header logo image


Page 57«..1020..56575859..»

Archive for the ‘Regenerative Medicine’ Category

Cell find boosts liver disease hope

Monday, March 5th, 2012

Boosting the production of certain cells could help treat liver disease, new research has suggested.

Researchers at the Medical Research Council (MRC) Centre for Regenerative Medicine at the University of Edinburgh said they have discovered how to enhance the production of key cells needed to repair damaged liver tissue. The research could help develop treatments for diseases such as cirrhosis or chronic hepatitis.

Scientists hope their work could eventually ease the pressure on waiting lists for liver transplants. Researchers said that when the liver is damaged it produces too many bile duct cells and not enough cells called hepatocytes, which the liver needs to repair damaged tissue.

They found they could increase the number of hepatocyte cells - which detoxify the liver - by encouraging these cells to be produced instead of bile duct cells. Understanding how liver cells are formed could help to develop drugs to encourage the production of hepatocytes to repair liver tissue.

Professor Stuart Forbes, associate director at the MRC, who is a consultant hepatologist and was the academic leader of the study, said: "Liver disease is on the increase in the UK and is one of the top five killers. Increasing numbers of patients are in need of liver transplants, but the supply of donated organs is not keeping pace with the demand.

"If we can find ways to encourage the liver to heal itself then we could ease the pressure on waiting lists for liver transplants."

The production of hepatocyte cells was increased by altering the expression of certain genes in early stage liver cells. The university said that liver disease is the fifth biggest killer in the UK with almost 500 people waiting for a liver transplant, compared with just over 300 five years ago.

Dr Rob Buckle, head of regenerative medicine at the MRC, said: "Liver transplants have saved countless lives over the years, but demand will inevitably outstrip supply and in the long term we need to look beyond replacing damaged tissues to exploiting the regenerative potential of the human body.

"The MRC continues to invest heavily across the breadth of approaches that might deliver the promise of regenerative medicine, and this study opens up the possibility of applying our increasing knowledge of stem cell biology to stimulate the body's own dormant repair processes as a basis for future therapy."

The study is published in the journal Nature Medicine. It was carried out in collaboration with the University's MRC Centre for Inflammation Research, the Beatson Institute for Cancer Research in Glasgow and the KU Leuven in Belgium.

See the article here:
Cell find boosts liver disease hope

Read More...

Advanced Cell Technology Announces 2011 Financial Results

Thursday, March 1st, 2012

MARLBOROUGH, Mass.--(BUSINESS WIRE)--

Advanced Cell Technology, Inc. (ACT, OTCBB: ACTC), a leader in the field of regenerative medicine, today announced year-end results for the year ended December 31, 2011. The Company utilized $13.6 million in cash for operations during the year, compared to $8.8 million in the year-earlier period. The increase in cash utilization resulted primarily from ACTs ongoing clinical activities in the US and Europe. ACT ended the year with cash and cash equivalents of $13.1 million, compared to $15.9 million in cash and cash equivalents in the year-earlier period.

Some of the 2011 highlights included:

2011 was a very important and successful year for ACT as we began our Phase 1/2 trials for the treatment of macular degeneration, said Gary Rabin, chairman and CEO of ACT. We are very excited about the preliminary Phase 1/2 clinical data from our dry-AMD and Stargardts disease trials, which were published in The Lancet earlier this year. The data demonstrated the safety of ACTs human embryonic stem cell (hESC)-derived retinal pigment epithelium (RPE) cells for the treatment of both diseases. The vision of both patients appears to have improved after transplantation, and no adverse safety issues have been observed. We look forward to validating these early findings as we expand these clinical activities throughout this year. Additionally, we made significant progress in advancing our scientific platform, expanding our board of directors and management team and strengthening our balance sheet.

The Company also announced today that it expects to shortly file a preliminary proxy statement with the Securities and Exchange Commission in which it will seek shareholder approval for a reverse split of between 1-for 20 and 1-for 80 shares. The Company is pursuing the reverse split for the sole purpose of meeting the requirements necessary for a listing on the Nasdaq Global Market. The Company believes that a listing on a national change will allow it to expand its shareholder base and improve the marketability of its common stock by attracting a broader range of investors.

Conference Call

The Company will hold a conference call at 9:00 a.m. EST tomorrow, during which it will discuss 2011 results and provide an update on clinical activities. Interested parties should dial (888)264-3177 followed by the reference conference ID number: 57426004. The call will be available live and for replay by webcast at: http://us.meeting-stream.com/advancedcelltechnology030212

About Advanced Cell Technology, Inc.

Advanced Cell Technology, Inc., is a biotechnology company applying cellular technology in the field of regenerative medicine. For more information, visitwww.advancedcell.com.

Forward-Looking Statements

Link:
Advanced Cell Technology Announces 2011 Financial Results

Read More...

International Cellular Medicine Society Grants First Worldwide Accreditation to Tijuana Clinical Trial

Wednesday, February 29th, 2012

Regenerative Medicine Institute, Mexico has been granted full accreditation for its clinical stem cell trials

Portland, Oregon (PRWEB) February 29, 2012

We are pleased that RMI undertook this process, says David Audley, executive director of the ICMS. The clinic understood that patient safety can only be assured through strict evaluation and rigorous oversight. From day one they have embraced the transparency that this program requires.

RMI is the first clinic to achieve this status under the ICMS Accreditation Program. The clinic has undergone two separate site audits as well as an institutional review board review evaluation. Most importantly, the clinic has placed in excess of 50 patients into the Treatment Registry for long-term outcome tracking. The safety profile has been excellent, continued Audley. We have tracked patients over at least two follow-ups and a minimum of six months and not seen a single cell-related adverse event.

The ICMS is currently evaluating nearly a dozen clinics worldwide. Accreditation is based upon the Guidelines for the Practice of Cell-Based Medicine developed and published by the ICMS. Key components of these guidelines are the ethical recruitment of patients, proper consent of patients and compliance with local laws and regulations in the treatment of patients.

###

Mr. David Audley International Cellular Medicine Society 503-884-6590 Email Information

Read the original:
International Cellular Medicine Society Grants First Worldwide Accreditation to Tijuana Clinical Trial

Read More...

