantation in beneficiaries has raised hopes on the certain rejuvenating approaches, will one day be used to treat many different types of challenging chronic conditions.24 Preliminary data from highly innovative investigations have documented that the prospective advancement of stem cells provides a wide range of life-threatening ailments that have so far eluded current medical therapy.2,10,11 Furthermore, clinical trials involving stem cell-based therapies have advanced at an unprecedented rate. Many of these studies had a significant impact on various disorders.19 Despite the increasing significance of articles concerning viable stem cell-based treatments, the vast majority of clinical experiments have still yet to receive full authorization for stem cell treatments confirmation.11,12,27

Even though the first case of AIDS were noted nearly 27 years ago, and the etiologic agent was noticed 25 years ago, still for the effective control of the AIDS pandemic continues to remain elusive.28 The HIV epidemic started in 1981 when a new virus syndrome defined by a weakened immune system was revealed in human populations across the globe. AIDS showed up to have a substantial reduction in CD4+ cell counts and also elevated B-cell multiplication.15,2831

The agent that causes AIDS, later named HIV, is a retroviral disease with a genomic structural system made up of 2 identical single-stranded RNA particles.3234 According to the Centres for Disease Control and Prevention, with over 1.1 million Americans are presently infected with the virus.31 Compromised immune processes in HIV and AIDS, as well as partial immune restoration, barriers are confirmed for HIV disease eradication. Innovative developmental strategies are essential to maximizing virus protection and enabling the host immune response to eliminate the virus.35

The progression of HIV infection in humans is divided into the following stages of acute infection, chronic infection, and AIDS.15,36 During the acute infection phase, the circulation has a high viral replication, is extremely infectious, that may or may not demonstrate flu-like clinical signs. In the chronic stage, the viral load is lesser than in the acute stage, and individuals are still infectious but may be symptomless. The patient has come to the end stage of AIDS whenever the CD4+ cell count begins to fall below 200 cells/mm or even when opportunistic infections are advanced.15,36

There are currently two types of HIV isolated HIV-1 and HIV-2.15,37,38 However, HIV-1 is the most common cause of AIDS throughout the world, while HIV-2 is only found in a few areas of an African country. Although both virions can cause AIDS, HIV-2 infection is much more likely to occur in central nervous system disorder.15 Besides this, HIV-2 seems to be less infectious than HIV-1, and HIV-2 infection induces AIDS to develop more slowly. Even though both HIV-1 and HIV-2 have a comparable genetic structure comprised of group-specific antigen, polymerase, and envelope genes, their genome organizational structures are differed.15,3739

HIV infiltrates immune cell types, CD4+ T cell types, and monocytes, resulting in a drop in T-cell counts below a critical level and the failure of cell-mediated immune function.15,40 The glycoprotein (gp120) observed in the virion envelope comes into contact with the CD4 particle with high affinity, allowing HIV to infect T cells. By interacting with their co-receptors, CXCR4 and CCR5, the virus infiltrates T cells and monocytes. The retrovirus uses reverse transcriptase to convert its RNA into DNA after attaching it to and entering the host cell. These newly replicated DNA copies then exit the host cell and infect other cells.15,40,41

HIV-1 is a retrovirus and belongs to a subset of retroviruses known as lentiviruses.38,42 Infection is the most common global health concern around the world.15 It has destroyed the millions of peoples health and continues to wreak havoc on the individual health of millions more. The pandemic of HIV-1 is the most devastating plague in the history of humans, as well as a significant challenge in the areas of medicine, public health, and biological science of research activities.34,43 Antiretroviral therapy is the only treatment that is commonly used. This is not a curative treatment; it must be used for the rest of ones life.15 Although antiretroviral therapy has reduced significantly HIV intensity and transmission, the virus has not been eradicated, and its continued presence can lead to additional health issues.44

Infection with the human immunodeficiency virus necessitates entry into target cells, such as through adhesion of the viral envelope to CD4 receptor sites.43 Cellular antiviral responses fail to eliminate the virus, resulting in a gradual depletion of CD4+ T cells and, finally, a severely compromised immune functioning system. Unfortunately, there is no cure for the virus that destroys immunity.4447 In advanced HIV infection, memory T-cell depletion primarily affects cellular and adaptive immune responses, with a minor impact on innate immune responses.48 Globally, 37.7 million people were living with HIV in 2020, and with 1.5 million individuals are infected with the virus.49 The advancement of stem cell therapy and the conduct of implemented clinical trials have revealed that stem cell treatment has high hopes for a range of medical conditions and implementations.15

Stem cell treatment has shown impressive outcomes in HIV management and has the potential to have significant implications for HIV treatment and prevention in the future. In HIV patients, stem cell therapy helps to suppress the viral load even while enabling antiretroviral regimens to be tapered. Interestingly, this practice led to a significant improvement in procedure outcomes soon after starting antiretroviral treatment.15 Stem cell transplantation can alleviate a wide variety of diseases that are currently incurable. They could also be used to create a novel anti-infection therapy strategic plan and to enhance the treatment of immunologic conditions such as HIV infection. HIV wreaks havoc on immune system cells.30,50

The virus infects and replicates within T-helper cells (T-cells), which are white immune system cells. T-cells are also referred to as CD4 cells. HIV weakens a persons immune system over time by pulverizing more CD4 cells and multiplying itself. More pertinently, if the individual has been unable to obtain anti-retroviral medicine, he will progressively fail to control the infectious disease and illnesses.3,15,42

Despite 36 years of scientific research, investigators are still trying to cure human HIV and its potential problem, AIDS.3,5153 HIV continues to face unconquerable dangers to human survival. This virus has developed the potential to avoid anti-retroviral therapy and tends to result in victim death.52 Investigators are still looking for effective and all-encompassing treatment for HIV and its complexity, AIDS.54 This massive amount of data revealed potential AIDS treatment targets.55 Thousands of research projects have yielded a great deal of information on the elusive AIDS life cycle to date.5456 These massive amounts of data supplied possible targets for AIDS treatment.33,55,56 In HIV-infected patients, using stem cell therapy can augment the process of keeping the viral load stagnant by permitting antiretroviral regimens to be tapered.15

Overall, stem cell-based strategies for HIV and AIDS treatment have recently emerged and have become a key area of research. Ideally, effective stem cell-based therapeutic approaches might have several benefits.30 Clinical studies encompassing stem cell therapy have shown substantial therapeutic effects in the treatment of various autoimmune, degenerative, and genetic problems.15,25 Substantial progress has been developed in the treatment of HIV infection using stem cell-based techniques.30

Successfully treated, clinical studies have shown that total tissue recovery is feasible.15,57 In the early 1980s, the first stem cell transplants were accomplished on HIV-positive patients who were unsure of their viral disease. Following the above preliminary aspects, many HIV-positive patients with concurrent malignant tumours or other hematologic disorders underwent allogeneic stem cell transplantation around the world.42 After ART became a common treatment option for patients,58,59 the procedures prognosis improved dramatically. In addition, a retrospective study of 111 HIV+ transplant patients demonstrated a mildly lower overall survivorship performance in comparison to an HIV-uninfected comparison group.60

Earlier, the primary problem for people living with HIV and AIDS was immunodeficiency caused by a loss of productive T-cells. Some clinicians intended to replenish lost lymphocytes through adoptive cell transplants in the initial days before efficacious antiretroviral therapy options were available. Immunologically, it is relatively simple in an isogeneic condition, as illustrated on HIV-positive individuals with just a correlating identical twin who received T-lymphocytes and stem cell transfusions to rebuild the weak immune status of the patient.60 Cell therapy transfusion may be used to remove resting virion genomes from CD4+ immune cells and macrophages mostly through genome-editing or cytotoxic anti-viral cells.15,60 Cell technology and stem cell biological reprogramming developments have made a significant contribution to novel strategies that may give confidence to HIV healing process.3 However, human embryonic stem cells can be distinguished into significant HIV target cells, according to several research findings.30,61,62

Initially, stem cell transplantation was believed to influence the clinical significance of HIV infection, but viral regulation was not accomplished in the discipline. Moreover, improvements in stem cell transplants utilizing synthetic or natural resistant cell resources, in combination with novel genetic manipulative tactics or the advancement of cytotoxic anti-HIV effector cells, have significantly accelerated this sector of HIV cell management.60 Multiple techniques are being introduced to overcome HIV, either through protecting cells from infectious disease or by continuing to increase immune responses to the viral infection.30 The various methods are as follows: Bone marrow stem cells Therapies, Autologous stem cell transplantations, Hematopoietic stem cell transplantation, Genetical modifications of Hematopoietic stem cells (HSCT), HSCT and HAART therapeutic approach, Human umbilical cord mesenchymal stem cell transplantation, Mesenchymal stem/stromal cells (MSCs) applications, CCR5 Delta32/Delta32 Stem-Cell Transplantation, CRISPR and stem cell applications, Induced Pluripotent Stem Cells applications.

