header logo image


Page 54«..1020..53545556..60..»

Archive for the ‘Regenerative Medicine’ Category

Histogenics Closes $49 Million Series A Fundraising to Support Commercial Development of Transformational Cartilage …

Tuesday, July 24th, 2012

WALTHAM, Mass.--(BUSINESS WIRE)--

Regenerative medicine company Histogenics Corporation, announced today the completion of a $49 million round of financing. The syndicate was led by Sofinnova Ventures with participation from additional new investors Split Rock Partners, BioMed Ventures and FinTech GIMV Fund, L.P. Existing investors ProChon Holdings BV, Altima Partners, Foundation Medical Partners, Inflection Point Capital and Boston Millennia Partners also participated in the financing. Proceeds will be used to complete the ongoing Phase 3 clinical program for lead product candidate NeoCart, which is currently enrolling patients. NeoCart is an autologous neocartilage tissue implant that utilizes the patients own cells to regenerate cartilage in patients suffering from cartilage lesions in the knee. Funds will also support efforts to obtain regulatory clearance in the European Union for product candidate VeriCart, a single-step, cell-free collagen scaffold uniquely designed to be used in conjunction with the patients own stem cells, to repair small cartilage defects frequently observed in meniscal and anterior cruciate ligament repair procedures. Garheng Kong, MD, PhD of Sofinnova Ventures and Josh Baltzell of Split Rock Venture Partners will join Histogenics Board of Directors. Arnold Freedman of Boston Equity Advisors served as the exclusive placement agent.

Patrick ODonnell, President and Chief Executive Officer of Histogenics, commented, We believe the quality of the investors and the significant level of commitment demonstrated in this financing speak to the potential of our product candidates to transform the treatment of cartilage injury with the goal of returning patients to their pre-injury level of activity. Each year, 1.8 million active adults and elite athletes undergo arthroscopy for the diagnosis and treatment of painful cartilage defects in the knee. With continued positive clinical results, we believe our Phase 3 product candidate, NeoCart, has considerable potential as a much-needed treatment alternative for a significant portion of these patients. The successful completion of this financing fully funds the Company to reach key clinical and commercial milestones for NeoCart and VeriCart and allows us to focus our full attention on continued successful clinical and regulatory execution.

Garheng Kong, MD, PhD, General Partner of Sofinnova Ventures added, NeoCart has the potential to dramatically change the way knee cartilage injuries are treated. Current treatments for knee cartilage damage frequently do not produce the lasting effects that individuals need to avoid serious knee pain and improve functionpreventing them from getting back to their active, daily lives. Published data have shown that patients treated with NeoCart experienced a very durable response that is sustained throughout a period of four years or more. Sofinnova is pleased to support Histogenics efforts to receive approval for NeoCart and address this unmet clinical need.

About NeoCart NeoCartis an autologous bioengineered neocartilage grown outside the body using the patients own cells for the regeneration of cartilage lesions. NeoCart recently entered a Phase 3 clinical trial after reporting positive Phase 2 data, in which all primary endpoints were met, and NeoCart was found to be generally well tolerated.

About VeriCart VeriCart is a single step, off-the-shelf, cell-free collagen scaffold, specifically designed for cartilage applications, which when reconstituted with the patients own bone marrow or augmenting marrow stimulation procedures, is intended for the improved repair of cartilage tissue. VeriCart is currently in development.

About Histogenics Histogenics is a leading regenerative medicine company that combines cell therapy and tissue engineering technologies to develop highly innovative products for tissue repair and regeneration. In May of 2011, Histogenics acquired Israeli cell-therapy company ProChon BioTech. Histogenics flagship products focus on the treatment of active patients suffering from articular cartilage derived pain and immobility. The Company takes an interdisciplinary approach to engineering neocartilage that looks, acts and lasts like hyaline cartilage. It is developing new treatments for sports injuries and other orthopedic conditions, where demand is growing for long-term alternatives to joint replacement. Histogenics has successfully completed Phase 1 and Phase 2 clinical trials in which the NeoCart autologous tissue implants effectiveness is compared to that of standard microfracture surgery. Based in Waltham, Massachusetts, the company is privately held. For more information, visitwww.histogenics.com.

About Sofinnova Ventures Sofinnova Ventures has over 40 years of experience building start-ups and later stage companies into market leaders. With $1.4 billion under management, the firm applies capital and expertise to build companies from inception to exit. Sofinnova closed its life science-focused $440M, SVP VIII, in late 2011. The firms investment team of MDs and PhDs has significant scientific, operational and strategic experience, and specializes in financing later stage clinical products. The Sofinnova team partners with entrepreneurs to address patients unmet medical needsand has had a string of recent exits through companies, including Movetis, Preglem, Amarin, Vicept and Intellikine.

About Split Rock Partners Split Rock Partners, with offices in Minneapolis and Menlo Park, seeks emerging opportunities in healthcare as well as software and internet services. Since 2005, Split Rock has raised $575 million over two funds. Representative companies backed by Split Rock's team include Ardian, Atritech, DFine, Entellus, eBureau, Evalve, Guardian Analytics, HireRight, Intacct, LowerMyBills, MyNewPlace, QuinStreet (QNST), SPS Commerce (SPSC) and Tornier (TRNX). Additional information about the firm can be found atwww.splitrock.com.

Visit link:
Histogenics Closes $49 Million Series A Fundraising to Support Commercial Development of Transformational Cartilage ...

Read More...

Biostem U.S., Corporation Enters Into Medical Affiliate Agreement With Pizarro Hair Restoration Clinics

Tuesday, July 24th, 2012

CLEARWATER, FL--(Marketwire -07/23/12)- Biostem U.S., Corporation, (HAIR) (HAIR) (Biostem, the Company), a fully reporting public company in the stem cell regenerative medicine sciences sector, enters into an agreement with Pizarro Hair Restoration Clinics to offer The Biostem Method of stem cell hair re-growth treatments.

Biostem U.S., Corporation announced today that it has entered into a contractual affiliate agreement with Dr. Marina Pizarro and her multi-location practice, Pizarro Hair Restoration Clinics http://www.DrPizarro.com. Additionally, Dr. Pizarro will serve as the Medical Director for the company.

Dr. Pizarro's Orlando, Florida office will serve as the national training center for future Biostem U.S. affiliates.

Dwight Brunoehler, Chief Executive Officer for Biostem, stated, "We have been seeking the right partner to become our first affiliate. We have also been seeking a qualified Medical Director as well as a first rate training facility to accommodate the many requests for affiliation that we have received nationwide from physicians wanting to offer our services to their clientele. The Company is extremely fortunate to have filled these multiple needs in one place. Dr. Pizarro's impeccable credentials and extensive experience rank her among the best in her field. We look forward to a long and prosperous relationship."

According to Dr. Pizarro, "I have been following the discovery and development of hair re-growth technology on the cellular level for some time. Biostem's unique approach using Platelet Rich Plasma along with other proven treatments has shown to be highly effective for many qualified male and female patients. I am excited to be able to offer this service to my patients, and to be on the ground floor of this growing industry."

Dr. Marina Pizarro holds the distinction of being the first female hair transplant physician in the industry and belongs to the elite group of surgeons who have performed over 30,000 hair transplant procedures in their careers. She received her Medical Degree from Ponce School of Medicine in Puerto Rico in 1985. After completing her residency in Orlando, Dr. Pizarro worked with world renowned hair transplant surgeon Dr. Constantine Chambers building one of the largest hair restoration practices in history. After five years, and performing thousands of procedures around the world while lecturing at hair restoration conventions, Dr. Pizarro opened her first two facilities in Orlando and Jacksonville, Florida in 1994 specializing in hair transplantation for both men and women. She currently has three facilities in Florida with the addition of her clinic in Tampa. Dr. Pizarro is a member of The International Society of Hair Restoration Surgery and the European Society of Hair Restoration Surgery.