Stem Cell Pioneers Converge in Portland to Discuss and Celebrate a Revolutionary New Stem Cell Entering Human Clinical …

Wednesday, February 29th, 2012

SAN DIEGO, CA and PORTLAND, OR--(Marketwire -02/28/12)- Medistem Inc. (Pinksheets: MEDS.PK - News) announced today its Annual "Evening with Medistem" Event will take place in Portland, Oregon on March 7th, 2012. The event is being hosted by Vladimir Zaharchook, Vice Chairman at Medistem, Inc., and will feature stem cell luminaries and pioneers working with Medistem including Dr. Amit Patel, Director of Regenerative Medicine at University of Utah and the first person to administer stem cells into patients with heart failure, Dr. Michael Murphy, Vascular Surgeon at Indiana University and Principal Investigator for Medistem's FDA clinical trial in patients with risk of amputation, and Dr. Alan Lewis, former CEO of the Juvenile Diabetes Research Foundation, advisory board member of Medistem.

In 2007 Medistem discovered an entirely new type of stem cell, the Endometrial Regenerative Cell (ERC). This cell has proven it is a "universal donor" and can be used to treat many more conditions compared to other types of stem cells. The company received FDA clearance to begin clinical trials in September of 2011 for critical limb ischemia, a condition that is associated with amputation. Medistem is also running a Phase II clinical trial for heart failure using the new stem cell. The ERC stem cell does not involve the highly controversial use of fetal tissue, can be produced very economically and administered to the patient in a very simple manner. Medistem is exploring ways to expand clinical trials of its stem cell into other diseases.

"Stem cells and regenerative medicine offer hope in clinical conditions in which hope previously did not exist," said Dr. Stanley Cohan, Head of Neurology at the St Vincent's Hospital, the largest center for treatment of multiple sclerosis in the Pacific Northwest, who will be attending the event. "We are honored in the Portland community to have this distinguished team of accomplished researchers and medical doctors convene here and discuss with us possible collaborations."

"As a long-time member of the Portland academic community, it is exciting to have companies such as Medistem to visit us and share their experiences 'from the trenches' of what it takes to push a cellular drug through the FDA," said Dr. Shoukrat Milipotiv, Associate Scientist in the Division of Reproductive & Developmental Sciences of ONPRC, Oregon Stem Cell Center and Departments of Obstetrics & Gynecology and Molecular & Medical Genetics, and co-director of the ART/ESC core at the Center. He is an internationally recognized researcher in the area of stem cells.

"The Event is an annual celebration to honor our team and collaborators for the successes of the previous year, while at the same time educate the local business and medical community on the latest research on stem cells not just at Medistem but internationally," said Thomas Ichim, Ph.D Chief Executive Officer of Medistem Inc. "2012 is particularly exciting for us due to approvals for two clinical trials, and the initiation of patient treatments within this context."

About Medistem Inc.

Medistem Inc. is a biotechnology company developing technologies related to adult stem cell extraction, manipulation, and use for treating inflammatory and degenerative diseases. The company's lead product, the endometrial regenerative cell (ERC), is a "universal donor" stem cell being developed for critical limb ischemia and heart failure.

Cautionary Statement

This press release does not constitute an offer to sell or a solicitation of an offer to buy any of our securities. This press release may contain certain forward-looking statements within the meaning of Section 27A of the Securities Act of 1933, as amended, and Section 21E of the Securities Exchange Act of 1934, as amended. Forward-looking statements are inherently subject to risks and uncertainties, some of which cannot be predicted or quantified. Future events and actual results could differ materially from those set forth in, contemplated by, or underlying the forward-looking information. Factors which may cause actual results to differ from our forward-looking statements are discussed in our Form 10-K for the year ended December 31, 2007 as filed with the Securities and Exchange Commission.

More here:
Stem Cell Pioneers Converge in Portland to Discuss and Celebrate a Revolutionary New Stem Cell Entering Human Clinical ...

Read More...

ISSCR Honors Stem Cell Research Pioneer with Prestigious McEwen Award for Innovation

Friday, February 24th, 2012

Newswise — The International Society for Stem Cell Research (ISSCR) is pleased to announce the winner of the 2012 McEwen Award for Innovation, a coveted prize in the field of stem cell research and regenerative medicine. The 2012 recipient is Rudolf Jaenisch, MD, Founding Member of the Whitehead Institute for Biomedical Research and Professor of Biology at the Massachusetts Institute of Technology in recognition of his pioneering discoveries in the areas of genetic and epigenetic control of development in mice that directly impact the future potential of embryonic stem cells and induced pluripotent stem cells for therapeutic utility.

The McEwen Award for Innovation is supported by the McEwen Centre for Regenerative Medicine in Toronto, Ontario, Canada. The $100,000 award honors original thinking and groundbreaking research pertaining to stem cells or regenerative medicine that opens new avenues of exploration towards the understanding or treatment of human disease or affliction.

“Rudolf Jaenisch has consistently contributed new and groundbreaking discoveries to stem cell biology and regenerative medicines that have changed the way stem cell research is conducted, said Fred H. Gage, PhD, ISSCR President. “Importantly, Rudolf not only has an uncanny sense of the next big question, but also conducts his experiments with such thoughtful and critical experimental design that his results have an immediate impact. This critical attention to detail and experimental design has greatly benefited the many gifted students that have passed through his lab and now populate many of the major stem cell centers throughout the world. Rudolf is very deserving of this award.”

Winner of the inaugural McEwen Award for Innovation in 2011, Shinya Yamanaka, MD, PhD, ISSCR President-Elect agrees. “Dr. Rudolf Jaenisch has always been on the cutting-edge of our field and his research has been a source of inspiration not only for myself, but has influenced the careers of some of our most esteemed colleagues.”

Dr. Jaenisch will be presented with the award at the ISSCR 10th Annual Meeting, in Yokohama, Japan, on Wednesday, June 13, 2012.
***
The International Society for Stem Cell Research is an independent, nonprofit membership organization established to promote and foster the exchange and dissemination of information and ideas relating to stem cells, to encourage the general field of research involving stem cells and to promote professional and public education in all areas of stem cell research and application.

Comment/Share

Read the original here:
ISSCR Honors Stem Cell Research Pioneer with Prestigious McEwen Award for Innovation

Read More...

Makucell™ Announces Key Scientific Presentations and Launch of a Large, Multicenter Use Study of Asymmtate™

Wednesday, February 22nd, 2012

 

 

SCOTTSDALE, Ariz., Feb. 21, 2012 /PRNewswire-USNewswire/ -- Makucell, Inc., a new life science company that utilizes an innovative proprietary regenerative medicine technology to address aging skin, hair and nail conditions, has presented important pre-clinical and clinical information on its proprietary molecule, Asymmtate, at the 36th Annual Hawaii Dermatology Seminar, Waikoloa, Hawaii.  Asymmtate™ is the active key ingredient in Makucell's new topical skin care line Renewnt™ (pronounced "Re-new-int").