According to the findings, circulating replicative HIV remains the most significant threat to effective AIDS therapy. As a result, a method for conferring resistance to circulating HIV particles is required. The effective viral burden in the human body would be significantly reduced if it were possible to defeat reproducing HIV particles.43,44 For the treatment of AIDS, a restorative approach that relies on bone marrow stem cells has been suggested.52 The proposed treatment method captures and eventually destroys circulating HIVs using receptor-integrated red blood cells. Red blood cell membranes can be equipped with the CD4 receptor and the C-C chemokine receptor type 5 and C-X-C chemokine receptor type 4 co-receptors, which will selectively bind circulating HIV particles.15,30,32,33,43,44,46,6365

The term autologous pertains to blood-forming stem cells obtained from the patient for use as a source of fresh blood cells followed by high-dose chemotherapeutic agents.66 Lymphoma is still the biggest cause of mortality in HIV patients. Autologous stem cell recovery or transplantation with high-dose treatments has long been supported as a treatment for certain types of cancer in HIV-negative patients, including leukaemia and lymphoma. Individuals over the age of 65, as well as those with health problems such as HIV, were excluded from initial transfusion experiments. Moreover, the treatment regimen mortality of transplantation has also been reduced significantly due to its use of peripheral blood stem cells rather than bone marrow and the use of newer marginal conditioning therapeutic strategies. HIV-infected clients may be able to utilize enough stem cells for an autologous transplant advancement in HIV management. High-dose Autologous stem cell transplant (ASCT) treatments are better than conventional treatment in people with relapsed non-Hodgkin lymphoma, according to randomized trial evidence. Similarly, studies on HIV-negative people with Hodgkin Lymphoma have shown that ASCT would provide patients with repetitive illness with long-term progression-free survival.66,67 Even so, the clinical trial on Allogeneic Hematopoietic Cell Transplant for HIV Patients with Hematologic Malignancies report was explained as, the cell-associated HIV DNA and inducible infectious virus were not detectable in the blood of patients who attained complete chimerism.68

The study on long-term multilineage engraftment of autologous genome-edited hematopoietic stem cells in nonhuman primates report findings was Genome editing in hematopoietic stem and progenitor cells (HSPCs) is a potential innovative approach for the treatment of numerous human disorders. This report shows that genome-edited HSPCs engraft and contribute to multilineage repopulation following autologous transplantation in a clinically relevant large animal model, which is an important step toward developing stem cell-based genome-editing therapeutics for HIV and possibly other illnesses.69

Research on comprehensive virologic and immune interpretation in an HIV-infected participant again just after allogeneic transfusion and analytical interruption of antiretroviral treatment findings are the instance of HIV-1 cure having followed allogeneic stem cell transplantation (allo-SCT), resulting allo-SCTs in HIV-1 positive participants have failed to cure the disease. It describes adjustments in the HIV reservoir in a single chronically HIV-infected client who had undergone allo-SCT for acute lymphoblastic leukaemia treatment and was obtaining suppressive antiretroviral treatment.

To estimate the size of the HIV-1 reservoir and describe viral phylogenetic and phenotypic modifications in immune cells, the investigators just used leukapheresis to obtain peripheral blood mononuclear cells (PBMCs) from a 55-year-old man with chronic HIV infection prior and after allo-SCT. Once HIV-1 was found to be unrecognizable by numerous tests, including the PCR measurement techniques both of overall and fully integrated HIV-1 DNA, recompilation virus precise measurement by significant cell input quantifiable viral outgrowth assay, and in situ hybridization of intestine tissue, the client accepted to an analytic treatment interruption (ATI) with recurrent clinical observing on day 784 post-transplantation. He continued to remain aviremic off ART until ATI day 288, once a reduced virus rebound of 60 HIV-1 copies/mL resulted, which expanded to 1640 HIV-1 copies/mL five days later, urging ART reinitiation. Rebounding serum HIV-1 action sequences were phylogenetically distinguishable from pro-viral HIV-1 DNA discovered in circulating PBMCs before transplantation. It was indicated that allo-SCT tends to result in significant reductions in the magnitude of the HIV-1 reservoir and a >9-month ART-free cessation from HIV-1 multiplication.34

The Impact of HIV Infection on Transplant Outcomes after Autologous Peripheral Blood Stem Cell Transplantation: A Retrospective Study of Japanese Registry Data reported as ASCT is a successful treatment option for HIV-positive patients with non-Hodgkin lymphoma and multiple myeloma (MM). HIV infection was associated with an increased risk of overall mortality and relapse after ASCT for NHL in a study population.70

The procedure of delivering hematopoietic stem cells mostly through intravenous infusion to restore normal haematopoiesis or treat cancer is known as hematopoietic stem cell transplantation.71 There has recently been a rise in the desire to develop strategies for treating HIV/AIDS diseases employing human hematopoietic stem cells,30 along with this Hutter and Zaia were evaluated the background of Haematopoietic stem cell transplantation (HSCT) in HIV-infected individuals.42

Attempts to use HSCT as a technique for immunologic restoration in AIDS patients or as a therapeutic intervention for malignant tumours were initially insufficient. Regretfully, in the absence of sufficient ART, HSCT seemed to have no impact on the evolution of HIV infection, and the majority of the patients ended up dead of rapidly deteriorating immunosuppression or reoccurring lymphoma or leukaemia. A specific instance report described how an un-associated, matched donor supplied allogeneic HSCT to a patient with refractory lymphoma. The virus was unrecognizable by isolating or PCR of peripheral blood mononuclear cells commencing on day 32 after transplantation. Although HIV-1 was unrecognizable by cultural environment or PCR of several tissues examined at mortem, the patient died of recurring lymphoma on day 47. Another client who obtained both allogeneic HSCT and zidovudine had similar results, with HIV-1 becoming unnoticeable in the blood by PCR analysis. In some other particular instances, a 25-year-old woman with AIDS who obtained an allogeneic HSCT from a corresponding, unfamiliar donor after controlling with busulfan and cyclophosphamide and ART with zidovudine and IFN-2 regimen continued to live for 10 months before falling victim to adult respiratory distress. However, PCR testing of autopsy tissues revealed that they were HIV-1 negative.72

Recent research discovered significant progress towards the clinical application of stem cell-based HIV therapeutic interventions, principally illustrating the opportunity to effectively undertake a large-scale phase two HSC-based gene therapy experiment. In this investigation, the research team used autologous adult HSCs that had been transduced to a retroviral vector that usually contains a tat-vpr-specific anti-HIV ribozyme to develop cells that were less vulnerable to productive infection,73 whereas vector-containing cells have been discovered for extended periods (more than 100 weeks in most people) and CD4+ T cell gets counted were significantly high within anti-HIV ribozyme treating people group compared with the placebo group, the impacts on viral loads were minimal. The studys success, even so, is based on the realization that a stem cell-based strategy like this is being used as a more conventional and efficacious therapeutic approach.30 Some other latest clinical studies used a multi-pronged RNA-based strategic plan which included a CCR5-targeted ribozyme, an shRNA targeting tat/rev transcripts, and a TAR segment decoy.74

These crucial research findings are explained on lentiviral-based gene therapy vectors that can genetically manipulate both dividing and non-dividing HSCs and are less likely to cause cellular changes than murine retro-viral-based vectors. Long-term engraftment and multipotential haematopoiesis have been demonstrated in vector-containing and expressing cells, according to the researchers. Whereas the antiviral effectiveness was not reviewed, the results demonstrate the strategys protection, which helps to expand well for the possibility of a lentiviral-based approach in the upcoming years.30