About Biostem U.S., Corporation:

Biostem U.S., Corporation (HAIR) is a fully reporting Nevada corporation with offices in Clearwater, Florida. Biostem U.S. is a technology licensing company with proprietary technology centered on providing hair re-growth using human stem cells. The company also intends to train and license selected physicians to provide Regenerative Cellular Therapy treatments to assist the body's natural approach to healing tendons, ligaments, joints and muscle injuries by using the patient's own stem cells. Biostem U.S. is seeking to expand its operations worldwide through licensing of its proprietary technology and acquisition of existing stem cell related facilities. The company's goal is to operate in the international biotech market, focusing on the rapidly growing regenerative medicine field, using ethically sourced adult stem cells to improve the quality and longevity of life for all mankind.

The company's Board of Directors is headed by Chairman, Scott Crutchfield, who also acts as Senior Vice President of World Wide Operations for Crocs, Inc. (CROX) and includes Crocs, Inc. original member, Steve Beck.

For further information on Biostem U.S., Corporation can be obtained through http://www.biostemus.com or by contacting Fox Communications Group at 310-974-6821.

Read more here:
Biostem U.S., Corporation Enters Into Medical Affiliate Agreement With Pizarro Hair Restoration Clinics

Read More...

BioTime Signs Agreements with Jade Therapeutics for Ophthalmological Drug Delivery Applications of HyStem® Technology

Tuesday, July 17th, 2012

ALAMEDA, Calif.--(BUSINESS WIRE)--

BioTime, Inc. (NYSE MKT: BTX), a biotechnology company that develops and markets products in the field of regenerative medicine, today announced the signing of an exclusive sublicense agreement and a supply agreement with Jade Therapeutics, LLC, a developer of an ophthalmological therapeutic sustained-release drug delivery platform. Under the agreements, BioTime will provide Jade with clinical-grade HyStem hydrogels and certain patented technology for use by Jade Therapeutics in the development of new pharmaceutical products for ophthalmologic use. Jade plans to utilize the hydrogels to facilitate time-release topical delivery of recombinant human growth hormone to help heal lesions on the ocular surface. Jade Therapeutics will retain rights to market their product upon completion of development and obtaining marketing approval. Financial terms of the transaction were not disclosed.

William P. Tew, Ph.D., BioTimes Chief Commercialization Officer, stated that Numerous published scientific reports have established the efficacy of HyStem to facilitate cell transplantation in animal models, and we currently plan on a near-term approval to market one HyStem-related product, ReneviaTM, in the EU for reconstructive and cosmetic surgery. We believe our HyStem technology may also be useful as a device for the slow, timed release of therapeutic agents such as those being developed by Jade Therapeutics, as well as for the controlled release of proteins secreted from BioTimes stem cell lines.

The HyStem product line has potential utility in a wide array of human therapeutic products, said Michael West, Ph.D., BioTimes CEO. We intend to seek additional industry partners for applications that are not core to our own therapeutic product development.

BioTime's HyStem hydrogels are proprietary biocompatible hydrogels that mimic the human extracellular matrix (ECM), a web of molecules surrounding cells that is essential to cellular function. When cells lacking the ECM (or an ECM substitute) are introduced into the body, they typically die or fail to function correctly after transplantation. BioTime's HyStem hydrogels are currently being used by researchers at a number of leading medical schools in studies of stem cell therapies for facilitating wound healing and for the treatment of ischemic stroke, brain cancer, vocal fold scarring, and cardiac infarct.

About Jade Therapeutics

Jade Therapeutics, LLC, a privately-held company headquartered in Park City, Utah, focuses on the development of locally administered, sustained-release therapeutics that improve corneal healing following damage from disease or injury, thus improving visual function and quality of life. The Companys initial product is designed to deliver recombinant human growth hormone, a well characterized biologic that has already been demonstrated to have significant healing properties. Jade recently secured a prestigious Utah Science Technology and Research (USTAR) grant to continue to conduct preclinical and market research and is in negotiation with several prominent academic and military affiliates to further product development. Examples of ocular disorders addressed by the Companys technology includes persistent corneal epithelial defects and corneal damage due to dry eye disease.

About BioTime, Inc.

BioTime, headquartered in Alameda, California, is a biotechnology company focused on regenerative medicine and blood plasma volume expanders. Its broad platform of stem cell technologies is enhanced through subsidiaries focused on specific fields of application. BioTime develops and markets research products in the field of stem cells and regenerative medicine, including a wide array of proprietary ACTCellerateTM cell lines, HyStem hydrogels, culture media, and differentiation kits. BioTime is developing ReneviaTM (formerly known as HyStem-Rx), a biocompatible, implantable hyaluronan and collagen-based matrix for cell delivery in human clinical applications. BioTime's therapeutic product development strategy is pursued through subsidiaries that focus on specific organ systems and related diseases for which there is a high unmet medical need. BioTime's majority-owned subsidiary Cell Cure Neurosciences, Ltd. is developing therapeutic products derived from stem cells for the treatment of retinal and neural degenerative diseases. BioTime's subsidiary OrthoCyte Corporation is developing therapeutic applications of stem cells to treat orthopedic diseases and injuries. Another subsidiary, OncoCyte Corporation, focuses on the diagnostic and therapeutic applications of stem cell technology in cancer, including the diagnostic product PanC-DxTM currently being developed for the detection of cancer in blood samples. ReCyte Therapeutics, Inc. is developing applications of BioTime's proprietary induced pluripotent stem cell technology to reverse the developmental aging of human cells to treat cardiovascular and blood cell diseases. BioTime's subsidiary LifeMap Sciences, Inc. markets GeneCards, the leading human gene database, and is developing an integrated database suite to complement GeneCards that will also include the LifeMapTM database of embryonic development, stem cell research, and regenerative medicine, and MalaCards, the human disease database. LifeMap will also market BioTime research products. BioTime's lead product, Hextend, is a blood plasma volume expander manufactured and distributed in the U.S. by Hospira, Inc. and in South Korea by CJ CheilJedang Corporation under exclusive licensing agreements. Additional information about BioTime can be found on the web at http://www.biotimeinc.com.

Forward-Looking Statements

More:
BioTime Signs Agreements with Jade Therapeutics for Ophthalmological Drug Delivery Applications of HyStem® Technology

Read More...

Juventas Therapeutics Raises $22.2 Million Series B Financing

Monday, July 16th, 2012

CLEVELAND, July 16, 2012 /PRNewswire/ --Juventas Therapeutics, a clinical-stage regenerative medicine company, announced today that it has closed a $22.2 million Series B financing that was co-led by Triathlon Medical Venture Partners and New Science Ventures. All previous venture firms, including Fletcher Spaght Ventures, Reservoir Venture Partners and Early Stage Partners participated in the round. Also joining the syndicate are new investors Takeda Ventures, Venture Investors, Global Cardiovascular Innovation Center, Tri-State Growth Fund, Glengary and select angel investors.

The proceeds will fund completion of ongoing Phase II clinical trials investigating the use of JVS-100 in treating patients with chronic heart failure or critical limb ischemia. Both trials are actively enrolling patients. JVS-100, the Company's lead product, encodes Stromal cell-Derived Factor 1 (SDF-1) which has been shown to repair damaged tissue through recruitment of circulating stem cells to the site of injury, prevent ongoing cell death and restore blood flow.

"The funds raised through this Series B will carry us through significant clinical milestones," states Rahul Aras, Ph.D., President & CEO of Juventas Therapeutics. "The fact that the round was oversubscribed and added several new investors to an already strong syndicate speaks to the excitement that is building around regenerative medicine, and specifically, the unique factor-based strategy employed by Juventas."