Asymmtate™ is a selective modulator of the Wnt (pronounced "wint") signaling pathway that encourages optimal signaling to stimulate skin stem cells to replenish themselves, keratinocytes, fibroblasts and other dermal cells, which produce collagen, elastic tissue, matrix and other substances to foster a more healthy, rejuvenated appearing skin.  Renewnt™ will be available through aesthetic dermatology professionals in April 2012.

Mark Dahl, M.D. Makucell's, Vice President and Chief Medical Officer, presented the two scientific poster presentations.   The presentation titles and conclusions are summarized below.

The Safety and Efficacy of Asymmtate – Asymmtate™ penetrates into human epidermis and dermis and remains active.  Asymmtate in its cream vehicles is non-mutagenic, non-irritating, and non-sensitizing.  Asymmtate™ Analog Mitigates Photoaging Effects of UVB in Mice – An analog of Asymmtate applied topically can mitigate the subsequent visible appearance of photoaging changes in mice after exposures of their skin to UVB.

In addition to the pre-clinical/clinical information presented this week, Makucell has initiated a 100 subject Use Study to evaluate the safety and efficacy of Renewnt™ for Hydration Day and Night Moisturizer in a real world setting.  This four-week study will include 12 investigator sites across the U.S.  "This large multicenter study is very important to validate aspects of clinical product performance of Asymmtate™ under real world conditions.  The diverse geographical study sites will allow us to evaluate effects on unique skin types in different climates," said Lawrence A. Rheins, President and CEO of Makucell.

The innovative technology that resulted in the formulation of Renewnt was developed by distinguished research scientist Michael Kahn, Ph.D. and colleagues at the Eli & Edythe Broad Center for Stem Cell and Regenerative Medicine at the University of Southern California, Keck School of Medicine. "This is an exciting time for Makucell," said Makucell co-founder and inventor Michael Kahn, Ph.D.  "This technology will be utilized for commercial topical applications to address the challenges of photoaging skin and other hair and nail conditions."

For media and investment inquiries please contact please contact Lawrence Rheins, lrheins@makucellinc.com or 1-855-MAKUCELL.

About Makucell
Makucell (www.makucell.com) is a new life science technology transfer company that utilizes an innovative proprietary regenerative medicine technology to address aging skin, hair and nail conditions in an entirely new way. Using a patent-pending new molecule, Asymmtate, Makucell has developed the Renewnt brand of non-prescription products that work with the skin's own stem cells to produce healthier, and more youthful appearing skin. This innovative technology was developed by researchers at the Eli & Edythe Broad Center for Stem Cell and Regenerative Medicine at the University of Southern California Keck School of Medicine.  Makucell is financed through private investors and is not in receipt of government funding.

About the USC Stevens Institute for Innovation
The USC Stevens Institute for Innovation (http://stevens.usc.edu) is a university-wide resource in the Office of the Provost at the University of Southern California that helps identify, nurture, protect, and transfer to the market the most exciting innovations from USC.  It also provides a central connection for industry seeking cutting-edge innovations in which to invest. As part of this role, the USC Stevens Institute manages the university's intellectual property portfolio stemming from its $560M annual research program. Furthermore, the USC Stevens Institute develops the innovator as well as innovations, through educational programs, community-building events, and showcase opportunities.

Media Contact:
Lawrence Rheins
lrheins@makucellinc.com
1-480-305-2061

SOURCE USC Stevens Institute for Innovation

Back to top

RELATED LINKS
http://www.stevens.usc.edu
http://www.makucell.com/

Original post:
Makucell™ Announces Key Scientific Presentations and Launch of a Large, Multicenter Use Study of Asymmtate™

Read More...

Makucell(TM) Announces Key Scientific Presentations and Launch of a Large, Multicenter Use Study of Asymmtate(TM)

Wednesday, February 22nd, 2012

To: HEALTH, MEDICAL AND NATIONAL EDITORS

SCOTTSDALE, Ariz., Feb. 21, 2012 /PRNewswire-USNewswire/ -- Makucell, Inc., a new life science company that utilizes an innovative proprietary regenerative medicine technology to address aging skin, hair and nail conditions, has presented important pre-clinical and clinical information on its proprietary molecule, Asymmtate, at the 36th Annual Hawaii Dermatology Seminar, Waikoloa, Hawaii. Asymmtate(TM) is the active key ingredient in Makucell's new topical skin care line Renewnt(TM) (pronounced "Re-new-int").

Asymmtate(TM) is a selective modulator of the Wnt (pronounced "wint") signaling pathway that encourages optimal signaling to stimulate skin stem cells to replenish themselves, keratinocytes, fibroblasts and other dermal cells, which produce collagen, elastic tissue, matrix and other substances to foster a more healthy, rejuvenated appearing skin. Renewnt(TM) will be available through aesthetic dermatology professionals in April 2012.

Mark Dahl, M.D. Makucell's, Vice President and Chief Medical Officer, presented the two scientific poster presentations. The presentation titles and conclusions are summarized below.

-- The Safety and Efficacy of Asymmtate - Asymmtate(TM) penetrates into human epidermis and dermis and remains active. Asymmtate in its cream vehicles is non-mutagenic, non-irritating, and non-sensitizing. -- Asymmtate(TM) Analog Mitigates Photoaging Effects of UVB in Mice - An analog of Asymmtate applied topically can mitigate the subsequent visible appearance of photoaging changes in mice after exposures of their skin to UVB.

In addition to the pre-clinical/clinical information presented this week, Makucell has initiated a 100 subject Use Study to evaluate the safety and efficacy of Renewnt(TM) for Hydration Day and Night Moisturizer in a real world setting. This four-week study will include 12 investigator sites across the U.S. "This large multicenter study is very important to validate aspects of clinical product performance of Asymmtate(TM) under real world conditions. The diverse geographical study sites will allow us to evaluate effects on unique skin types in different climates," said Lawrence A. Rheins, President and CEO of Makucell.

The innovative technology that resulted in the formulation of Renewnt was developed by distinguished research scientist Michael Kahn, Ph.D. and colleagues at the Eli & Edythe Broad Center for Stem Cell and Regenerative Medicine at the University of Southern California, Keck School of Medicine. "This is an exciting time for Makucell," said Makucell co-founder and inventor Michael Kahn, Ph.D. "This technology will be utilized for commercial topical applications to address the challenges of photoaging skin and other hair and nail conditions."