A further approach, with a different emphasis, has been started up in the hopes of trying to direct immune function to target specific HIV to overcome barriers to attempting to clear the virus from the patient's body. These strategies use gene treatment innovations on peripheral blood cells to biologically modify cells so that they assert a receptor or chimeric particle that enables them to especially target a specific viral antigen,75 deception of HIV-infected peoples peripheral blood T cells raises issues to be addressed, such as the effects of ongoing HIV infection and ex vivo modification on the capabilities and lifetime of peripheral blood cells. Further to that, the above genetically manipulated cells would demonstrate their endogenous T cell receptors, and the representation of the newly introduced receptor could outcome in cross-receptor pairing, resulting in self-reactive T cells. Most of these deficiencies could be countered by enabling specific developmental strategies to take place that can start generating huge numbers of HIV-specific cells in a renewable, consistent way that can restore defective natural immune activity against HIV.30

One strategy being recognized is the application of B cells obtained from HSCs to demonstrate anti-HIV neutralizing specific antibodies. While animal studies have shown that neutralizing antibodies could protect against infection, and extensively neutralizing antibodies have been noticed in some HIV-infected persons, safety from a single engineered antibody might be exceptional.76,77 Realizing antibody binding and virus neutralization may assist in the development of chimeric receptors or single-chain therapeutic antibodies with recognition domains for other techniques that identify cellular immunity against HIV-infected cells.78,79 Thereby, genetically modifying HSCs to generate B cells that produce neutralizing anti-HIV specific antibodies, or engineering HSCs to enable multipotential haematopoiesis of cells that express a chimeric cellular receptor usually contains an antibody recognition domain, indicate one arm of an HSC-based engineered immunity process.30

A further technique of using HSCs that were genetically altered with molecularly cloned T-cell receptors or chimeric molecules particular to HIV to yield antigen-specific T cells. The basic difference in this strategy is that the cells produced from HSCs after standard advancement in the bone marrow and thymus are made subject to normal central tolerance modalities and are antigen-specific naive cells, and therefore do not have the ex-vivo manipulation and impaired functioning or exhaustion problems that other external cell modification methods would have. In this context, the latest actual evidence research using a molecularly cloned T cell receptor particular to an HIV-1 Gag epitope in the aspect of HLA-A*0201 revealed that HSC altered in this ability can progress into fully functioning, mature HIV specialized CD8+ T cells in human thymic tissue that conveys the acceptable constrained HLA-A*0201 particles.80 This explores the possibility of genetically engineering HSCs with a molecularly cloned receptor and signifies a step toward a better understanding and application of initiated T cell responses, which would probably result in the eradication of HIV infection from the body, similar to the natural immune function of other virus infections and pathogenic organisms.30

In an allogeneic transplantation, donor stem cells replace the patients cells.66 Allogeneic hematopoietic stem cell transplantation (HSCT) has appeared as one of the most potent treatment possibilities for many people who suffer from hemopoietic system carcinomas and non-malignant ailments.81 Both HIV-cured people have received HSCT utilizing CCR5 132 donor cells.82,83 This implies that HIV eradication necessitates a decrease in the viral reservoir through the myeloablative procedures,8486 Having followed that, immune rebuilding with HIV-resistant cells was carried out to prevent re-infection.45 The possibility of adoptive transfer of ex vivo-grown, virus-specific T-cells to prevent and control infectious diseases (eg, Cytomegalovirus and EBV) in immunocompromised patients helps to make adoptive T-cell treatment a feasible strategy to inhibit HIV rebound having followed HSCT.81,87,88

The Engineered Zinc Finger Protein Targeting 2LTR Inhibits HIV Integration in Hematopoietic Stem and Progenitor Cell-Derived Macrophages: In Vitro Study, the researchers investigated the efficacy and safety of 2LTRZFP in human CD34+ HSPCs. Researchers used a lentiviral vector to transduce 2LTRZFP with the mCherry tag (2LTRZFPmCherry) into human CD34+ HSPCs. The study findings suggest that the anti-HIV-1 integrase scaffold is an enticing antiviral molecule that could be utilised in human CD34+ HSPC-based gene therapy for AIDS patients.89

The fundamental element of HIV management is stem cell genetic modification, which involves genetically enhanced patient-derived stem cells to overcome HIV infection. In this sector, numerous experimental studies, in vitro as well as in vivo examinations, and positive outcomes for AIDS patients have been conducted.65,74 Genetic engineering for HIV-infected individuals can provide a once-only intervention that minimizes viral load, restores the immune system, and minimizes the accumulated toxicities concerned with highly active antiretroviral therapy (HAART).73 HSCs can be genetically altered, permitting for the addition of exogenous components to the progeny that protects them from direct infectious disease and/or enables them to target a specific antigen. Besides that, HSC-based strategies can enhance multilineage hemopoietic advancement by re-establishing several arms of the immune function. Eventually, as HSCs can be produced autologously, immunologic tolerance is typically high, enabling effective engraftment and subsequent distinction into the fully functioning mature hematopoietic cells.30

The utilization of human HSCs to rebuild the immune function in HIV disease is one application that tries to preserve newly formed cells from HIV infection, while another attempts to develop immune cells that attack HIV infected cells. While each initiative has many different aspects at the moment, they represent huge attention to HIV/AIDS therapies that, most likely when integrated with the other therapeutic approaches, would result in the body trying to overcome the obstacles needed for the virus to be effectively cleaned up.30

While HSC transplantation technique and processes are not accurately novel, as they are commonly and effectively used to address a wide variety of haematological diseases and malignant neoplasms,90 trying to combine them with a gene therapeutic strategy represents a unique and possibly potent therapeutic approach for HIV and AIDS-related ailments. As the results of HIV-infected patients who obtained autologous HSCT continued to improve, there was growing interest in genetically altered stem cells that were tolerant to HIV disease. Multiple logistical challenges have impeded the advancement of genetically modified hematopoietic stem cells as a conceivable therapeutic option for HIV/AIDS.72,73

UCLAs Eli and Edythe Broad Center for Restorative Medicine and Stem Cell Studies is one bit closer to constructing an instrument to arm the bodys immune system to attack and defeat HIV. Dr. Kitchen et al are the first ones to disclose the use of a chimeric antigen receptor (CAR), a genetically manipulated molecule, in blood-forming stem cells. In the experiment, the research team introduced a CAR gene into blood-forming stem cells, which were then moved into HIV-infected mice that had been genetically programmed. The scientists found that CAR-carrying blood stem cells efficiently transformed into fully functioning T cells that have the ability to kill HIV-infected cells in mice. The outcome was an 80-to-95 percentage reduction in HIV levels, suggesting that stem-cell-based genetic engineering with a CAR might be a viable and effective approach for treating HIV infection among humans. The CAR initiative, according to Dr. Kitchen, is much more able to adapt and ultimately more efficient, which can conceivably be used by others. If any further experiment showcases keep promising, the scientists expect that a practice based on their strategy will be accessible for clinical development within the next 510 years.91

HSCT and HAART therapeutic approaches in treating HIV/AIDS as the emergence of highly active antiretroviral therapy (HAART) in the 1990s improved survival rates of HIV infection, leading to a major dramatic drop in the occurrence of AIDS and AIDS-related mortalities. As an outcome, there is much less involvement with using HSCT as a therapy for HIV infection.28,33,43,67,86

A randomized clinical trial of human umbilical cord mesenchymal stem cell transplant among HIV/AIDS immunological non responders investigation, the researchers examined the clinical efficacy of transfusion of human umbilical cord mesenchymal stem cells (hUC-MSC) for immunological non-responder clients with long-term HIV disease who have an unmet medical need in the aspect of effective antiretroviral therapy. From May 2013 to March 2016, 72 HIV-infected participants were admitted in this stage of the randomized, double-blind, multi-center, placebo-controlled dose-determination investigation. They were either given a high dose of hUC-MSC of 1.5106/kg body weight as well as small doses of hUC-MSC of 0.5106/kg body weight, or a placebo application. During the 96-week follow-up experiment, interventional and immunological character traits were analysed. They found that hUC-MSC therapy was both safe and efficacious among humans. There was a significant rise in CD4+ T counts after 48 weeks of treatment in both the high-dose (P 0.001) and low-dose (P 0.001) groups, but no changes in the comparison group.92