Clinical studies by several companies have demonstrated that delivery of adult stem cells to patients suffering from heart failure or critical limb ischemia has the potential to promote tissue repair and improve clinical outcomes. In spite of these clinical findings, questions remain about the affordability and accessibility of cell-based therapy for the general population. Rather than deliver cells, Juventas delivers JVS-100, which activates natural stem cell based repair pathways that lie dormant in a patient. This allows the benefits of regenerative medicine without the complexity of cell therapy. While currently focused on cardiovascular disease, the clinical potential for JVS-100 is broad.

Last year, Juventas Therapeutics spun-off SironRX Therapeutics to focus on development of dermal and bone related applications for JVS-100. In 2011, SironRX raised $3.4 million through a Series A financing led by North Coast Angel Fund and received $1 million in grant funding through the Ohio Third Frontier program. The Company is currently enrolling a Phase Ib randomized, placebo-controlled, double-blinded clinical trial investigating dermal JVS-100 delivery to accelerate wound closure and reduce scar formation.

"Juventas provides a commercially viable solution to delivering regenerative therapies and has the potential to address a broad range of clinical applications" states George Emont, Managing Partner for Triathlon Medical Ventures and Chairman for Juventas. We are pleased to have raised these funds for the two Phase II clinical trials and additional development as the company looks toward its Phase III trials and eventual commercialization".

About Juventas TherapeuticsJuventas Therapeutics, (www.juventasinc.com) headquartered in Cleveland, OH, is a privately-held clinical-stage biotechnology company developing a pipeline of regenerative therapies to treat lifethreatening diseases. Founded in 2007 with an exclusive license from Cleveland Clinic, Juventas has transitioned its therapeutic platform from concept to initiation of mid-stage clinical trials for treatment of heart failure and critical limb ischemia. Investors include New Science Ventures, Takeda Ventures, Triathlon Medical Venture Partners, Venture Investors, Early Stage Partners, Fletcher Spaght Ventures, Reservoir Venture Partners, Glengary, The Global Cardiovascular Innovation Center, Tri-State Growth Fund, North Coast Angel Fund, X Gen Ltd., JumpStart Inc., and Blue Chip Venture Co. The company has received non-dilutive grant support through the Ohio Third Frontier-funded Cleveland Clinic Ohio BioValidation Fund, Global Cardiovascular Innovation Center and Center for Stem Cell & Regenerative Medicine.

Continue reading here:
Juventas Therapeutics Raises $22.2 Million Series B Financing

Read More...

ACT Announces First Stargardt Patient Treated With Higher Dosage of Embryonic Stem Cell-Derived Retinal Pigment …

Thursday, July 12th, 2012

MARLBOROUGH, Mass.--(BUSINESS WIRE)--

Advanced Cell Technology, Inc. (ACT; OTCBB: ACTC), a leader in the field of regenerative medicine, today announced treatment of the fourth patient, the first in the second patient cohort, in its U.S. clinical trial for Stargardts Macular Dystrophy (SMD). The surgery was performed on Wednesday, July 11 at Wills Eye Institute in Philadelphia, by a surgical team lead by Carl D. Regillo, MD, FACS, director of the Wills Eye Clinical Retina Research Unit, attending surgeon in the Wills Eye Retina Service at the Wills Eye Institute, and professor of ophthalmology at Thomas Jefferson University. In keeping with trial protocol, the patient was injected with 100,000 human embryonic stem cell-derived retinal pigment epithelial (RPE) cells, as compared with the 50,000 cell dose used in the three patients of the first cohort. The outpatient transplantation surgery was performed successfully and the patient is recovering uneventfully.

It is very gratifying to have second cohort, higher-dosage patient treatment underway in our U.S. clinical trial for SMD, commented Gary Rabin, chairman and CEO of ACT. We are also pleased to be working with Dr. Regillo and his team at Wills Eye Institute, a truly first-class institution that is ranked as one of the best ophthalmology hospitals in the country byU.S. News & World Report.

Initiated in July of last year, the Phase I/II trial is designed to determine the safety and tolerability of hESC-derived RPE cells following sub-retinal transplantation in patients with SMD at 12 months, the studys primary endpoint. It will involve a total of 12 patients, with cohorts of three patients each in an ascending dosage format. As part of its RPE clinical program, the company is concurrently conducting a clinical trial for dry age-related macular degeneration and second trial for SMD in the United Kingdom.

Doubling the cell dosage marks an important milestone in our clinical programs, said Robert Lanza, MD, ACTs chief scientific officer. We look forward to continued progress and safety findings in the coming months, in both our U.S. and European trials.

Further information about patient eligibility for ACTs SMD study and the concurrent studies in the U.S. and Europe (for dry age-related macular degeneration and SMD, respectively) are available at http://www.clinicaltrials.gov, with the following Identifiers: NCT01345006 (U.S. SMD), NCT01344993 (dry AMD), and NCT01469832 (E.U. SMD).

About Stargardts Disease

Stargardts disease or Stargardts Macular Dystrophy is a genetic disease that causes progressive vision loss, usually starting in children between 10 to 20 years of age. Eventually, blindness results from photoreceptor loss associated with degeneration in the pigmented layer of the retina, called the retinal pigment epithelium, which is the site of damage that the company believes the hESC-derived RPE may be able to target for repair after administration.

About Advanced Cell Technology, Inc.

Advanced Cell Technology, Inc. is a biotechnology company applying cellular technology in the field of regenerative medicine. For more information, visit http://www.advancedcell.com.

See the article here:
ACT Announces First Stargardt Patient Treated With Higher Dosage of Embryonic Stem Cell-Derived Retinal Pigment ...

Read More...

Discovery of epigenetic links in cell-fate decisions of adult stem cells paves way for new osteoporosis treatments

Monday, July 9th, 2012

ScienceDaily (July 9, 2012) The ability to control whether certain stem cells ultimately become bone cells holds great promise for regenerative medicine and potential therapies aimed at treating metabolic bone diseases.

Now, UCLA School of Dentistry professor and leading cancer scientist Dr. Cun-Yu Wang and his research team have made a significant breakthrough in that direction. The scientists have discovered two key epigenetic regulating genes that govern the cell-fate determination of human bone marrow stem cells.

Wang's new research is featured on the cover of the July 6 issue of Cell Stem Cell, the affiliated journal of the International Society for Stem Cell Research.

The groundbreaking study grew out of Wang's desire to better understand the epigenetic regulation of stem cell differentiation, in which the structure of genes is modified while the sequence of the DNA is not. He and his team found that KDM4B and KDM6B, two gene-activating enzymes, can promote stem cells' differentiation into bone cells by removing methyl markers from histone proteins. This process occurs through the activation of certain genes favoring a commitment to one lineage and the concurrent deactivation of genes favoring other lineages.

The findings imply that chemical manipulation of these gene-activating enzymes may allow stem cells to differentiate specifically into bone cells, while inhibiting their differentiation into fat cells. The group's research could pave the way toward identifying potential therapeutic targets for stem cell-mediated regenerative medicine, as well as the treatment of bone disorders like osteoporosis, the most common type of metabolic bone disease.

"Through our recent discoveries on the lineage decisions of human bone marrow stem cells, we may be more effective in utilizing these stem cells for regenerative medicine for bone diseases such as osteoporosis, as well as for bone reconstruction," Wang said. "However, while we know certain genes must be turned on in order for the cells to become bone-forming cells, as opposed to fat cells, we have only a few clues as to how those genes are switched on."

The research group, through its study of aging mice, found that the two enzymes KDM4B and KDM6B could specifically activate genes that promote stem cell differentiation toward bone, while blocking the route toward fat.