For media and investment inquiries please contact please contact Lawrence Rheins, lrheins@makucellinc.com or 1-855-MAKUCELL.

About Makucell

Makucell (www.makucell.com) is a new life science technology transfer company that utilizes an innovative proprietary regenerative medicine technology to address aging skin, hair and nail conditions in an entirely new way. Using a patent-pending new molecule, Asymmtate, Makucell has developed the Renewnt brand of non-prescription products that work with the skin's own stem cells to produce healthier, and more youthful appearing skin. This innovative technology was developed by researchers at the Eli & Edythe Broad Center for Stem Cell and Regenerative Medicine at the University of Southern California Keck School of Medicine. Makucell is financed through private investors and is not in receipt of government funding.

About the USC Stevens Institute for Innovation

The USC Stevens Institute for Innovation (http://stevens.usc.edu) is a university-wide resource in the Office of the Provost at the University of Southern California that helps identify, nurture, protect, and transfer to the market the most exciting innovations from USC. It also provides a central connection for industry seeking cutting-edge innovations in which to invest. As part of this role, the USC Stevens Institute manages the university's intellectual property portfolio stemming from its $560M annual research program. Furthermore, the USC Stevens Institute develops the innovator as well as innovations, through educational programs, community-building events, and showcase opportunities.

Media Contact:

Lawrence Rheinslrheins@makucellinc.com1-480-305-2061

SOURCE USC Stevens Institute for Innovation

-0-

See the rest here:
Makucell(TM) Announces Key Scientific Presentations and Launch of a Large, Multicenter Use Study of Asymmtate(TM)

Read More...

BioTime CEO Michael D. West to Present at New York Stem Cell Summit

Saturday, February 18th, 2012

ALAMEDA, Calif.--(BUSINESS WIRE)--

BioTime, Inc. (NYSE Amex: BTX), a biotechnology company that develops and markets products in the field of regenerative medicine, today announced that Chief Executive Officer Michael D. West, Ph.D. will present at the 7th Annual New York Stem Cell Summit at Bridgewaters New York City on Tuesday, February 21, 2012 at 8:48 a.m. ET. Dr. West will provide an update and new information on the Company's manufacturing technologies and cell-based therapeutics in development. The presentation will be available online at http://www.biotimeinc.com.

The annual New York Stem Cell Summit provides investors, industry, practitioners, and analysts with the latest developments and investment opportunities in the stem cell marketplace.

About BioTime, Inc.

BioTime, headquartered in Alameda, California, is a biotechnology company focused on regenerative medicine and blood plasma volume expanders. Its broad platform of stem cell technologies is developed through subsidiaries focused on specific fields of applications. BioTime develops and markets research products in the field of stem cells and regenerative medicine, including a wide array of proprietary ACTCellerate™ cell lines, culture media, and differentiation kits. BioTime's wholly owned subsidiary ES Cell International Pte. Ltd. has produced clinical-grade human embryonic stem cell lines that were derived following principles of Good Manufacturing Practice and currently offers them for use in research. BioTime's therapeutic product development strategy is pursued through subsidiaries that focus on specific organ systems and related diseases for which there is a high unmet medical need. BioTime's majority owned subsidiary Cell Cure Neurosciences, Ltd. is developing therapeutic products derived from stem cells for the treatment of retinal and neural degenerative diseases. Cell Cure's minority shareholder Teva Pharmaceutical Industries has an option to clinically develop and commercialize Cell Cure's OpRegen™ retinal cell product for use in the treatment of age-related macular degeneration. BioTime's subsidiary OrthoCyte Corporation is developing therapeutic applications of stem cells to treat orthopedic diseases and injuries. Another subsidiary, OncoCyte Corporation, focuses on the diagnostic and therapeutic applications of stem cell technology in cancer, including the diagnostic product PanC-DxTM currently being developed for the detection of cancer in blood samples, therapeutic strategies using vascular progenitor cells engineered to destroy malignant tumors. ReCyte Therapeutics, Inc. is developing applications of BioTime's proprietary induced pluripotent stem cell technology to reverse the developmental aging of human cells to treat cardiovascular and blood cell diseases. BioTime's newest subsidiary, LifeMap Sciences, Inc., is developing an online database of the complex cell lineages arising from stem cells to guide basic research and to market BioTime's research products. In addition to its stem cell products, BioTime develops blood plasma volume expanders, blood replacement solutions for hypothermic (low-temperature) surgery, and technology for use in surgery, emergency trauma treatment and other applications. BioTime's lead product, Hextend®, is a blood plasma volume expander manufactured and distributed in the U.S. by Hospira, Inc. and in South Korea by CJ CheilJedang Corp. under exclusive licensing agreements. Additional information about BioTime, ReCyte Therapeutics, Cell Cure, OrthoCyte, OncoCyte, BioTime Asia, LifeMap Sciences, and ESI can be found on the web at http://www.biotimeinc.com.

Forward-Looking Statements

Statements pertaining to future financial and/or operating results, future growth in research, technology, clinical development, and potential opportunities for BioTime and its subsidiaries, along with other statements about the future expectations, beliefs, goals, plans, or prospects expressed by management constitute forward-looking statements. Any statements that are not historical fact (including, but not limited to statements that contain words such as "will," "believes," "plans," "anticipates," "expects," "estimates") should also be considered to be forward-looking statements. Forward-looking statements involve risks and uncertainties, including, without limitation, risks inherent in the development and/or commercialization of potential products, uncertainty in the results of clinical trials or regulatory approvals, need and ability to obtain future capital, and maintenance of intellectual property rights. Actual results may differ materially from the results anticipated in these forward-looking statements and as such should be evaluated together with the many uncertainties that affect the business of BioTime and its subsidiaries, particularly those mentioned in the cautionary statements found in BioTime's Securities and Exchange Commission filings. BioTime disclaims any intent or obligation to update these forward-looking statements.

To receive ongoing BioTime corporate communications, please click on the following link to join our email alert list:
http://phx.corporate-ir.net/phoenix.zhtml?c=83805&p=irol-alerts

The rest is here:
BioTime CEO Michael D. West to Present at New York Stem Cell Summit

Read More...

