header logo image


Page 52«..1020..51525354..60..»

Archive for the ‘Regenerative Medicine’ Category

Translational Regenerative Medicine: Market Prospects 2012-2022

Tuesday, October 2nd, 2012

NEW YORK, Oct. 1, 2012 /PRNewswire/ -- Reportlinker.com announces that a new market research report is available in its catalogue:

Translational Regenerative Medicine: Market Prospects 2012-2022

http://www.reportlinker.com/p0595030/Translational-Regenerative-Medicine-Market-Prospects-2012-2022.html#utm_source=prnewswire&utm_medium=pr&utm_campaign=Blood_Supply,_Tissue_Banking_and_Transplantation

Report Details

New study shows you commercial potential of regenerative treatments

See what the future holds for translational regenerative medicine. Visiongain's updated report lets you assess forecasted sales at overall world market, submarket, product and regional level to 2022.

There you investigate the most lucrative areas in that research field, industry and market. Discover prospects for tissue-engineered products, stem cell treatments and gene therapy.

We pack our study with information and analysis to help your work and save you time:

Access to present and predicted trends, with commercial opportunities and prospects revealed

Data and discussions - including our revenue forecasts to 2022 - for your research, analyses and decision making

Read the original:
Translational Regenerative Medicine: Market Prospects 2012-2022

Read More...

Anticipated short-term cell therapy industry clinical milestones

Sunday, September 30th, 2012
Tweet 

What follows is an interesting but not exhaustive list of cell therapy industry clinical milestones we anticipate in the next 3-9 months as selected from the list of cell therapy products we are tracking in late-stage or post-commercial development.  


There are other commercial milestones we are monitoring as well as other clinical milestones we expect to see related to cell therapy products in earlier stages of the development pipeline that are not included below.


CellCoTec (http://www.cellcotec.com)
  • Having completed a trial in Europe of their device to enable POC production of an autologous chondrocyte cellular product in/with a biodegradable, load-bearing scaffold for the treatment of articular cartilage defects, they have now submitted their CE market application.  The CE mark application is under review and they anticipate a response in October.  
  • This device and the potential emergence of Sanofi's MACI in the European market next year may have an impact on Tigenix (EBR:TIG) most directly.



ERYtech Parma (http://www.erytech.com)

  • Their 'pivotal' phase 2/3 trial in Europe of lead product, GRASPA, for the treatment of Acute Lymphoblastic Leukemia (ALL) is scheduled for completion 2H 2012. 


GamidaCell (http://www.gamidacell.com)

  • Their 'pivotal' phase 2/3 trial in the US, Israel, and Europe of lead product, StemEx, for the treatment of leukemia and lymphoma, in joint development with Teva, completed enrollment in February and is scheduled for completion 2H 2012.  They have not been shy about the fact they expect to be in the market in 2013.


Innovacell (http://www.innovacell.com)

  • They raised over 8m Euro in April for a phase 3 trial in Europe for their lead product, ICES13, for the treatment of stress-urinary incontinence which was scheduled for a preliminary clinical data readout in Q4 2012 and be ready for market authorization in 2013. Since announcing the capital raise the company has been stone silent and no clinical trial registry has been filed.  Status unknown.


Miltenyi Biotec (www.miltenyibiotec.com)

  • Their phase 3 trial in Germany of CD133+ cells as an adjunct to CABG surgery for myocardial ischemia or coronary artery disease is scheduled for completion in January.


NovaRx (http://www.novarx.com)

  • Their phase 3 trial in US, Europe, and India of their lead product, Lucanix, for the treatment of advanced Non-small Cell Lung Cancer (NSCLC) following front-line chemotherapy is scheduled in clnicaltrials.gov for completion in October but we have learned they expect their next 'interim analysis' in February.


NuVasive (http://www.nuvasive.com)

  • They have a series of trials scheduled to complete 2H 2012 intended to provide additional clinical data to support its marketing of Osteocel Plus for the treatment of a growing number of orthopedic applications.


Sanofi's Genzyme (http://www.genzyme.com)

  • Having completed their phase 3 trial in Europe of MACI for knee repair (symptomatic articular cartilage defects of the femoral condyle including the trochlea), they expect to file their market authorization application (MAA) in 1H 2013.


Hope that's helpful and gives you a sense some of the late-stage things to watch for in the coming weeks and months.  



--Lee

http://www.celltherapyblog.com hosted by http://www.celltherapygroup.com

Source:
http://feeds.feedburner.com/CellTherapyBlog

Read More...