"Interestingly, in our aged mice, as well as osteoporotic mice, we observed a higher amount of silencing histone methyl groups which were normally removed by the enzymes KDM4B and KDM6B in young and healthier mice," Wang said. "And since these enzymes can be easily modified chemically, they may become potential therapeutic targets in tissue regeneration and treatment for osteoporosis."

"The discovery that Dr. Wang and his team have made has considerable implications for craniofacial bone regeneration and treatment for osteoporosis," said Dr. No-Hee Park, dean of the UCLA School of Dentistry. "As a large portion of our population reaches an age where osteoporosis and gum disease could be major health problems, advancements in aging-related treatment are very valuable."

Professor Wang holds the No-Hee Park Endowed Chair in Dentistry at the UCLA School of Dentistry, where he is also chair of the division of oral biology and medicine and the associate dean for graduate studies.

The rest is here:
Discovery of epigenetic links in cell-fate decisions of adult stem cells paves way for new osteoporosis treatments

Read More...

ACT Secures Approval to Proceed with Increased RPE Dosage for Patients in Clinical Trial for Dry AMD

Monday, July 9th, 2012

MARLBOROUGH, Mass.--(BUSINESS WIRE)--

Advanced Cell Technology, Inc. (ACT; OTCBB: ACTC), a leader in the field of regenerative medicine, announced today that the Data and Safety Monitoring Board (DSMB), an independent group of medical experts closely monitoring the companys three ongoing clinical trials, has authorized the company to move forward with enrollment and treatment of additional patients in its clinical trial for dry age-related macular degeneration (dry AMD). ACT will proceed with patient screening and enrollment for the second cohort, who, in keeping with trial protocol, will be injected with 100,000 retinal pigment epithelial (RPE) cells derived from human embryonic stem cells (hESCs), as compared with the 50,000-cell dose used in the first cohort.

DSMB authorization to move to the higher dosage of cells in our clinical trial for dry AMD represents a significant milestone for our clinical programs, commented Gary Rabin, chairman and CEO of ACT. Our RPE program is now advancing rapidly, as we are now screening at multiple ophthalmological centers for the fourth surgery in both our dry AMD trial and our U.S. SMD trial, with our E.U. SMD trial, which was initiated much later, not far behind.

The trial is a prospective, open-label study, designed to determine the safety and tolerability of hESC-derived RPE cells following sub-retinal transplantation into patients with dry AMD at 12 months, the studys primary endpoint. The three procedures comprising the first cohort of patients were all conducted at University of California at Los Angeles (UCLA), by Steven Schwartz, M.D., Ahmanson Professor of Ophthalmology at the David Geffen School of Medicine at UCLA and retina division chief at UCLA's Jules Stein Eye Institute. It was announced in May that Mass Eye and Ear is an additional site for the trial.

Mr. Rabin added, Dry AMD represents one of the largest unmet ophthalmological needs in the world, with a potential market of $25 billion in the U.S. and Europe, alone, and this DSMB approval is a big step toward being able to potentially address that massive medical need.

ACT is conducting a total of three clinical trials in the U.S. and Europe using hESC-derived RPE cells to treat forms of macular degeneration. Each trial will enroll a total of 12 patients, with cohorts of three patients each in an ascending dosage format. Treatment of the final patient of the first cohort in the companys dry AMD trial was announced on April 20. On June 29, the second SMD patient enrolled in the Companys E.U. clinical trial was treated at Moorfields Eye Hospital in London, U.K., and on April 24 the company announced DSMB approval to treat the second patient cohort in its U.S. SMD trial.

Further information about patient eligibility for ACTs dry AMD study and the companys concurrent SMD studies in the U.S. and E.U. is available at http://www.clinicaltrials.gov, with the following Identifiers: NCT01344993 (dry AMD), NCT01345006 (U.S. SMD), and NCT01469832 (E.U. SMD).

About Advanced Cell Technology, Inc.

Advanced Cell Technology, Inc., is a biotechnology company applying cellular technology in the field of regenerative medicine. For more information, visit http://www.advancedcell.com.

Forward-Looking Statements

Read more:
ACT Secures Approval to Proceed with Increased RPE Dosage for Patients in Clinical Trial for Dry AMD

Read More...

UCLA researcher discovers epigenetic links in cell-fate decisions of adult stem cells

Monday, July 9th, 2012

Public release date: 6-Jul-2012 [ | E-mail | Share ]

Contact: Brianna Deane bdeane@dentistry.ucla.edu 310-206-0835 University of California - Los Angeles

The ability to control whether certain stem cells ultimately become bone cells holds great promise for regenerative medicine and potential therapies aimed at treating metabolic bone diseases.

Now, UCLA School of Dentistry professor and leading cancer scientist Dr. Cun-Yu Wang and his research team have made a significant breakthrough in that direction. The scientists have discovered two key epigenetic regulating genes that govern the cell-fate determination of human bone marrow stem cells.

Wang's new research is featured on the cover of the July 6 issue of Cell Stem Cell, the affiliated journal of the International Society for Stem Cell Research.

The groundbreaking study grew out of Wang's desire to better understand the epigenetic regulation of stem cell differentiation, in which the structure of genes is modified while the sequence of the DNA is not. He and his team found that KDM4B and KDM6B, two gene-activating enzymes, can promote stem cells' differentiation into bone cells by removing methyl markers from histone proteins. This process occurs through the activation of certain genes favoring a commitment to one lineage and the concurrent deactivation of genes favoring other lineages.

The findings imply that chemical manipulation of these gene-activating enzymes may allow stem cells to differentiate specifically into bone cells, while inhibiting their differentiation into fat cells. The group's research could pave the way toward identifying potential therapeutic targets for stem cellmediated regenerative medicine, as well as the treatment of bone disorders like osteoporosis, the most common type of metabolic bone disease.

"Through our recent discoveries on the lineage decisions of human bone marrow stem cells, we may be more effective in utilizing these stem cells for regenerative medicine for bone diseases such as osteoporosis, as well as for bone reconstruction," Wang said. "However, while we know certain genes must be turned on in order for the cells to become bone-forming cells, as opposed to fat cells, we have only a few clues as to how those genes are switched on."

The research group, through its study of aging mice, found that the two enzymes KDM4B and KDM6B could specifically activate genes that promote stem cell differentiation toward bone, while blocking the route toward fat.

"Interestingly, in our aged mice, as well as osteoporotic mice, we observed a higher amount of silencing histone methyl groups which were normally removed by the enzymes KDM4B and KDM6B in young and healthier mice," Wang said. "And since these enzymes can be easily modified chemically, they may become potential therapeutic targets in tissue regeneration and treatment for osteoporosis."

Original post:
UCLA researcher discovers epigenetic links in cell-fate decisions of adult stem cells

Read More...

ACT Announces Second Patient with Stargardt’s Disease Treated in EU Clinical Trial

Monday, July 2nd, 2012

MARLBOROUGH, Mass.--(BUSINESS WIRE)--

Advanced Cell Technology, Inc. (ACT; OTCBB: ACTC), a leader in the field of regenerative medicine, today announced treatment of the second patient in its Phase 1/2 clinical trial for Stargardts macular dystrophy (SMD) using retinal pigment epithelial (RPE) cells derived from human embryonic stem cells (hESCs). The surgery was performed on Friday, June 29 at Moorfields Eye Hospital in London, the same site as the first patient treatment in January, by a team of surgeons led by Professor James Bainbridge, consultant surgeon at Moorfields and Chair of Retinal Studies at University College London. The procedure was successfully performed without any complications. ACT and Moorfields Eye Hospital recently received clearance from the Data and Safety Monitoring Board (DSMB) to treat the final two patients in the first cohort of this clinical trial.