Histogenics to Present at 7th Annual New York Stem Cell Summit

Friday, February 17th, 2012

WALTHAM, Mass.--(BUSINESS WIRE)--

Histogenics Corporation, a privately held regenerative medicine company, today announced that the Company will present at the 7th Annual New York Stem Cell Summit on February 21st at Bridgewaters New York City. Kirk Andriano, Ph.D., Vice President of Research and Development for Histogenics, will speak about current and future cell therapies being developed by the Company as it works toward commercialization. Lead candidates include NeoCart®, an autologous bioengineered neocartilage grown outside the body using the patient’s own cells for the regeneration of cartilage lesions, and VeriCart™, a three-dimensional cartilage matrix designed to stimulate cartilage repair in a simple, one-step procedure. NeoCart recently entered a Phase 3 clinical trial after reporting positive Phase 2 data, in which all primary endpoints were met and a favorable safety profile was demonstrated.

Dr. Andriano earned his BS in chemistry and biology from Utah State University and his MS and Ph.D. in bioengineering from the University of Utah. Prior to his work at Histogenics, he was the Chief Technology Officer for ProChon Biotech, Ltd. which was acquired by Histogenics in May 2011.

About Histogenics

Histogenics is a leading regenerative medicine company that combines cell therapy and tissue engineering technologies to develop highly innovative products for tissue repair and regeneration. In May of 2011, Histogenics acquired Israeli cell-therapy company ProChon BioTech. Histogenics’ flagship products focus on the treatment of active patients suffering from articular cartilage derived pain and immobility. The Company takes an interdisciplinary approach to engineering neocartilage that looks, acts and lasts like hyaline cartilage. It is developing new treatments for sports injuries and other orthopaedic conditions, where demand is growing for long-term alternatives to joint replacement. Histogenics has successfully completed Phase 1 and Phase 2 clinical trials of its NeoCart autologous tissue implant and is currently in a Phase 3 IND clinical study. Based in Waltham, Massachusetts, the company is privately held. For more information, visit http://www.histogenics.com.

Go here to see the original:
Histogenics to Present at 7th Annual New York Stem Cell Summit

Read More...

Cytomedix to Showcase Aldagen's Promising Autologous Cell Therapy Technology at Two Regenerative Medicine Meetings

Friday, February 17th, 2012

GAITHERSBURG, MD--(Marketwire -02/16/12)- Cytomedix, Inc. (OTC.BB: CMXI.OB - News) (the "Company"), a leading developer of biologically active regenerative therapies for wound care, inflammation and angiogenesis, today announced that Chief Operating Officer Edward L. Field will present a clinical overview of Aldagen's autologous cell therapy technology at two upcoming meetings: The Cell Society's 2nd Annual Clinical Meeting being held February 17-18 at the Coronado Marriott Resort in San Diego; and the 7th Annual New York Stem Cell Summit being held on February 21 at Bridgewaters New York in New York City.

Mr. Field will present during the session, "Commercialization Opportunities with Adult Stem Cell Therapies," on Friday, February 17 from 8:00 a.m. to 10:00 a.m. Pacific time at the Cell Society meeting.

Cell Society International is a non-profit organization dedicated to advancing the clinical application of adult stem cell therapies worldwide. Cell Society's 2nd Annual Clinical Meeting will continue in the tradition established at the 1st Annual Meeting and will offer a unique opportunity for multidisciplinary, international clinical collaboration designed to enhance understanding and thought-provoking insight into treatments and cures for disease and agonizing medical conditions. This year's clinical focus will center on therapies particularly relevant to cardiology, neurology, and orthopedic and plastic surgery.

At the Stem Cell Summit, Mr. Field will present at 2:35 p.m. Eastern time. This meeting showcases more than 30 of the world's leaders in this rapidly evolving industry. The New York Stem Cell Summit brings the future of this dynamic industry to life for investors, industry, practitioners and analysts so they can learn about the investment opportunities in the stem cell marketplace, groundbreaking stem cell products that physicians use today and the growing market potential in terms of revenues.

About Cytomedix, Inc.

Cytomedix, Inc. develops, sells and licenses regenerative biological therapies primarily for wound care, inflammation and angiogenesis. The Company markets the AutoloGel™ System, a device for the production of autologous platelet rich plasma ("PRP") gel for use on a variety of exuding wounds; the Angel® Whole Blood Separation System, a blood processing device and disposable products used for the separation of whole blood into red cells, platelet poor plasma ("PPP") and PRP in surgical settings; and the activAT® Autologous Thrombin Processing Kit, which produces autologous thrombin serum from PPP. The activAT® kit is sold exclusively in Europe and Canada, where it provides a completely autologous, safe alternative to bovine-derived products. On February 8, 2012 Cytomedix announced the acquisition of Aldagen, a biopharmaceutical company developing regenerative cell therapies based on its proprietary ALDH bright cell ("ALDHbr") technology, currently in a Phase 2 trial for the treatment of ischemic stroke. For additional information please visit http://www.cytomedix.com

Safe Harbor Statement
Statements contained in this communication not relating to historical facts are forward-looking statements that are intended to fall within the safe harbor rule for such statements under the Private Securities Litigation Reform Act of 1995. The information contained in the forward-looking statements is inherently uncertain, and Cytomedix' actual results may differ materially due to a number of factors, many of which are beyond Cytomedix' ability to predict or control, including many among others, risks and uncertainties related to the Company's ability to successfully integrate this acquisition, to successfully manage contemplated clinical trials, to manage and address the capital needs, human resource, management, compliance and other challenges of a larger, more complex and intergrated business enterprise, viability and effectiveness of the Company's sales approach and overall marketing strategies, commercial success or acceptance by the medical community, competitive responses, the Company's ability to raise additional capital and to continue as a going concern, and Cytomedix's ability to execute on its strategy to market the AutoloGel™ System as contemplated. To the extent that any statements made here are not historical, these statements are essentially forward-looking. The Company uses words and phrases such as "believes," "forecasted," "projects," "is expected," "remain confident," "will" and/or similar expressions to identify forward-looking statements in this press release. Undue reliance should not be placed on forward-looking information. These forward-looking statements are subject to known and unknown risks and uncertainties that could cause actual events to differ from the forward-looking statements. More information about some of these risks and uncertainties may be found in the reports filed with the Securities and Exchange Commission by Cytomedix, Inc. Cytomedix operates in a highly competitive and rapidly changing business and regulatory environment, thus new or unforeseen risks may arise. Accordingly, investors should not place any reliance on forward-looking statements as a prediction of actual results. Except as is expressly required by the federal securities laws, Cytomedix undertakes no obligation to update or revise any forward-looking statements, whether as a result of new information, changed circumstances or future events or for any other reason. Additional risks that could affect our future operating results are more fully described in our U.S. Securities and Exchange Commission filings, including our Annual Report for the year ended December 31, 2010, filed with the SEC and other subsequent filings. These filings are available at http://www.sec.gov.