One interesting invention made by a team of UC Davis investigators is the recognition of a particular form of stem cell that can minimize the quantity of the virus that tends to cause AIDS, thus dramatically increasing the bodys antiviral immune activity. Mesenchymal stem/stromal cells (MSCs) furnish an incredible opportunity for a creative and innovative, multi-pronged HIV cure strategic plan by augmenting prevailing HIV potential treatments. Even while no antivirals have been used, MSCs have been able to increase the hosts antiviral responses. MSC therapeutic approaches require specialized delivery systems and good cell quality regulation. The studys findings lay the proper scientific foundation for future research into MSC in the ongoing treatment of HIV and other contagious diseases in the clinical organization.35

Infection with HIV-1 necessitates the existence of both specific receptors and a chemokine receptor, particularly chemokine receptor 5 (CCR5).46 Resistance to HIV-1 infection is attained by homozygozygozity for a 32-bp removal in the CCR5 allele.93 In this investigation, stem cells were transplanted in a patient with severe myeloid leukaemia and HIV-1 infection from a donor who was homozygous to Chemokine receptor 5 delta 32. The client seemed to have no viral relapses after 20 months of transplantation and attempting to stop antiretroviral medicine. This finding highlights the essential role that CCR5 tries to play in HIV-1 infection maintenance.86

In comparison, additional HIV-1-infected people who have received allogeneic stem cell transplants with cells from CCR5 truly wild donors did not have long-term relapses from HIV-1 rebound, with 2 of these patients trying to report viral reoccurrence 12 as well as 32 weeks after analytic treatment interruption, respectively. Among these 2 patients, allogeneic stem cell transplantation probably reduced but did not eliminate latently HIV-infected cells, enabling persistent viral reservoirs to activate viral rebound. This viewpoint may not rule out the potential that allogeneic hematopoietic stem cell transplantation might result in a much more comprehensive or near-complete elimination of viral reservoirs, enabling long-term drug-free relapse of HIV-1 infection in some contexts.84 As just one report demonstrated a decade earlier, a curative treatment for HIV-1 remained elusive. The Berlin Patient has undergone 2 allogeneic hematopoietic stem cell transplantations to cure his acute myeloid leukaemia utilizing a potential donor with a homozygous genetic mutation in HIV coreceptor CCR5 (CCR532/32).15,34,46,64,65,72,82,84,86,9496 Other similar studies with CCR5 receptor targets are as follows: Automated production of CCR5-negative CD4+-T cells in a GMP compatible, clinical scale for treatment of HIV-positive patients,97 Mechanistic Models Predict Efficacy of CCR5-Deficient Stem Cell Transplants in HIV Patient Populations,98 Conditional suicidal gene with CCR5 knockout.99

Clustered regularly interspaced short palindromic repeats CRISPR/Cas9 is a promising gene editing approach that can edit genes for gain-of-function or loss-of-function mutations in order to address genetic abnormalities. Despite the fact that other gene editing techniques exist, CRISPR/Cas9 is the most reliable and efficient proven method for gene rectification.100103

Genome engineering employing CRISPR/Cas has proven to be a strong method for quickly and accurately changing specific genomic sequences. The rise of innovative haematopoiesis research tools to examine the complexity of hematopoietic stem cell (HSC) biology has been fuelled by considerable advancements in CRISPR technology over the last five years. High-throughput CRISPR screenings using many new flavours of Cas and sequential and/or functional outcomes, in specific, have become more effective and practical.104,105

The power of the CRISPR/Cas system is that it can specifically and efficiently target sequences in the genome with just a single synthetic guide RNA (sgRNA) and a single protein. Cas9 is directed to the specific DNA sequence by the sgRNA, which causes double stranded breaks and activates the cells DNA repair processes. Non-homologous end joining can cause insertiondeletion (indel) substitutions at the target location, whereas homology-directed repair can use a template DNA to insert new genetic material.104,106

The possibility for CRISPR/Cas9 to be used in the hematopoietic system was emphasised as pretty shortly after it was initiated as a new genome editing method.106,107 The efficiency with which CRISPR-mediated alteration can be used to evaluate hematopoietic stem/progenitor and mature cell function via transplantation. As a result, hematopoietic research has significantly advanced with the implementation of these technologies. Whilst single-gene CRISPR/Cas9 programming is a significant tool for testing gene function in primary hematopoietic cells, high-throughput screenings potentially offer CRISPR/Cas9 an even greater advantage in hematopoietic research.104

While understanding human haematological disorders requires the ability to mimic diseases, the ultimate goal is to transfer this innovation into therapies. Despite significant advancements in CRISPR technology, there are still barriers to overcome before CRISPR/Cas9 can be used effectively and safely in humans. CRISPR has also been used to target CCR5 in CD34+ HSPCs in an effort to make immune cells resistant to HIV infection, as CCR5 is an important coreceptor for HIV infection.104

CRISPR is a modern genome editing technique that could be used to treat immunological illnesses including HIV. The utilization of CRISPR in stem cells for HIV-related investigation, on the other end, was ineffective, and much of the experiment was done in vivo. The new research idea is about increasing CRISPR-editing efficiencies in stem cell transplantation for HIV treatment, as well as its future perspective. The possible genes that enhance HIV resistance and stem cell engraftment should be explored more in the future studies. To strengthen HIV therapy or resistance, double knockout and knock-in approaches must be used to build a positive engraftment. In the future, CRISPR/SaCas9 and Ribonucleoprotein (RNP) administration should be explored in the further investigations.108 As well as some different title studies were explained the effectiveness of the CRISPR gene editing technology on the management of HIV/AIDS including: CRISPR view of hematopoietic stem cells: Moving innovative bioengineering into the clinic,104 CRISPR-Edited Stem Cells in a Patient with HIV and Acute Lymphocytic Leukaemia,109 Sequential LASER ART and CRISPR Treatments Eliminate HIV-1 in a Subset of Infected Humanized Mice,110 Extinction of all infectious HIV in cell culture by the CRISPR-Cas12a system with only a single crRNA,111 HIV-specific humoral immune responses by CRISPR/Cas9-edited B cells,112 CRISPR-Cas9 Mediated Exonic Disruption for HIV-1 Elimination,113 RNA-directed gene editing specifically eradicates latent and prevents new HIV-1 infection,114 CRISPR/Cas9 Ablation of Integrated HIV-1 Accumulates Pro viral DNA Circles with Reformed Long Terminal Repeats,115 CRISPR-Cas9-mediated gene disruption of HIV-1 co-receptors confers broad resistance to infection in human T cells and humanized mice,116 Inhibition of HIV-1 infection of primary CD4+ T-cells by gene editing of CCR5 using adenovirus-delivered CRISPR/Cas9,117 Transient CRISPR-Cas Treatment Can Prevent Reactivation of HIV-1 Replication in a Latently Infected T-Cell Line,118 CCR5 Gene Disruption via Lentiviral Vectors Expressing Cas9 and Single Guided RNA Renders Cells Resistant to HIV-1 Infection,119 CRISPR/Cas9-Mediated CCR5 Ablation in Human Hematopoietic Stem/Progenitor Cells Confers HIV-1 Resistance In Vivo.109

Induced pluripotent stem cells (iPSCs) have significantly advanced the field of regenerative medicine by allowing the generation of patient-specific pluripotent stem cells from adult individuals. The progress of iPSCs for HIV treatment has the potential to generate a continuous supply of therapeutic cells for transplantation into HIV-infected patients. The title of the study is reported on Generation of HIV-1 Resistant and Functional Macrophages from Hematopoietic Stem Cellderived Induced Pluripotent Stem Cells. In this investigation, researchers used human hematopoietic stem cells (HSCs) to produce anti-HIV gene expressing iPSCs for HIV gene therapy. HSCs were dedifferentiated into constantly growing iPSC lines using 4 reprogramming factors and a combination anti-HIV lentiviral vector comprising a CCR5 shRNA and a human/rhesus chimeric TRIM5 gene. After directing the anti-HIV iPSCs toward the hematopoietic lineage, a large number of colony-forming CD133+ HSCs were acquired. These cells were distinguished further into functional end-stage macrophages with a normal phenotypic profile. Upon viral challenge, the anti-HIV iPSC-derived macrophages displayed good protection against HIV-1 infection. Researchers have clearly shown how iPSCs can establish into HIV-1 resistant immune cells and explain their prospective use in HIV gene and cellular therapies.120