We are very pleased to continue our forward momentum with both our U.S. trials and our European trial, commented Gary Rabin, chairman and CEO. It was less than a month ago that we received DSMB approval to treat the second and third patients in our E.U. trial, and it is very gratifying to have already completed dosing of the second. It is a pleasure to be working with Professor Bainbridge and the rest of his team at Moorfields Eye Hospital, and we continue to be encouraged by the steady progress of the trial thus far.

The Phase 1/2 trial is designed to determine the safety and tolerability of hESC-derived RPE cells following sub-retinal transplantation in patients with SMD at 12 months, the studys primary endpoint. It will involve a total of 12 patients, with cohorts of three patients each in an ascending dosage format. It is similar in design to the U.S. trial for SMD that was initiated in July 2011.

The European Medicines Agency's (EMA) Committee for Orphan Medicinal Products (COMP) has officially designated ACT's human embryonic stem cell (hESC)-derived retinal pigment epithelial (RPE) cells as an orphan medicinal product for the treatment of Stargardt's Macular Dystrophy (SMD).

More information on the status of the companys clinical trials will be posted today on Mr. Rabins Chairmans blog.

About Stargardts Disease Stargardts disease or Stargardts Macular Dystrophy is a genetic disease that causes progressive vision loss, usually starting in children between 10 to 20 years of age. Eventually, blindness results from photoreceptor loss associated with degeneration in the pigmented layer of the retina, called the retinal pigment epithelium, which is the site of damage that the company believes the hESC-derived RPE may be able to target for repair after administration.

About Advanced Cell Technology, Inc. Advanced Cell Technology, Inc. is a biotechnology company applying cellular technology in the field of regenerative medicine. For more information, visit http://www.advancedcell.com.

Forward-Looking Statements Statements in this news release regarding future financial and operating results, future growth in research and development programs, potential applications of our technology, opportunities for the company and any other statements about the future expectations, beliefs, goals, plans, or prospects expressed by management constitute forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995. Any statements that are not statements of historical fact (including statements containing the words will, believes, plans, anticipates, expects, estimates, and similar expressions) should also be considered to be forward-looking statements. There are a number of important factors that could cause actual results or events to differ materially from those indicated by such forward-looking statements, including: limited operating history, need for future capital, risks inherent in the development and commercialization of potential products, protection of our intellectual property, and economic conditions generally. Additional information on potential factors that could affect our results and other risks and uncertainties are detailed from time to time in the companys periodic reports, including the report on Form 10-K for the year ended December 31, 2011. Forward-looking statements are based on the beliefs, opinions, and expectations of the companys management at the time they are made, and the company does not assume any obligation to update its forward-looking statements if those beliefs, opinions, expectations, or other circumstances should change. Forward-looking statements are based on the beliefs, opinions, and expectations of the companys management at the time they are made, and the company does not assume any obligation to update its forward-looking statements if those beliefs, opinions, expectations, or other circumstances should change. There can be no assurance that the Companys clinical trials will be successful.

Read more here:
ACT Announces Second Patient with Stargardt’s Disease Treated in EU Clinical Trial

Read More...

Regenerative medicine pioneer continues changing lives with first successful laryngotracheal implants

Thursday, June 28th, 2012

Harvard Bioscience's "InBreath" Bioreactors Used in World's First Successful Regenerated Laryngotracheal Transplants

First Two Transplants Performed in Government-Approved Clinical Trial in Russia

HOLLISTON, Mass., June 26, 2012 (GLOBE NEWSWIRE) -- Harvard Bioscience, Inc. (HBIO), a global developer, manufacturer, and marketer of a broad range of tools to advance life science research and regenerative medicine, announces that its "InBreath" bioreactors were used for the world's first and second successful laryngotracheal implants, using synthetic laryngotracheal scaffolds seeded with cells taken from the patients' bone marrow. The surgeries took place at Krasnodar Regional Hospital in Krasnodar, Russia on June 19th and June 21st. The recipients of the implants, Julia T. and Aleksander Z., are recovering well. The implants in the procedures were grown in bioreactors developed by the regenerative medicine device business of Harvard Bioscience.

The transplants, which required more than a half-year of preparation, were performed on the first two patients enrolled in an ongoing clinical trial at Krasnodar Regional Hospital. The Russian Ministry of Health has approved a clinical protocol for an unlimited number of patients in this trial, all of which will involve trachea procedures.

Each bioreactor was specifically adapted by Harvard Bioscience to the clinical requirements for each patient. Each bioreactor was loaded with a synthetic scaffold in the shape of the patient's original organ. The scaffolds were then seeded with the patient's own stem cells. Over the course of about two days, the bioreactor promoted proper cell seeding and development. Because the patients' own stem cells were used, their bodies have accepted the transplants without the use of immunosuppressive drugs.

A photo accompanying this release is available at http://www.globenewswire.com/newsroom/prs/?pkgid=13437

The procedures are the result of a global collaboration involving organizations in the US, Sweden, Russia, Germany, and Italy:

-- The bioreactors were developed, manufactured and prepared by teams at Hugo Sachs Elektronik, a German subsidiary of Harvard Bioscience and at Harvard Bioscience, based in Massachusetts, U.S.A.

-- The scaffolds were created by US-based Nanofiber Solutions.

-- The principal transplant surgeon and main coordinator for both procedures was Dr. Paolo Macchiarini, Professor of Regenerative Surgery at Karolinska Institute in Stockholm.

Originally posted here:
Regenerative medicine pioneer continues changing lives with first successful laryngotracheal implants

Read More...

Photo Release — Harvard Bioscience's "InBreath" Bioreactors Used in World's First Successful Regenerated …

Tuesday, June 26th, 2012

HOLLISTON, Mass., June 26, 2012 (GLOBE NEWSWIRE) -- Harvard Bioscience, Inc. (HBIO), a global developer, manufacturer, and marketer of a broad range of tools to advance life science research and regenerative medicine, announces that its "InBreath" bioreactors were used for the world's first and second successful laryngotracheal implants, using synthetic laryngotracheal scaffolds seeded with cells taken from the patients' bone marrow. The surgeries took place at Krasnodar Regional Hospital in Krasnodar, Russia on June 19th and June 21st. The recipients of the implants, Julia T. and Aleksander Z., are recovering well. The implants in the procedures were grown in bioreactors developed by the regenerative medicine device business of Harvard Bioscience.

The transplants, which required more than a half-year of preparation, were performed on the first two patients enrolled in an ongoing clinical trial at Krasnodar Regional Hospital. The Russian Ministry of Health has approved a clinical protocol for an unlimited number of patients in this trial, all of which will involve trachea procedures.

Each bioreactor was specifically adapted by Harvard Bioscience to the clinical requirements for each patient. Each bioreactor was loaded with a synthetic scaffold in the shape of the patient's original organ. The scaffolds were then seeded with the patient's own stem cells. Over the course of about two days, the bioreactor promoted proper cell seeding and development. Because the patients' own stem cells were used, their bodies have accepted the transplants without the use of immunosuppressive drugs.

A photo accompanying this release is available at http://www.globenewswire.com/newsroom/prs/?pkgid=13437

The procedures are the result of a global collaboration involving organizations in the US, Sweden, Russia, Germany, and Italy:

-- The bioreactors were developed, manufactured and prepared by teams at Hugo Sachs Elektronik, a German subsidiary of Harvard Bioscience and at Harvard Bioscience, based in Massachusetts, U.S.A.

-- The scaffolds were created by US-based Nanofiber Solutions.

-- The principal transplant surgeon and main coordinator for both procedures was Dr. Paolo Macchiarini, Professor of Regenerative Surgery at Karolinska Institute in Stockholm.