Read the original here:
Cytomedix to Showcase Aldagen's Promising Autologous Cell Therapy Technology at Two Regenerative Medicine Meetings

Read More...

Biomask: Improving Facial Burn Treatment for Soldiers in the Field

Friday, February 17th, 2012

Current treatments for facial injuries often lead to disfigurement or speech impediments, but the Biomask could change regenerative medicine.

It's estimated that 85 percent of injuries to our armed forces in the field cause damage to the extremities or the face. Innovations in regenerative medicine are moving along at an amazing pace, but the common current facial burns treatment typically involves removing damaged areas, followed by skin grafting, which usually leads to disfigurement and the possibility of speech impediments and scarring.

A new project called Biomask, a collaboration between engineers at the University of Texas, Arlington; Northwestern University regenerative medicine specialists; leaders in burn treatment at Brooke Army Medical Center; and consultants Army Institute of Surgical Research seeks to improve burn treatment outcomes with the latest in medical electronics and regenerative medicine.

The Biomask consists of two layers: The top layer is a hard shell that protects the wearer's face and stores the electronic components. The second layer is a polymer mask that will fit around the contours of the face. The polymer also acts as a seal around the wounds which compresses them to prevent lumpy scar formation. The polymer shell is also embedded with a number of sensors and actuators to monitor the healing process and send data to physicians.

While the mask itself will already improve treatment outcomes, Biomask takes it a step further by featuring a network of microtubes and valves in the polymer layer that will constantly deliver therapeutics, such as painkillers, antibiotics, and stem cells to the parts of the face that the onboard sensors determine.

Altogether, this makes Biomask a highly customized and automated 24/7 treatment system that researchers hope will make healing faster and better.

This post also appears on medGadget, an Atlantic partner site.

Follow this link:
Biomask: Improving Facial Burn Treatment for Soldiers in the Field

Read More...

ACT Announces Third Patient with Stargardt’s Disease Treated in U.S. Clinical Trial with RPE Cells Derived from …

Tuesday, February 14th, 2012

MARLBOROUGH, Mass.--(BUSINESS WIRE)--

Advanced Cell Technology, Inc. (“ACT”; OTCBB: ACTC), a leader in the field of regenerative medicine, announced today the dosing of third patient in its Phase 1/2 trial for Stargardt’s macular dystrophy (SMD) using retinal pigment epithelial (RPE) cells derived from human embryonic stem cells (hESCs). The patient was treated on Monday (Feb. 6) by Steven Schwartz, M.D., Ahmanson Professor of Ophthalmology at the David Geffen School of Medicine at the University of California, Los Angeles (UCLA) and retina division chief at UCLA’s Jules Stein Eye Institute. The outpatient transplantation surgery was performed successfully and the patient is recovering uneventfully.

“With the treatment of this third Stargardt’s patient at Jules Stein Eye Institute, we have now completed the treatment of the first cohort of patients under our clinical protocol for phase I/II of our U.S. SMD trial,” said Gary Rabin, chairman and chief executive officer of ACT. “We will continue to regularly monitor the three SMD patients in this trial, and by early spring anticipate review of their progress and safety-related data by the Data and Safety Monitoring Board (DSMB). With approval of the DSMB, we would then advance to the next cohort of patients and administer a higher dosage of RPE cells. In the context of all three trials we have running, this patient is the fifth person worldwide to be treated with our hESC-derived RPE cells. To date, there have been no complications or side effects due to the RPE cells, and we remain cautiously optimistic that our ongoing clinical programs will demonstrate the safety and tolerability of ACT’s stem cell-derived RPE cells.”

Each of the three clinical trials being undertaken by the company in the U.S. and Europe will enroll 12 patients, with cohorts of three patients each in an ascending dosage format. These trials are prospective, open-label studies, designed to determine the safety and tolerability of hESC-derived RPE cells following sub-retinal transplantation into patients with SMD or dry age-related macular degeneration (dry AMD) at 12 months, the study’s primary endpoint. Preliminary results relating to both early safety and biological function for the first two patients in the United States, one SMD patient and one dry AMD patient, were recently reported in The Lancet. On January 20, 2012, the first SMD patient to be enrolled in the Company’s U.K. clinical trial was treated at Moorfields Eye Hospital in London.

Further information about patient eligibility for the SMD study and the concurrent study on dry AMD is also available on www.clinicaltrials.gov; ClinicalTrials.gov Identifiers: NCT01345006 and NCT01344993.

About Stargardt's Disease

Stargardt’s disease or Stargardt’s Macular Dystrophy is a genetic disease that causes progressive vision loss, usually starting in children between 10 to 20 years of age. Eventually, blindness results from photoreceptor loss associated with degeneration in the pigmented layer of the retina, called the retinal pigment epithelium, which is the site of damage that the company believes the hESC-derived RPE may be able to target for repair after administration.

About Advanced Cell Technology, Inc.

Advanced Cell Technology, Inc., is a biotechnology company applying cellular technology in the field of regenerative medicine. For more information, visit http://www.advancedcell.com.

Forward-Looking Statements

Statements in this news release regarding future financial and operating results, future growth in research and development programs, potential applications of our technology, opportunities for the company and any other statements about the future expectations, beliefs, goals, plans, or prospects expressed by management constitute forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995. Any statements that are not statements of historical fact (including statements containing the words “will,” “believes,” “plans,” “anticipates,” “expects,” “estimates,” and similar expressions) should also be considered to be forward-looking statements. There are a number of important factors that could cause actual results or events to differ materially from those indicated by such forward-looking statements, including: limited operating history, need for future capital, risks inherent in the development and commercialization of potential products, protection of our intellectual property, and economic conditions generally. Additional information on potential factors that could affect our results and other risks and uncertainties are detailed from time to time in the company’s periodic reports, including the report on Form 10-K for the year ended December 31, 2010. Forward-looking statements are based on the beliefs, opinions, and expectations of the company’s management at the time they are made, and the company does not assume any obligation to update its forward-looking statements if those beliefs, opinions, expectations, or other circumstances should change. Forward-looking statements are based on the beliefs, opinions, and expectations of the company’s management at the time they are made, and the company does not assume any obligation to update its forward-looking statements if those beliefs, opinions, expectations, or other circumstances should change. There can be no assurance that the Company’s clinical trials will be successful.