Some other similar titles of the studies reported on the effectiveness of IPSCs on HIV/AIDS managements are as follows: Generation of HIV-Resistant Macrophages from IPSCs by Using Transcriptional Gene Silencing and Promoter-Targeted RNA,121 Generation of HIV-1-infected patients gene-edited induced pluripotent stem cells using feeder-free culture conditions,122 A High-Throughput Method as a Diagnostic Tool for HIV Detection in Patient-Specific Induced Pluripotent Stem Cells Generated by Different Reprogramming Methods,123 Genetically edited CD34+ cells derived from human iPS cells in vivo but not in vitro engraft and differentiate into HIV-resistant cells,124 Engineered induced-pluripotent stem cell-derived monocyte extracellular vesicles alter inflammation in HIV humanized mice,125 Sustainable Antiviral Efficacy of Rejuvenated HIV-Specific Cytotoxic T Lymphocytes Generated from Induced Pluripotent Stem Cells.126

Recently, one HIV patient appeared to be virus-free after having undergone a stem-cell transfusion in which their WBCs were changed with HIV-resistant variations.84 Timothy Ray Brown also noted as the Berlin patient, who is still virus-free, was the first individual to undertake stem-cell transplantation a decade earlier. The most recent patient, like Brown, had a type of leukaemia that was vulnerable to chemo treatments. They required a bone marrow transplantation, which involved removing their blood cells and replacing them with stem cells from a donor cell.5,31,34,41,127130 Rather than simply choosing a suitable donor, Ravindra Gupta et al chose one who already had 2 copies of a mutant within the CCR5 gene,128,131 which provides resistance to HIV infection.3

Additionally, this gene encodes for a specific receptor of white blood cells that are assisted in the bodys immunological responses. The transplant, according to Guptas team, completely replaced the clients White cells with HIV-resistant forms.41,83 Cells in the patients blood disrupted expressing the CCR5 receptor, making it unfeasible for the clients form of HIV to infect the above cells again. The scientists determined that the virus had been cleared from the patients blood after the transplantation. Besides that, after 16 months, the client has withdrawn antiretroviral treatment. The infection was not detected in the most recent follow-up, which occurred 18 months after the treatment was discontinued. Adam, also known as the London patient, was the second person to be cured of HIV as a result of a stem cell transfusion. This discovery is an important step forward in HIV research because it may aid in the detection of potential future therapeutic interventions. It must be noted, but even so, that this is not an extensively used HIV treatment. For HIV-infected patients, antiretroviral drugs have been the foremost therapeutic option.3,31,41,94,129,130 It also encourages many investigators and clinicians to look at the use of stem cells in the treatment of a wide range of serious medical conditions. The reprogramming abilities of stem cells, as well as their accessibility, have created a window of opportunity in medical research. The clinical utility of stem cells is forecast to expand rapidly in the coming years.

On Feb 15, 2022, scientific researchers confirmed that a woman had become the 3rd person in history to be successfully treated for HIV, the virus that causes AIDS, after just receiving a stem-cell transfusion that has used cells from cord blood. Within those transplant recipients, adult hematopoietic stem cells have been used; these are stem cells that eventually develop into all blood cell types, which include white blood cells, these are a vital component of the immune framework. Even so, the woman who had fairly recently been completely cured of HIV infection had a more unique experience than that of the 2 men who were actually cured before her.132

The clients physician, Dr. JingMei Hsu of Weill Cornell Medicine in New York, informed them that, she had been discharged from the hospital just 17 days after her procedure was performed, even with no indications of graft vs host ailment. The woman was HIV-positive but also had acute myeloid leukaemia, a blood cancer of the bone marrow that affects blood-forming cells. She had likely received cord blood as a successful treatment for both her cancer and HIV once her doctors decided on a potential donor well with HIV-blocking gene mutation. Cord blood comprises a high accumulation of hematopoietic stem cells; the blood is obtained during a childs birth and donated by the parents.132

The patients donor was partly nearly matched, and she received stem cells from a close family member to enhance her immune function after the transfusion. The procedure was performed on the woman in August of 2017. She chose to discontinue taking antiretroviral drugs, the standardized HIV intervention, 37 months upon her transfusion. After more than 14 months, there is no evidence of the viral infection or antibodies against it in her blood. Umbilical cord blood, in reality, is much more commonly accessible and simpler to try to match to beneficiaries than bone marrow. Perhaps, some research suggests that the method could be more available to HIV patients than bone marrow transplantation. Nearly 38 million people worldwide are infected with HIV. The potential for using partly matched umbilical cord blood transplantation increases the chances of choosing appropriate suitable donors for these clients considerably.132

It is really exciting to see the earlier terminally ill diseases of being effectively treated. In recent times, there has been a surge of focus on stem cell research.3 Stem cell therapy advancements in inpatient care are receiving a growing amount of attention.20 HIV/AIDS has been and remains a significant health concern around the world. Effective control of the HIV pandemic will necessitate a thorough understanding of the viruss transmission.32

Despite concerns about full compliance and adverse reactions, HAART has demonstrated to be able to succeed and is a sign specifically targeted form of treatment against HIV advancement. As illustrated by the first case of HIV infection relapse attained by bone marrow transplant, anti-HIV HPSC-based stem cell treatment and genotype technology have established a possible future upcoming technique to try to combat HIV/AIDS.

Investigators have conducted experiments with engineering distinct anti-HIV genetic traits trying to target different phases of HIV infection utilizing advanced scientific modalities. In numerous in vivo and in vitro animal studies, HSPCs and successive mature cells were secured from HIV infection by trying to target genetic factors in the infection. Anti-HIV gene engineering of HSPCs is safe and efficacious.15

The number of stem-cell-based research trials has risen in recent years. Thousands of studies claiming to use stem cells in experimental therapies have been registered worldwide. Despite some promising results, the majority of clinical stem cell technologies are still in their early life. These achievements have drawn attention to the possibility of the potential and advancement of various promising stem cell treatments currently in development.11

HIV remains a major danger to humanity. This virus has developed the ability to evade antiretroviral medication, resulting in the death of individuals. Scientists are constantly looking for a treatment for HIV/AIDS that is both effective and efficient.52 The 1st treatments in HIV+ clients were conducted in the early 1980s, even though they were cognizant of their viral disease. Following these early cases, allogeneic SCT was used to treat HIV+ patients with associated cancer or other haematological disorders all over the world. Stem cell transplantation developments have also stimulated the improvement of innovative HIV therapeutic approaches, especially for large goals like eradication and relapse.60

Numerous stem cell therapy progressions have been recognized with autologous and allogeneic hematopoietic stem cell transplantation, as well as umbilical cord blood mesenchymal stem cell transplant in AIDS immunologic non-responders. Whereas this sector continues to advance and distinguishing directives for these cells become much more effective, totipotent stem cells such as hESC and the recently reported induced pluripotent stem cells (iPSC) could be very useful for genetic engineering methods to counter hematopoietic abnormalities such as HIV disease.133135

Immunocompromised people are at a higher risk of catching life-threatening diseases. The perseverance of latently infected cells, which is formed by viral genome inclusion into host cell chromosomes, is a significant challenge in HIV-1 elimination. Stem cell therapy is producing impressive patient outcomes, illustrating not only the broad relevance of these strategies but also the huge potential of cell and gene treatment using adult stem cells and somatic derivative products of pluripotent stem cells (PSCs).

Stem cells have enormous regeneration capacity, and a plethora of interesting therapeutic uses are on the frontier. This is a highly interdisciplinary scientific field. Evolutionary biologists, biological technicians, mechanical engineers, and others that have evolved novel concepts and decided to bring them to medical applications are required to make important contributions. Further to that, recent advancements in several different research areas may contribute to stem cell application forms that are novel. Several hurdles must be conquered, however, in the advancement of stem cells. On the other hand, this discipline appears to be a promising and rapidly expanding research area.

Stem cell-based approaches to HIV treatment resemble an innovative approach to trying to rebuild the ravaged bodys immune system with the utmost goal of eliminating the virus from the body. We will probably see effective experiments from the next new generation of stem cell-based strategies shortly, which will start serving as a base for the further development and use of these techniques in a range of treatment application areas for other chronic diseases.