-- Dr. Macchiarini was assisted by a team of surgeons including Dr. Vladimir Porhanov, Chief Doctor of Krasnodar Regional Hospital and head of the Oncological and Thoracic Department of Kuban State Medical University; thoracic surgeons Dr. Igor Polyakov and Dr. Nikolay Naryzhnyi, of Krasnodar Regional Hospital; Dr. Anatoly Zavrazhnov, deputy chief of Krasnodar Regional Hospital; and Dr. Sergey Sitnick, anesthesiologist and head of Krasnodar Regional Hospital's intensive care unit.

-- Dr. Alessandra Bianco at University of Rome, Tor Vergata, performed mechanical testing during scaffold development.

Read the rest here:
Photo Release -- Harvard Bioscience's "InBreath" Bioreactors Used in World's First Successful Regenerated ...

Read More...

Bioreactor Design and Bioprocess Controls for Industrialized Cell Processing

Sunday, June 17th, 2012

Tweet




A short and sweet note to point you to a great article on bioreactor technologies related to cell therapy bioprocessing by CTG consultant and Director of Stem Cell-based Drug Discovery, John E. Hambor, who you can now follow on Twitter @StemCellonDrugs.


"Bioreactor Design and Bioprocess Controls for Industrialized Cell Processing" was published in the June issue of BioProcess International.  


The BPI team has made a real and meaningful commitment to representing cell therapy bioprocessing and we applaud them for their contribution to this emerging discipline.




If this is a topic of interest to you, I recommend you also check out a conference being held this Fall by BPI's sister company, IBC LifeSciences, entitled "Cell Therapy BioProcessing" to be held September 11-12 in Arlington, Virginia.





http://www.celltherapyblog.com hosted by http://www.celltherapygroup.com

Source:
http://feeds.feedburner.com/CellTherapyBlog

Read More...

Bioreactor Design and Bioprocess Controls for Industrialized Cell Processing

Sunday, June 17th, 2012

Tweet




A short and sweet note to point you to a great article on bioreactor technologies related to cell therapy bioprocessing by CTG consultant and Director of Stem Cell-based Drug Discovery, John E. Hambor, who you can now follow on Twitter @StemCellonDrugs.


"Bioreactor Design and Bioprocess Controls for Industrialized Cell Processing" was published in the June issue of BioProcess International.  


The BPI team has made a real and meaningful commitment to representing cell therapy bioprocessing and we applaud them for their contribution to this emerging discipline.




If this is a topic of interest to you, I recommend you also check out a conference being held this Fall by BPI's sister company, IBC LifeSciences, entitled "Cell Therapy BioProcessing" to be held September 11-12 in Arlington, Virginia.





http://www.celltherapyblog.com hosted by http://www.celltherapygroup.com

Source:
http://feeds.feedburner.com/CellTherapyBlog

Read More...

Advanced Cell Technology to Present at the 2012 Bio International Convention and the Clinical Outlooks for …

Thursday, June 14th, 2012

MARLBOROUGH, Mass.--(BUSINESS WIRE)--

Advanced Cell Technology, Inc. (ACT; OTCBB: ACTC), a leader in the field of regenerative medicine, announced today that the company is presenting at two upcoming conferences: the 2012 Bio International Convention and Clinical Outlooks for Regenerative Medicine meeting, both in Boston, on Tuesday, June 19. The presentations will cover the companys three ongoing clinical trials using human embryonic stem cell-derived retinal pigment epithelial cells to treat macular degeneration, and other programs.

Gary Rabin, chairman and CEO, will present at the 2012 Bio International Convention on Tuesday, June 19 at 8:15 a.m. EDT, at the Boston Convention & Exhibition Center.

Matthew Vincent, Ph.D., director of business development, will present at the Clinical Outlooks for Regenerative Medicine meeting at 9:15 a.m. EDT on the same date, at the Starr Center, Schepens Eye Research Institute, at 185 Cambridge Street in Boston.

Both presentation slide decks will be available on the conference presentations section of the ACT website.

About Advanced Cell Technology, Inc.

Advanced Cell Technology, Inc., is a biotechnology company applying cellular technology in the field of regenerative medicine. For more information, visit http://www.advancedcell.com.

Forward-Looking Statements

Statements in this news release regarding future financial and operating results, future growth in research and development programs, potential applications of our technology, opportunities for the company and any other statements about the future expectations, beliefs, goals, plans, or prospects expressed by management constitute forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995. Any statements that are not statements of historical fact (including statements containing the words will, believes, plans, anticipates, expects, estimates, and similar expressions) should also be considered to be forward-looking statements. There are a number of important factors that could cause actual results or events to differ materially from those indicated by such forward-looking statements, including: limited operating history, need for future capital, risks inherent in the development and commercialization of potential products, protection of our intellectual property, and economic conditions generally. Additional information on potential factors that could affect our results and other risks and uncertainties are detailed from time to time in the companys periodic reports, including the report on Form 10-K for the year ended December 31, 2011. Forward-looking statements are based on the beliefs, opinions, and expectations of the companys management at the time they are made, and the company does not assume any obligation to update its forward-looking statements if those beliefs, opinions, expectations, or other circumstances should change. Forward-looking statements are based on the beliefs, opinions, and expectations of the companys management at the time they are made, and the company does not assume any obligation to update its forward-looking statements if those beliefs, opinions, expectations, or other circumstances should change. There can be no assurance that the Companys clinical trials will be successful.

Excerpt from:
Advanced Cell Technology to Present at the 2012 Bio International Convention and the Clinical Outlooks for ...

Read More...

Biostem U.S., Corporation Engages Acropolis Agency to Assist in Implementing Its International Marketing Plan

Saturday, June 9th, 2012

CLEARWATER, FL--(Marketwire -06/08/12)- Biostem U.S., Corporation, (HAIR) (HAIR) (Biostem, the Company), a fully reporting public company in the stem cell regenerative medicine sciences sector, today reported that it has engaged Acropolis Inc. http://www.acropolisinc.com, a full-service advertising agency located in Orlando, Florida, to lend their expertise in brand building, marketing, and advertising development and placement.

Biostem Chief Executive Officer Dwight Brunoehler stated, "After several months of interviewing prospective agencies, we have come to the conclusion that Acropolis is the one to assist us in executing our plans. Their notable work in multiple media areas is impressive, to say the least. Their client list including The University of Florida, Arby's Restaurants, and the City of Orlando, speaks for itself."

Acropolis Principal, Scott Major, said, "This is a great fit for Acropolis. Our entire team loves the Biostem business approach in the incredible field of regenerative medicine. The hair re-growth field in which we will be marketing the Biostem technology is enormous. We are pleased to be a part of Biostem's expansion."

About Biostem U.S. CorporationBiostem U.S., Corporation is a fully reporting Nevada corporation with offices in Clearwater, Florida. Biostem is a technology licensing company with proprietary technology centered on providing hair re-growth using human stem cells. The company also intends to train and license selected physicians to provide Regenerative Cellular Therapy treatments to assist the body's natural approach to healing tendons, ligaments, joints and muscle injuries by using the patient's own stem cells. Biostem U.S., Corporation is seeking to expand its operations worldwide through licensing of its proprietary technology and acquisition of existing stem cell related facilities. The company's goal is to operate in the international biotech market, focusing on the rapidly growing regenerative medicine field, using ethically sourced adult stem cells to improve the quality and longevity of life for all mankind.

For further information, contact Fox Communications Group at 310-974-6821, or view the Biostem website at http://www.biostemus.com.

The rest is here:
Biostem U.S., Corporation Engages Acropolis Agency to Assist in Implementing Its International Marketing Plan

Read More...