More:
ACT Announces Third Patient with Stargardt’s Disease Treated in U.S. Clinical Trial with RPE Cells Derived from ...

Read More...

American CryoStem Joins Alliance for Regenerative Medicine

Monday, February 13th, 2012

RED BANK, NJ--(Marketwire -02/08/12)- American CryoStem Corporation (OTCQB: CRYO.OB - News), a commercial developer, manufacturer and marketer of clinical products and services involving adipose tissue and adipose derived adult stem cells, announced its association with the Alliance for Regenerative Medicine (ARM).

ARM is a Washington, DC-based non-profit organization that promotes legislative, regulatory and reimbursement initiatives necessary to facilitate access to life-giving advances in regenerative medicine. American CryoStem's decision to join ARM was based on the alignment of its ongoing mission to offer the highest quality products and services to help accelerate the regenerative medicine industry and ARM's support of policy efforts toward safe and reliable cellular products.

Morrie Ruffin, Managing Director for the Alliance for Regenerative Medicine, commented, "We are delighted to have American CryoStem as part of the Alliance and look forward to working together to advance the field of adipose-derived stem cells for a variety of therapeutic applications."

ARM's membership is diverse, representing leading regenerative medicine companies and investors, university-based and non-profit research institutions, patient advocacy groups, pharmaceutical companies engaged in regenerative medicine research and other organizations supporting regenerative medicine. American CryoStem has created and commercialized core proprietary products and platforms for processing, storing and quality management of adipose tissue and adipose derived adult stem cells that are broadly relevant to ARM's membership.

"American CryoStem is committed to working with industry organizations to develop cutting edge adipose tissue based treatments and therapies. One unique component of our clinical laboratory product and service suite is offering individuals the opportunity to cryogenically store their younger, healthier adult stem cells for their own future use in regenerative medicine," stated John Arnone, American CryoStem CEO. "We are pleased and honored to work with the Alliance for Regenerative Medicine to educate the public and regulators on the safe uses of adult stem cells and their potential life changing applications."

In support of these goals, the Company recently launched ACS Laboratories, thus expanding its clinical processing technology to companies, institutions and medical professionals. ACS Laboratories offers a wide range of adipose tissue specific services. Through ACS laboratories patented ACSelerate™ cell culture media, a ten product suite, American CryoStem can leverage its technology and products to participate in a broad range of clinical application opportunities.

About American CryoStem: American CryoStem Corporation (OTCQB: CRYO.OB - News) markets clinical processing products and services for adipose (fat) tissue and adipose derived adult stem cells. CRYO's clinical processing and preservation platform supports the science and applications being discovered globally by providing the highest quality, clinically processed cells and assuring their sterility, viability and growth cap abilities, while at the same time developing cutting edge application, therapies and laboratory products and services for consumers and physicians.

The Private Securities Litigation Reform Act of 1995 provides a "safe harbor" for forward-looking statements. Certain of the statements contained herein, which are not historical facts, are forward-looking statements with respect to events, the occurrence of which involve risks and uncertainties. These forward-looking statements may be impacted, either positively or negatively, by various factors. Information concerning potential factors that could affect the Company is detailed from time to time in the Company's reports filed with the Securities and Exchange Commission.

Excerpt from:
American CryoStem Joins Alliance for Regenerative Medicine

Read More...

IndiaMART Leaders of Tomorrow AWards 2011 – Regenerative Medical Services Pvt Ltd – Video

Wednesday, February 8th, 2012

09-12-2011 00:46 Yash Sanghavi a visionary distributor in the pharmaceutical sector with his futuristic approach established Regenerative Medical Services in 2008. Regenerative Medical Services more popularly known as Regrow is one of the key players in stem cell therapy and cell banking in India. Sanghvi has done B. Com and MBA.

Original post:
IndiaMART Leaders of Tomorrow AWards 2011 - Regenerative Medical Services Pvt Ltd - Video

Read More...

Regenerative medicine company encouraged by heart failure trial

Saturday, January 28th, 2012

Regenerative medicine company Juventas
Therapeutics
[1] is touting
the results from 12-month data of a phase 1 clinical trial of
heart failure patients.

At 12 months, heart failure patients treated with the company’s
stem cell therapy showed “significant” improvements in two key
measures — a six-minute distance-walking test, as well as the
Minnesota Living
with Heart Failure Questionnaire
[2], a
patient self-assessment of how heart failure affects daily
life.

References

  1. ^ Juventas Therapeutics
    (www.medcitynews.com)
  2. ^ Minnesota Living with Heart
    Failure Questionnaire
    (qol.thoracic.org)

Read the rest here:
Regenerative medicine company encouraged by heart failure trial

Read More...

2011 EMA Committee for Advanced Therapies (CAT) classification record. What can be learned?

Sunday, January 1st, 2012

Tweet 


What follows is the record of "classifications" done by the ATMP CAT in 2011 related to anything I would call "cell therapies". 


In my opinion there are a couple surprises. I'm surprised at the non-cardiac cells (MNCs, CD133s, and MSCs) for cardiac disease/repair being designated TEPs. I'm also surprised at the islets not being classified as an ATMP.


I've tapped into my European and/or regulatory colleagues to help explain those two as well as help us draw any other conclusions or observations we can make in terms of how the CAT is thinking based on the compendium of classifications we have to-date.  I'll post an update here when I have something useful.
______


In January, the following product was classified as a tissue engineered product - not combined:

  • Layer of autologous corneal epithelium containing stem cells intended for the treatment of extended corneal lesions



In April, the following product was classified as a tissue engineered product, combined: 

  • Allogeneic human fibroblasts cultured onto a biodegradable matrix, intended for use of conditions in the therapeutic area of dermatology



In May, the following product was classified as a somatic cell therapy medicinal product: 

  • Heterologous human adult liver-derived progenitor cells, intended for the treatment of inborn errors of liver metabolis



In July, the following product was classified as a Tissue Engineered Product, non-combined:

  • Suspension of allogeneic bone-marrow derived osteoblastic cells, intended for the treatment of non-union, delayed union or other fractures. 