My immense pleasure was mentioned to family members and friends, who supported and encouraged me in every activity.

There was no funding for this work.

The authors declare that they have no conflicts of interest in relation to this work.

1. Zakrzewski W, Dobrzyski M, Szymonowicz M, Rybak Z. Stem cells: past, present, and future. Stem Cell Res Ther. 2019;10:68. doi:10.1186/s13287-019-1165-5

2. Nadig RR. Stem cell therapy hype or hope? A review. J Conserv Dent JCD. 2009;12:131138. doi:10.4103/0972-0707.58329

3. Tasnim KN, Adrita SH, Hossain S, Akash SZ, Sharker S. The prospect of stem cells for HIV and cancer treatment: a review. Pharm Biomed Res. 2020;6:1726.

4. Weissman IL. Translating stem and progenitor cell biology to the clinic: barriers and opportunities. Science. 2000;287:14421446. doi:10.1126/science.287.5457.1442

5. Pernet O, Yadav SS, An DS. Stem cellbased therapies for HIV/AIDS. Adv Drug Deliv Rev. 2016;103:187201. doi:10.1016/j.addr.2016.04.027

6. Kolios G, Moodley Y. Introduction to stem cells and regenerative medicine. Respir Int Rev Thorac Dis. 2013;85:310.

7. Ebrahimi A, Ahmadi H, Ghasrodashti ZP, et al. Therapeutic effects of stem cells in different body systems, a novel method that is yet to gain trust: a comprehensive review. Bosn J Basic Med Sci. 2021;21:672701. doi:10.17305/bjbms.2021.5508

8. Introduction stem cells. Available from: https://www.dpz.eu/en/platforms/degenerative-diseases/research/introduction-stem-cells.html. Accessed December 19, 2021.

9. Hu J, Chen X, Fu S. Stem cell therapy for thalassemia: present and future. Chin J Tissue Eng Res. 2018;22:3431.

10. Aly RM. Current state of stem cell-based therapies: an overview. Stem Cell Investig. 2020;7:8. doi:10.21037/sci-2020-001

11. Chari S, Nguyen A, Saxe J. Stem cells in the clinic. Cell Stem Cell. 2018;22:781782. doi:10.1016/j.stem.2018.05.017

12. De Luca M, Aiuti A, Cossu G, Parmar M, Pellegrini G, Robey PG. Advances in stem cell research and therapeutic development. Nat Cell Biol. 2019;21:801811. doi:10.1038/s41556-019-0344-z

13. Hipp J, Atala A. Sources of stem cells for regenerative medicine. Stem Cell Rev. 2008;4:311. doi:10.1007/s12015-008-9010-8

14. Bobba S, Di Girolamo N, Munsie M, et al. The current state of stem cell therapy for ocular disease. Exp Eye Res. 2018;177:6575. doi:10.1016/j.exer.2018.07.019

15. Khalid K, Padda J, Fernando RW, et al. Stem cell therapy and its significance in HIV infection. Cureus. 2021;13. doi: 10.1038/d41586-019-00798-3

16. Gq D, Morrell CN, Tarango C. Stem cells: roadmap to the clinic. J Clin Invest. 2010;121:120. doi:10.1172/JCI39828

17. Prentice DA. Adult Stem Cells. Circ Res. 2019;124:837839. doi:10.1161/CIRCRESAHA.118.313664

18. McKee C, Chaudhry GR. Advances and challenges in stem cell culture. Colloids Surf B Biointerfaces. 2017;159:6277. doi:10.1016/j.colsurfb.2017.07.051

19. Prez Lpez S, Otero Hernndez J. Advances in stem cell therapy. In: Lpez-Larrea C, Lpez-Vzquez A, Surez-lvarez B, editors. Stem Cell Transplantation. New York, NY: Springer US; 2012:290313.

20. Zhang F-Q, Jiang J-L, Zhang J-T, Niu H, X-Q F, Zeng -L-L. Current status and future prospects of stem cell therapy in Alzheimers disease. Neural Regen Res. 2020;15:242250. doi:10.4103/1673-5374.265544

21. Hu L, Zhao B, Wang S. Stem-cell therapy advances in China. Hum Gene Ther. 2018;29:188196. doi:10.1089/hum.2017.224

22. Tadlock D Stem cell basics introduction; 19.

23. Poulos J. The limited application of stem cells in medicine: a review. Stem Cell Res Ther. 2018;9:1. doi:10.1186/s13287-017-0735-7

24. Madl CM, Heilshorn SC, Blau HM. Bioengineering strategies to accelerate stem cell therapeutics. Nature. 2018;557:335342. doi:10.1038/s41586-018-0089-z

The rest is here:
PROMISING STEM CELL THERAPY IN THE MANAGEMENT OF HIV & AIDS | BTT - Dove Medical Press

Read More...

‘Dancing molecules’ in the lab – Northwestern Now – Northwestern Now

Friday, July 8th, 2022

Professor Samuel Stupp welcomes congressional champions of biomedical research to his Northwestern lab

Professor Samuel Stupp welcomed U.S. Sen. Tammy Duckworth, U.S. Rep. Jim Langevin and Northwestern President Morton Schapiro to his lab recently to discuss his research in the area of regenerative medicine and a new injectable therapy that harnesses dancing molecules to reverse paralysis and repair tissue after severe spinal cord injuries.

Duckworth of Illinois and Langevin of Rhode Island have been champions in Congress for Americans with disabilities as well as biomedical research.

Stupp, the Board of Trustees Professor of Materials Science and Engineering, Chemistry, Medicine and Biomedical Engineering at Northwestern, and graduate student Anna Metlushko show a sample of a nanofiber solution that can be injected into an injured spinal cord to help restore movement after paralysis.

Photos by Shane Collins

Never miss a story:

Get the latest stories from Northwestern Now sent directly to your inbox.

Originally posted here:
'Dancing molecules' in the lab - Northwestern Now - Northwestern Now

Read More...

Orthopedic Regenerative Medicine Market Global Industry Research Analysis & Forecast 2022 to 2028 | Ortho Regenerative Technologies Inc.,…

Friday, July 8th, 2022

The Global Orthopedic Regenerative Medicine Marketreport provides an in-depth analysis of emerging trends, market drivers, development opportunities and market constraints that may affect the industrys market dynamics. Each market sector is examined in depth in Reports Globe, including products, applications and competition analysis.

The report was created using three different recognition systems. The first step requires in-depth primary and secondary research on a wide range of topics. Approvals, ratings and results based on accurate data obtained by industry specialists are the next step. The research derives an overall estimate of the market size using top-down methods. Finally, the research evaluates the market for a series of sections and subsections using information triangulation and market separation techniques.

Key Drivers & Barriers:

High-impact factors and rendering engines have been studied in the Orthopedic Regenerative Medicine market report to help readers understand the overall development. In addition, the report contains restrictions and challenges that may stand in the way of players. This will help users pay attention and make informed business-related decisions. The specialists also looked at the next business outlook.

In its latest report, ReportsGlobe offers a comprehensive overview of the Orthopedic Regenerative Medicine market with an emphasis on keyword dynamics including driving forces, constraints, opportunities, trends and detailed information on Orthopedic Regenerative Medicine market structure. Orthopedic Regenerative Medicine s market sales in the global market will increase as activities and advanced technology increase. With the outbreak of covid-19, companies have become very dependent on digital platforms to survive.

Orthopedic Regenerative Medicine Market Segmentation:

Orthopedic Regenerative Medicine Market, By Treatment Type (2017-2028)

Orthopedic Regenerative Medicine Market, By Disease Indication (2017-2028)

Orthopedic Regenerative Medicine Market, By End User (2017-2028)

Major Players Operating in the Orthopedic Regenerative Medicine Market:

Orthopedic Regenerative Medicine Market Segment Analysis

The market research explores new data in the Orthopedic Regenerative Medicine market report. It examines the market size in terms of the value of each segment, as well as how market dynamics are likely to change over time. The report then divides this information into types and proposed applications, with a breakdown by geography (North America, Asia, Europe, and the Rest of the World). In addition, the report examines the structure of the industry, offers growth, forecast period, revenue value and volume estimates in industrial applications, and provides clarity regarding industry competition.