Bio-Matrix' Regen BioPharma Unit Establishes Scientific Advisory Board and Research Relationship With Clinartis in …

Thursday, June 7th, 2012

SAN DIEGO, CA--(Marketwire -06/06/12)-

Bio-Matrix Scientific Group (BMSN) (BMSN) announced today that its Regen BioPharma unit has appointed three internationally renowned regenerative medicine experts to its Scientific Advisory Board (SAB). The new SAB members appointed are David White, M.D., PhD; Wei-Ping Min, M.D., PhD and Vlad Bogin, M.D.

Dr. White is a member of the Surgery and Immunology faculty of The Schulic School of Medicine, University of Western Ontario. He is one of the leading experts on using regenerative medicine transplant procedures to treat pancreatic conditions, including diabetes. He is also the Chief Scientific Officer of Sernova Corp and was formerly a Therapeutic Area Head for Novartis. He received the B.Sc. degree from the University of Surrey and the M.D. and PhD degrees from Cambridge University.

Dr. Wei-Ping Min is Professor at the Lawson Health Research Center in Canada. He is inventor of siRNA therapeutics in the area of immunology and cell therapy to inhibit disease modalities. He is also the founder/cofounder of several biotech companies including MedVax Pharma Corp, and ToleroTech Inc. Dr. Min brings detailed scientific and mechanistic expertise to Regen BioPharma. He earned graduate and medical degrees from Nanchang University Medical School and the PhD degree from Kyushu University.

Dr. Bogin is the President and CEO of Cromos Pharma, a contract research organization that specializes in biopharmaceutical clinical outsourcing. He was formerly the Director of Boehringer Ingelheim in charge of the phase IV program for Dabigatran Etexilate. He studied at the Yale University School of Medicine and the University of Rochester School of Medicine and Dentistry.

Regen BioPharma has also entered into a Letter of Intent with Clinartis LLC, a global contract research organization (CRO). Clinartis is a full service global CRO serving pharmaceutical, biotech and medical device companies to support Phase I - IV drug and device clinical trials in the US and Europe.

The SAB and Clinartis will assist the Company in its acquisition of intellectual property related to stem cells, translation of the intellectual property into treatments, and optimizing the value of these new therapies.

"The potential of regenerative medicine products is significant," says Christopher Mizer, the President of Regen BioPharma. "We believe that strategic collaborative relationships between Regen BioPharma, our SAB and Clinartis will facilitate our efforts to create value from that potential by developing proprietary, life sciences technologies and demonstrating their clinical utility."

"Our strong SAB has scientific and regulatory expertise, coupled with Clinartis' access to world-class researchers and investigators will be very instrumental for accelerated commercialization of the cutting-edge biotechnology research on which Regen BioPharma is focused," according to Bio-Matrix Scientific Group's Chairman & CEO David Koos.

About Bio-Matrix Scientific Group Inc. and Regen BioPharma, Inc.:

See the article here:
Bio-Matrix' Regen BioPharma Unit Establishes Scientific Advisory Board and Research Relationship With Clinartis in ...

Read More...

AuxoCell Laboratories Licenses Umbilical Cord Tissue Stem Cell Service to Brazil’s CordVida

Thursday, June 7th, 2012

CAMBRIDGE, Mass.--(BUSINESS WIRE)--

Leading stem cell therapeutic and regenerative medicine company, AuxoCell Laboratories, Inc., today announced an agreement with CordVida, a Brazilian stem cell cryopreservation company, which will allow CordVida to expand its services. Families who select CordVida to store umbilical cord blood will now have the opportunity to bank stem cells from an additional source cord tissue. With this agreement, AuxoCell broadens its international reach to South America.

At AuxoCell, we are pleased by the opportunity to provide this groundbreaking technology to families around the globe, said Rouzbeh R. Taghizadeh, PhD, Chief Scientific Officer of AuxoCell Laboratories, Inc. CordVida is Brazils premier cord blood bank and adheres to the highest quality standards. It is for that reason that we have selected them as our exclusive partner in Brazil.

Cord tissue has an abundant source of mesenchymal stem cells (MSCs). Currently, there is a significant amount of research underway focused on mesenchymal stem cells extracted from cord tissue. MSCs are rapidly becoming the leading stem cell in regenerative medicine studies, and MSCs from a variety of sources are in use in over 150 clinical trials. The AuxoCell cord tissue technology represents the gold standard in the industry, as its technology prepares stem cells that are ready for immediate use, if needed.

CordVida is excited to be the first company in Brazil to offer storage of multiple kinds of stem cells, says Roberto Waddington, CEO for CordVida. Considering the enormous therapeutic prospects of cord tissue derived MSCs, our clients in the future will now rely on a much wider array of potential therapeutic applications.We are proud that AuxoCell selected CordVidaas its exclusive technology partner for all of Brazil.

Banking umbilical cord tissue stem cells offers clients a chance to reap the benefits of research that is being conducted on MSCs. Additionally, AuxoCells own studies have shown that a combination of cord tissue mesenchymal stem cells derived using AuxoCells validated processing SOPs and hematapoietic stem cells (HSCs) from the cord blood enhances the engraftment of the cord blood HSCs.

About AuxoCell

AuxoCell Laboratories, Inc. (AuxoCell) is a leading stem cell therapeutic and regenerative medicine company located in Massachusetts. AuxoCell's primary research focus is to develop the enormous therapeutic potential of the primitive stem cells found in the Wharton's Jelly of the human umbilical cord. With exclusive patent rights and proprietary processing protocols, AuxoCell is uniquely situated to offer the very best in cord tissue stem cell banking. Through strategic partnerships with both private and public cord blood banks, stem cell centers, and research laboratories around the world, AuxoCell strives every day to bring novel stem cell therapies from the bench to the bedside. Additional information is available through HYPERLINK http://www.auxocell.com or at (617) 610-9000.

About CordVida

Founded in 2004, CordVida is the premier stem cell cryopreservation company in Brazil with 10.000 umbilical cord blood units stored. It is the cord blood bank of choice for key doctors in Brazil. Committed to the highest global quality standards, CordVida has been AABB accredited since 2008. Half of the transplants made in Brazil using private cord blood units have been made with units stored in CordVida.

View post:
AuxoCell Laboratories Licenses Umbilical Cord Tissue Stem Cell Service to Brazil’s CordVida

Read More...

Biostem U.S., Corporation Presents Scientific and Medical Board of Advisors Publications

Saturday, June 2nd, 2012

CLEARWATER, FL--(Marketwire -06/01/12)- Biostem U.S., Corporation (HAIR) (HAIR) (Biostem, the Company), a fully reporting public company in the stem cell regenerative medicine science sector, has made its Scientific and Medical Board of Advisors publications available on the company website, http://www.biostemus.com.

Chief Executive Officer Dwight Brunoehler stated, "The company is very proud of the many contributions its SAMBA members have made, and continue to make, to the medical community. As their publications and credentials show, this is a very prestigious and influential group. Having worked with them in past projects and now at Biostem, I know them all to be active participants in the development and guidance of the company's objectives. Their diversified areas of expertise and backgrounds are already playing a major role in assisting the company as it moves forward into the expanding field of regenerative medicine."

About Biostem U.S., Corporation Biostem U.S., Corporation is a fully reporting Nevada corporation with offices in Clearwater, Florida. Biostem is a technology licensing company with proprietary technology centered on providing hair re-growth using human stem cells. The company also intends to train and license selected physicians to provide Regenerative Cellular Therapy treatments to assist the body's natural approach to healing tendons, ligaments, joints and muscle injuries by using the patient's own stem cells. Biostem U.S., Corporation is seeking to expand its operations worldwide through licensing of its proprietary technology and acquisition of existing stem cell related facilities. The company's goal is to operate in the international biotech market, focusing on the rapidly growing regenerative medicine field, using ethically sourced adult stem cells to improve the quality and longevity of life for all mankind.