In September, the following product was classified as a Tissue Engineered Product, non-combined:

  • Autologous mesenchymal stem cells (MSC), intended for the treatment of chronic heart failure symptoms by improvement in exercise capacity of NYHA class II and III chronic heart failure patients receiving standard therapy

     and the following product was not classified as an ATMP: 

  • Human islets of Langerhans, intended for: Post pancreatectomy for benign pancreatic pathologies (autologous); Treatment of severe forms of type 1 diabetes (Allogeneic)



In October, the following product was classified as a somatic cell therapy medicinal product: 

  • Autologous dendritic cell (DCs) immunotherapy consisting of autologous mature DCs coelectroporated with autologous RCC IVT RNA and synthetic CD40L IVT RNA, intended for the treatment of patients with advanced renal cell carcinoma



In November, the following products were classified as tissue-engineered products:

  • Concentrate of autologous bone marrow mononuclear cells (MNC), intended for improvement of heart function and quality of life in patients with chronic ischaemic heart disease and after MI.
  • CD 133+ Autologous bone marrow derived stem cells, intended for Improvement of heart function (LVEF) and quality of life in patients with chronic ischemic heart disease and after MI



In December, the following product was classified as somatic cell therapy medicinal product:

  • Autologous CD4+ T cells targeted to cells presenting class II restricted epitopes, intended forthe treatment of autoimmune diseases with MHC restricted specific immunity e.g. multiple sclerosis, type I diabetes or graft rejection.
http://www.celltherapyblog.com hosted by http://www.celltherapygroup.com

Source:
http://feeds.feedburner.com/CellTherapyBlog

Read More...

2011 EMA Committee for Advanced Therapies (CAT) classification record. What can be learned?

Sunday, January 1st, 2012

Tweet 


What follows is the record of "classifications" done by the ATMP CAT in 2011 related to anything I would call "cell therapies". 


In my opinion there are a couple surprises. I'm surprised at the non-cardiac cells (MNCs, CD133s, and MSCs) for cardiac disease/repair being designated TEPs. I'm also surprised at the islets not being classified as an ATMP.


I've tapped into my European and/or regulatory colleagues to help explain those two as well as help us draw any other conclusions or observations we can make in terms of how the CAT is thinking based on the compendium of classifications we have to-date.  I'll post an update here when I have something useful.
______


In January, the following product was classified as a tissue engineered product - not combined:

  • Layer of autologous corneal epithelium containing stem cells intended for the treatment of extended corneal lesions



In April, the following product was classified as a tissue engineered product, combined: 

  • Allogeneic human fibroblasts cultured onto a biodegradable matrix, intended for use of conditions in the therapeutic area of dermatology



In May, the following product was classified as a somatic cell therapy medicinal product: 

  • Heterologous human adult liver-derived progenitor cells, intended for the treatment of inborn errors of liver metabolis



In July, the following product was classified as a Tissue Engineered Product, non-combined:

  • Suspension of allogeneic bone-marrow derived osteoblastic cells, intended for the treatment of non-union, delayed union or other fractures. 



In September, the following product was classified as a Tissue Engineered Product, non-combined:

  • Autologous mesenchymal stem cells (MSC), intended for the treatment of chronic heart failure symptoms by improvement in exercise capacity of NYHA class II and III chronic heart failure patients receiving standard therapy

     and the following product was not classified as an ATMP: 

  • Human islets of Langerhans, intended for: Post pancreatectomy for benign pancreatic pathologies (autologous); Treatment of severe forms of type 1 diabetes (Allogeneic)



In October, the following product was classified as a somatic cell therapy medicinal product: 

  • Autologous dendritic cell (DCs) immunotherapy consisting of autologous mature DCs coelectroporated with autologous RCC IVT RNA and synthetic CD40L IVT RNA, intended for the treatment of patients with advanced renal cell carcinoma



In November, the following products were classified as tissue-engineered products:

  • Concentrate of autologous bone marrow mononuclear cells (MNC), intended for improvement of heart function and quality of life in patients with chronic ischaemic heart disease and after MI.
  • CD 133+ Autologous bone marrow derived stem cells, intended for Improvement of heart function (LVEF) and quality of life in patients with chronic ischemic heart disease and after MI



In December, the following product was classified as somatic cell therapy medicinal product:

  • Autologous CD4+ T cells targeted to cells presenting class II restricted epitopes, intended forthe treatment of autoimmune diseases with MHC restricted specific immunity e.g. multiple sclerosis, type I diabetes or graft rejection.
http://www.celltherapyblog.com hosted by http://www.celltherapygroup.com

Source:
http://feeds.feedburner.com/CellTherapyBlog

Read More...

Stem Cell Clinical Trial for Heart Failure: Eduardo Marban – CIRM Spotlight on Disease – Video

Friday, December 23rd, 2011

CIRM has funded a $5.5 million Disease Team to develop a follow on clinical trial that uses a patient's own heart stem cells to regenerate scarred tissue damaged by a heart attack. The team is led by Eduardo Marban, MD, PhD, Director of the Cedars-Sinai Heart Institute

Read more:
Stem Cell Clinical Trial for Heart Failure: Eduardo Marban - CIRM Spotlight on Disease - Video

Read More...

Coast To Coast AM: 15.11.2011 – Regenerative Medicine/ Dulce Base – Video

Thursday, December 22nd, 2011

Direct Download http://www.ezdl.org In the first half, researcher Christian Wilde talked about the emerging field of regenerative medicine, and how scientists are actually building replacement body parts with stem cells. He announced that Dr. Richard Burt at Northwestern University's School of Medicine has been successfully using patients own bone marrow stem cells to treat a variety of autoimmune diseases like Lupus, and Type 1 Diabetes.

Read the original post:
Coast To Coast AM: 15.11.2011 - Regenerative Medicine/ Dulce Base - Video

Read More...

Recently approved cell therapy products

Sunday, December 18th, 2011

Tweet 

Following is a list of cell therapy products approved recently (2010-11):    

  •  Dendreon                           Provenge                           US
  •  FCB-Pharmicell                 Hearticellgram-AMI           Korea
  •  Fibrocell Sciences              Laviv                                  US
  •  Living Cell Technologies    DIABECELL                     Russia

 Honorable mention goes to TiGenix' ChondroCelect approved in late 2009 representing the first EMA approval of an ATMP:

  • TiGenix                              ChondroCelect                   EU

http://www.celltherapyblog.com hosted by http://www.celltherapygroup.com

Source:
http://feeds.feedburner.com/CellTherapyBlog

Read More...

Page 57«..1020..56575859..»


2025 © StemCell Therapy is proudly powered by WordPress
Entries (RSS) Comments (RSS) | Violinesth by Patrick