Orthopedic Regenerative Medicine Market Report Scope

ATTRIBUTES

Description

ESTIMATED YEAR

2022

BASE YEAR

2021

FORECAST YEAR

2022 to 2028

HISTORICAL YEAR

2020

SEGMENTS COVERED

Types, Applications, End-Users, and more.

REPORT COVERAGE

Revenue Forecast, Company Ranking, Competitive Landscape, Growth Factors, and Trends

BY REGION

North America, Europe, Asia Pacific, Latin America, Middle East and Africa

Regional Analysis of the Orthopedic Regenerative Medicine Market:

The Orthopedic Regenerative Medicine Market research report details the ongoing market trends, development outlines, and several research methodologies. It illustrates the key factors that directly manipulate the Market, for instance, production strategies, development platforms, and product portfolio. According to our researchers, even minor changes within the product profiles could result in huge disruptions to the above-mentioned factors.

Goals and objectives of the Orthopedic Regenerative Medicine Market Study

The study thoroughly examines the profiles of major market players and their major financial aspects. This comprehensive business analysis report is useful for all new and existing participants when designing their business strategies. This report covers Orthopedic Regenerative Medicine s market output, revenue, market shares and growth rates for each key company and covers breakdown data (production, consumption, revenue and market shares) by regions, type and applications. Orthopedic Regenerative Medicine historical breakdown data from 2017 to 2021 and forecast for 2022-2028.

Global Orthopedic Regenerative Medicine Market Research Report 2022 2028

Chapter 1 Orthopedic Regenerative Medicine Market Overview

Chapter 2 Global Economic Impact on Industry

Chapter 3 Global Market Competition by Manufacturers

Chapter 4 Global Production, Revenue (Value) by Region

Chapter 5 Global Supply (Production), Consumption, Export, Import by Regions

Chapter 6 Global Production, Revenue (Value), Price Trend by Type

Chapter 7 Global Market Analysis by Application

Chapter 8 Manufacturing Cost Analysis

Chapter 9 Industrial Chain, Sourcing Strategy and Downstream Buyers

Chapter 10 Marketing Strategy Analysis, Distributors/Traders

Chapter 11 Market Effect Factors Analysis

Chapter 12 Global Orthopedic Regenerative Medicine Market Forecast

How Reports Globe is different than other Market Research Providers:

The inception of Reports Globe has been backed by providing clients with a holistic view of market conditions and future possibilities/opportunities to reap maximum profits out of their businesses and assist in decision making. Our team of in-house analysts and consultants works tirelessly to understand your needs and suggest the best possible solutions to fulfill your research requirements.

Our team at Reports Globe follows a rigorous process of data validation, which allows us to publish reports from publishers with minimum or no deviations. Reports Globe collects, segregates, and publishes more than 500 reports annually that cater to products and services across numerous domains.

Contact us:

Mr. Mark Willams

Account Manager

US: +1-970-672-0390

Email:sales@reportsglobe.com

Website:Reportsglobe.com

Read this article:
Orthopedic Regenerative Medicine Market Global Industry Research Analysis & Forecast 2022 to 2028 | Ortho Regenerative Technologies Inc.,...

Read More...

New Biofabrication Process Developed to Engineer Heart Structures – Genetic Engineering & Biotechnology News

Friday, July 8th, 2022

A new biomanufacturing method for constructing 3D scaffolds composed of narrow fibers with specific alignments has been developed. The method, called focused rotary jet spinning (FRJS), is enabling researchers to fabricate heart structures and to study how the helical alignments of fibers in the musculature of the heart enhance cardiac function.

The findings, which provide proof-of-concept for a streamlined approach to engineering tissues and organs with complex 3D geometries, were reported by Huibin Chang, PhD, a research associate in bioengineering at Harvard University, and colleagues in a Science article entitled Recreating the hearts helical structure-function relationship with focused rotary jet spinning.

The hearts pumping action comes from cardiomyocytesthe muscle cells of the heartwhich are organized as helical fibers that envelop the ventricles. With each beat, this arrangement results in a combined contracting and twisting motion.

However, it is difficult to specifically assess the extent to which the hearts helical structure contributes to its function, wrote Michael Sefton, ScD, and Craig Simmons, PhD, from the Institute of Biomedical Engineering at the University of Toronto, in a perspective that accompanied the research article. To that end, understanding and replicating the hearts helical structure-function relationship is thought to be an important step.

Designing scaffolds and materials that adequately recapitulate native heart function can be challenging. The newly reported FRJS method offers improvements in fabrication speed and complexity over conventional methods.

In FRJS, long, free-floating polymer fibers are expelled by centrifugal force, and air jet streams align and deposit the fibers on molds. By controlling the shape and rotation of the mold, scaffolds with specific fiber orientations can be constructed. The scaffolds can then be seeded with cellscardiomyocytes, in this caseto recapitulate tissue and organ structures.

Using their method, Chang and colleagues fabricated heart ventricles with similar structural properties to those in natural human hearts. They also fabricated models of diseased hearts with misaligned fiber orientations. Once the scaffolds were seeded with human cardiomyocytes, the authors showed that the helical architecture increased cardiac performance, illustrating that the helical tissue pattern plays a role in the pumping function of the heart.

But the heart is more than a pump. To achieve a fully functional bioengineered heart for use in regenerative medicine, an electrical conduction system, vasculature, and means to avoid immune responses are still needed.

The FRJS method provides an initial pathway toward fabricating more complex tissues and organs. In addition to biofabrication, FRJS may serve an important role in other additive manufacturing processes, wrote Chang and colleagues. It provides production rates comparable to those of current industrial processes while enabling micro/nanoscale feature sizes and controlled 3D alignments.

More here:
New Biofabrication Process Developed to Engineer Heart Structures - Genetic Engineering & Biotechnology News

Read More...

Orthobiologics Market is Predicted to Expand at a CAGR of 4.7% during the Forecast Period, notes TMR Study – GlobeNewswire

Friday, July 8th, 2022

Wilmington, Delaware, United States, July 04, 2022 (GLOBE NEWSWIRE) -- Transparency Market Research Inc.: The value of the global orthobiologics market was clocked at US$ 5.01 Bn in 2021. The orthobiologics marketoutlook predicts the market to rise at a CAGR of 4.7% during the forecast period, from 2022 to 2031. The global orthobiologics market is expected to attain a value surpassing US$ 7.4 Bn by 2031. Until afew years ago, orthobiologics have been a common practice in sports medicine andorthopedic surgeries. Demand analysis of orthobiologics estimates that developments in regenerative medicine, an increasing number of sports andsports-relatedinjuries, rising demand for less invasive procedures, andconstant infusion of innovative products and treatmentsare all expected to propel the global orthobiologics market.

Musculoskeletal tissue engineering and regenerative medicineresearch, however, have slowed down as a result of the COVID-19 outbreak. However,strong development potential in developing nations and a rise in demand for cutting-edge therapies are expected to create considerable prospects for companies in the growth of the orthobiologics market.

The global orthobiologics market is being driven by the increase in orthobiologics product and usage oforthopedic device. In addition to that, there is increasingincorporation of biochemistry andbiology in the treatment of soft tissue andbone injuries. Orthobiologic drugs help natural healing mechanism of the bodyto workmore quickly. They can hasten the healing of injured ligaments, tendons, andmuscles. It alsoassistsin repairing osteoarthritis damage. The materials used to develop orthobiologics are those that are normally present in the human body.

Request Brochure of Orthobiologics Market Research Report https://www.transparencymarketresearch.com/sample/sample.php?flag=B&rep_id=1747

Key Findings of Market Report

Request for Analysis of COVID-19 Impact on Orthobiologics Market https://www.transparencymarketresearch.com/sample/sample.php?flag=covid19&rep_id=1747

Global Orthobiologics Market: Growth Drivers

Get Exclusive PDF Sample Copy of Orthobiologics Market Report https://www.transparencymarketresearch.com/sample/sample.php?flag=S&rep_id=1747

Global Orthobiologics Market: Key Players

Some of the key market players are

Make an Enquiry Before Buying https://www.transparencymarketresearch.com/sample/sample.php?flag=EB&rep_id=1747

Global Orthobiologics Market: Segmentation

Product Type

Modernization of healthcare in terms of both infrastructure and services have pushed the healthcare industry to new heights, Stay Updated with Latest Healthcare Industry Research Reports by Transparency Market Research:

Stem Cells Market: The global stem cells market is expected to reach the value of US$ 25.68 Bn by the end of 2028.It is estimated to expand at a CAGR of 10.4% from 2021 to 2028.