More information on Biostem U.S., Corporation can be obtained through http://www.biostemus.com, or by calling Fox Communications Group 310-974-6821.

Excerpt from:
Biostem U.S., Corporation Presents Scientific and Medical Board of Advisors Publications

Read More...

Bioheart and Ageless Regenerative Partner to Advance Stem Cell Field With New Laboratory Training Program on June 23 …

Tuesday, May 29th, 2012

SUNRISE, Fla., May 29, 2012 (GLOBE NEWSWIRE) -- Bioheart, Inc. (OTCBB:BHRT.OB - News) announced today that it will offer another laboratory training course in partnership with the Ageless Regenerative Institute, an organization dedicated to the standardization of cell regenerative medicine, on Saturday/Sunday June 23-24, 2012. Attendees will participate in hands on, in depth training in laboratory practices in stem cell science at Bioheart, Inc.'s corporate headquarters and clean room in Sunrise, Florida. The course was designed for Laboratory technicians, Students, Physicians and Physician Assistants.

"Attendees will graduate from this one-of-a-kind course with an extensive understanding of stem cell science laboratory practices," said Kristin Comella, Chief Scientific Officer, Bioheart, Inc. "Previous attendees described the course as incredibly well orchestrated providing comprehensive know how for laboratory start up."

An emerging field with tremendous opportunities, adult stem cell research has been shown to regenerate and repair injured or diseased structures via the release of bioactive tissue growth factors and cytokines. This is the second time that The Ageless Regenerative Institute has partnered with Bioheart, Inc. to provide hands-on training in a stem cell laboratory. This course provides instruction regarding how to grow stem cells and perform quality control testing in an actual cGMP facility following FDA regulations.

The course goals and objectives include reviewing stem cell types and characteristics; learning cell culture including plating, trypsinization and harvesting, and cryopreservation; learning quality control tests including cell count, viability, flow cytometry, endotoxin, mycoplasma, sterility; and learning and performing cGMP functions including clean room maintenance, gowning and environmental monitoring.

For information on costs and to register, visit http://www.agelessregen.com or email: info@agelessregen.com.

About Bioheart, Inc.

Bioheart is committed to maintaining its leading position within the cardiovascular sector of the cell technology industry delivering cell therapies and biologics that help address congestive heart failure, lower limb ischemia, chronic heart ischemia, acute myocardial infarctions and other issues. Bioheart's goals are to cause damaged tissue to be regenerated, when possible, and to improve a patient's quality of life and reduce health care costs and hospitalizations.

Specific to biotechnology, Bioheart is focused on the discovery, development and, subject to regulatory approval, commercialization of autologous cell therapies for the treatment of chronic and acute heart damage and peripheral vascular disease. Its leading product, MyoCell, is a clinical muscle-derived cell therapy designed to populate regions of scar tissue within a patient's heart with new living cells for the purpose of improving cardiac function in chronic heart failure patients. For more information on Bioheart, visit http://www.bioheartinc.com.

About Ageless Regenerative Institute, LLC

The Ageless Regenerative Institute (ARI) is an organization dedicated to the standardization of cell regenerative medicine. The Institute promotes the development of evidence-based standards of excellence in the therapeutic use of adipose-derived stem cells through education, advocacy, and research. ARI has a highly experienced management team with experience in setting up full scale cGMP stem cell manufacturing facilities, stem cell product development & enhancement, developing point-of-care cell production systems, developing culture expanded stem cell production systems, FDA compliance, directing clinical & preclinical studies with multiple cell types for multiple indications, and more. ARI has successfully treated hundreds of patients utilizing these cellular therapies demonstrating both safety and efficacy. For more information about regenerative medicine please visit http://www.agelessregen.com.

Excerpt from:
Bioheart and Ageless Regenerative Partner to Advance Stem Cell Field With New Laboratory Training Program on June 23 ...

Read More...

Biostem U.S., Corporation Appoints Philip A. Lowry, MD as Chairman of Its Scientific and Medical Board of Advisors

Tuesday, May 29th, 2012

CLEARWATER, FL--(Marketwire -05/29/12)- Biostem U.S., Corporation, (HAIR.PK) (HAIR.PK) (Biostem, the Company), a fully reporting public company in the stem cell regenerative medicine sciences sector, today announced that Philip A. Lowry, MD, has been appointed as the Chairman of its Scientific and Medical Board of Advisors (SAMBA).

According to Biostem CEO, Dwight Brunoehler, "As Chairman, Dr. Lowry will work with a team drawn from a cross-section of medical specialties. His combination of research, academic and community practice experience make him the perfect individual to coordinate and lead the outstanding group of physicians that makes up our SAMBA. As a group, The SAMBA will guide the company to maintain the highest ethical standards in every effort, while seeking and developing new cutting edge technology based on stem cell use. I am privileged to work with Dr. Lowry, once again."

Dr. Lowry stated, "Dwight is an innovative businessman with an eye on cutting-edge stem cell technology. His history in the industry speaks for itself. I like the plan at Biostem and look forward to working with everyone involved."

Dr. Philip A. Lowry received his undergraduate degree from Harvard College before going on to the Yale University School of Medicine. His completed his internal medicine residency at the University of Virginia then pursued fellowship training in hematology and oncology there as well. During fellowship training and subsequently at the University of Massachusetts, he worked in the laboratory of Dr. Peter Quesenberry working on in vitro and in vivo studies of mouse and human stem cell biology.

Dr. Lowry twice served on the faculty at the University of Massachusetts Medical Center from 1992-1996 and from 2004-2009 as an assistant and then associate clinical professor of medicine establishing the bone marrow/stem cell transplantation program there, serving as medical director of the Cryopreservation Lab supporting the transplant program, helping to develop a cord blood banking program, and teaching and coordinating the second year medical school course in hematology and oncology. Dr. Lowry additionally has ten years experience in the community practice of hematology and oncology. In 2010, Dr. Lowry became chief of hematology/oncology for the Guthrie Health System, a three-hospital tertiary care system serving northern Pennsylvania and southern New York State. He is charged with developing a cutting-edge cancer program that can project into a traditionally rural health care delivery system.

Dr. Lowry has also maintained a career-long interest in regenerative medicine springing from his research and practice experience in stem cell biology. His new role positions him to foster further development of that field. As part of a horizontally and vertically integrated multi-specialty team, he is closely allied with colleagues in cardiology, neurology/neurosurgery, and orthopedics among others with whom he hopes to stimulate the expansion of regenerative techniques.

About Biostem U.S., Corporation

Biostem U.S., Corporation is a fully reporting Nevada corporation with offices in Clearwater, Florida. Biostem is a technology licensing company with proprietary technology centered on providing hair re-growth using human stem cells. The company also intends to train and license selected physicians to provide Regenerative Cellular Therapy treatments to assist the body's natural approach to healing tendons, ligaments, joints and muscle injuries by using the patient's own stem cells. Biostem U.S. is seeking to expand its operations worldwide through licensing of its proprietary technology and acquisition of existing stem cell-related facilities. The company's goal is to operate in the international biotech market, focusing on the rapidly growing regenerative medicine field, using ethically sourced adult stem cells to improve the quality and longevity of life for all mankind.

More information on Biostem U.S., Corporation can be obtained through http://www.biostemus.com, or by calling Fox Communications Group 310-974-6821.

Go here to see the original:
Biostem U.S., Corporation Appoints Philip A. Lowry, MD as Chairman of Its Scientific and Medical Board of Advisors

Read More...

Page 54«..1020..53545556..60..»


2025 © StemCell Therapy is proudly powered by WordPress
Entries (RSS) Comments (RSS) | Violinesth by Patrick