Placental Stem Cell Therapy Market: The placental stem cell therapy market stood at US$ 0.5 Bn in 2019 and is expected to cross a revenue of US$ 4.4 Bn by the end of 2030.

Platelet Rich Plasma and Stem Cell Alopecia Treatment Market: The global platelet rich plasma & stem cell alopecia treatment market is expected to reach a value of approximately US$ 450.5 Mn by the end of 2026, expanding at a high single digit CAGR during the forecast period.

Soft Tissue Allografts Market: The global soft tissue allografts market was valued at US$ 3.55 Bn in 2018, and is projected to reach ~ US$ 6.2 Bn by 2027, expanding at a CAGR of ~ 6.5% from 2019 to 2027.

Bone Growth Stimulators Market: The global bone growth stimulators market is anticipated to reach more than US$ 2 Bn by the end of 2031. The global market is projected to grow at a CAGR of 5.8% from 2022 to 2031.

Small Bone and Joint Orthopedic Devices Market: The global small bone and joint orthopedic devices market was valued at US$ 5.5 Bn in 2018 and is anticipated to expand at a CAGR of 6.3% from 2019 to 2027.

Metastatic Bone Disease Market: The global metastatic bone disease market was valued at US$ 12,450.0 Mn in 2017 and is anticipated to reach US$ 24,886.8 Mn by 2026, expanding at a CAGR of 8.1% from 2018 to 2026.

Bone Grafts and Substitutes Market: The global bone grafts and substitutes market is expected to cross the value of US$ 4.4 Bn by the end of 2028. It is estimated to expand at a CAGR of 4.9% from 2021 to 2028.

About Transparency Market Research

Transparency Market Research, a global market research company registered at Wilmington, Delaware, United States, provides custom research and consulting services. Our exclusive blend of quantitative forecasting and trends analysis provides forward-looking insights for thousands of decision makers. Our experienced team of Analysts, Researchers, and Consultants use proprietary data sources and various tools & techniques to gather and analyze information.

Our data repository is continuously updated and revised by a team of research experts, so that it always reflects the latest trends and information. With a broad research and analysis capability, Transparency Market Research employs rigorous primary and secondary research techniques in developing distinctive data sets and research material for business reports.

For More Research Insights on Leading Industries, Visit Our YouTube Channel and hit subscribe for Future Update - https://www.youtube.com/channel/UC8e-z-g23-TdDMuODiL8BKQ

Contact

Rohit BhiseyTransparency Market Research Inc.CORPORATE HEADQUARTER DOWNTOWN,1000 N. West Street,Suite 1200, Wilmington, Delaware 19801 USATel: +1-518-618-1030USA Canada Toll Free: 866-552-3453Website:https://www.transparencymarketresearch.comBlog:https://tmrblog.comEmail:sales@transparencymarketresearch.com

Read the rest here:
Orthobiologics Market is Predicted to Expand at a CAGR of 4.7% during the Forecast Period, notes TMR Study - GlobeNewswire

Read More...

3D Cell Culture Market to attain a valuation of US$ 2.67 Billion by 2031 – PharmiWeb.com

Friday, July 8th, 2022

The3D cell culture marketrevenues surpassed US$ 778 million in 2018,as per a new FMI study. The market is estimated to grow at 7.8% y-o-y in 2019; key factors responsible for the projected market growth include,

Request Sample Copy of Report:https://www.futuremarketinsights.com/reports/sample/rep-gb-2843

The FMI study finds that scaffold-based 3D cell culture techniques are highly preferred over scaffold-free 3D cell culture. Owing to the significant adoption of scaffold-based 3D cell culture, the study finds that this technique garnered over 81% of the global market revenues.

Scaffold-based 3D cell culture techniques deliver researchers with additional functional operations in terms of material natural or synthetic and different mechanical properties.

The technique uses either hydrogel-based support or polymeric hard material based support. Both types of supports find equivalent penetration in terms of application, however revenues garnered from polymeric hard material based support are higher.

According to the study, revenues of polymeric hard material based support held over half the scaffold-based 3D cell culture technique revenues in 2018 and the trend is expected to continue in the future.

While 2D cell culture revolutionized the research efforts in stem cells, tissue engineering, and molecular biology, 3D cell culture has pushed the boundaries of traditional 2D cell culture technique with functional superiority. As the R&D efforts continue to rise in a bid to investigate the cause of different diseases and improve human health, 3D cell culture is set to remain a highly sought-after technique in the coming years, says FMI.

Leading Manufacturers in the 3D Cell Culture Market:

Competitive Landscape of the Global 3D Cell Culture Market

The competition section of the 3D cell culture market represents the profiles of the key players operating in the 3D cell culture market based on the products they offer and the total revenue of the companies. Some of the key players featured in this report include Thermo Fisher Scientific Inc., Merck KGaA, Becton, Dickinson and Company, Lonza, and Corning Incorporated.

The key manufacturers of 3D cell culture offer a wide range of products. Thermo Fisher Scientific, Inc. has developed a joint platform for advancing research in precision medicine.

Corning, one of the major leaders in 3D cell culture market, manufactures cell culture products, which include consumables (such as plastic vessels, specialty surfaces, cell culture media, and serum), as well as general labware and equipment, which are used for advanced cell culture research.

Download PDF Brochure @https://www.futuremarketinsights.com/reports/brochure/rep-gb-2843

Application of 3D Cell Culture in Cancer Research Prominent

The FMI study estimates that 3D cell culture application in cancer research accounted for over 31% of the 3D cell culture market revenues in 2018. Cell culture is an integral part of cancer drug discovery practices. Greater strides are underway in the field to precisely characterize the diseases and develop advanced tumor cell lines using 3D cell culture techniques.

2D culture lines are considered as a standard for in vitro pre-clinical cancer treatment screening. However, more recently, the field is turning to 3D cell culture techniques to implement an ideal experimental model that mimics the human body environment to its best.

Stem cell technology is another lucrative field for3D cell culture market. According to the FMI study, application in stem cell technology accounted for over one-fourth of the 3D cell culture market revenues in 2018. While 2D cell culture posed challenges of scalability in stem cell technology, apart from a few challenges, 3D cell culture has provided greater density and multi-fold expansion of the culture system in stem cell technology. Other fields that utilize 3D cell culture techniques are tissue regeneration, regenerative medicine, and drug discovery.

Revenues in North America Continue to Surge

North America continued to spearhead the revenues of 3D cell culture market during the historical period and the status-quo is likely to continue in the future. In 2018, North America accounted for over two-fifths of the global 3D cell culture market revenues. The study estimates that regional revenues are expected to grow at 8% in 2019 over 2018.

Funding in research and development, especially in cancer research remains higher in the United States as compared to other developed countries. Europe also presents significant funding in R&D activities. The FMI study finds that over one-fourth of the 3D cell culture market revenues were accounted for the Europe region in 2018, of which a bulk of revenues come from Western European countries such as Germany, the UK, France, Italy and Spain.

Key SegmentBased on product type

Based on application

Based on end user

Explore Other Reports Links From Healthcare Market:

https://drujrake.mn.co/posts/24898121

https://tennispassion.mn.co/posts/24898141

https://skin-care-junkies.mn.co/posts/24898157

About FMI:

Future Market Insights (ESOMAR certified market research organization and a member of Greater New York Chamber of Commerce) provides in-depth insights into governing factors elevating the demand in the market. It discloses opportunities that will favor the market growth in various segments on the basis of Source, Application, Sales Channel and End Use over the next 9-years.

Contact Us:Future Market Insights,Unit No: 1602-006,Jumeirah Bay 2,Plot No: JLT-PH2-X2A,Jumeirah Lakes Towers,Dubai,United Arab EmiratesFor Sales Enquiries:sales@futuremarketinsights.comWebsite:https://www.futuremarketinsights.comLinkedIn|Twitter|Blogs

See the article here:
3D Cell Culture Market to attain a valuation of US$ 2.67 Billion by 2031 - PharmiWeb.com

Read More...

Page 7«..6789..2030..»


2025 © StemCell Therapy is proudly powered by WordPress
Entries (RSS) Comments (RSS) | Violinesth by Patrick