The cost of clinical trial data bias/loss, FDA’s new job and the need for bold leadership.

Sunday, September 30th, 2012
Tweet 

The scandal of clinical trial data loss is eroding the fundamentals of evidence-based research and clinical medicine.


Before you right this post off as the stuff of conspiracy theories, fear-mongering, and 'alternative world views' consider that this view is shared by the likes of the FDA, the International Committee of Medical Journal Editors, the Cochrane Collaboration, and researchers at institutions like Johns Hopkins School of Medicine.


Here's the underlying premise as succinctly described by author Ben Goldacre:

"Drugs are tested by the people who manufacture them, in poorly designed trials, on hopelessly small numbers of weird, unrepresentative patients, and analysed using techniques that are flawed by design, in such a way that they exaggerate the benefits of treatments. Unsurprisingly, these trials tend to produce results that favour the manufacturer.

When trials throw up results that companies don't like, they are perfectly entitled to hide them from doctors and patients, so we only ever see a distorted picture of any drug's true effects. Regulators see most of the trial data, but only from early on in a drug's life, and even then they don't give this data to doctors or patients, or even to other parts of government. This distorted evidence is then communicated and applied in a distorted fashion."

Authors M. Todwin and J. Abramson summarize it thusly:

"Trials with positive results generally are published more frequently than studies that conclude that a new drug poses greater risks or is no more effective than standard therapy or a placebo. Furthermore, some articles may distort trial findings by omitting important data or by modifying prespecified outcome measures. Lack of access to detailed information about clinical trials can undermine the integrity of medical knowledge."

Here is a great list of very recent resources that may convince you of the merits of this concern:

Yesterday, the US Secretary of Health and Human Services announced (in an FR notice) that the FDA was now charged with ensuring all organizations comply with the heretofore enacted but relatively unenforced  requirement to submit all relevant clinical trial data to http://www.clinicaltrials.gov

For further commentary on this move see the following reports from:
What is abundantly clear to me is that the FDA is left almost powerless - and if not powerless than certainly without sufficient resources - to successfully enforce its new power.  This requires collective industry leadership.  Bold, industry-initiated standards, infrastructure and old-fashioned peer pressure.

Here's what I wish.  

I wish that as a cell therapy industry we - through organizations like ISSCR, ARM, ISCT, etc and leading publishers of some of our leading journals like Regenerative Medicine, Cytotherapy, Cell Stem Cell, Stem Cells, etc - would take a leadership position on an issue like this.

I believe that as a relatively small and nascent sector of the biopharma industry we are more likely capable of collaborating on something important like this than larger, more established [entrenched] and diverse sectors.  Of course it requires the political will and cajones.

The payoff from our sector in taking a leadership role on this issue could potentially be enormous in terms of providing our sector with truly transparent and useful data.  Perhaps even more important would be the public profile such leadership would provide the sector.  Such a move requires bold leadership, pain, and cost but this is the kind of stuff that moves the needle and goes down as critical pivot points in history. 

Just my thought for the day...

--Lee

http://www.celltherapyblog.com hosted by http://www.celltherapygroup.com

Source:
http://feeds.feedburner.com/CellTherapyBlog

Read More...

The cost of clinical trial data bias/loss, FDA’s new job and the need for bold leadership.

Sunday, September 30th, 2012
Tweet 

The scandal of clinical trial data loss is eroding the fundamentals of evidence-based research and clinical medicine.


Before you right this post off as the stuff of conspiracy theories, fear-mongering, and 'alternative world views' consider that this view is shared by the likes of the FDA, the International Committee of Medical Journal Editors, the Cochrane Collaboration, and researchers at institutions like Johns Hopkins School of Medicine.


Here's the underlying premise as succinctly described by author Ben Goldacre:

"Drugs are tested by the people who manufacture them, in poorly designed trials, on hopelessly small numbers of weird, unrepresentative patients, and analysed using techniques that are flawed by design, in such a way that they exaggerate the benefits of treatments. Unsurprisingly, these trials tend to produce results that favour the manufacturer.

When trials throw up results that companies don't like, they are perfectly entitled to hide them from doctors and patients, so we only ever see a distorted picture of any drug's true effects. Regulators see most of the trial data, but only from early on in a drug's life, and even then they don't give this data to doctors or patients, or even to other parts of government. This distorted evidence is then communicated and applied in a distorted fashion."

Authors M. Todwin and J. Abramson summarize it thusly:

"Trials with positive results generally are published more frequently than studies that conclude that a new drug poses greater risks or is no more effective than standard therapy or a placebo. Furthermore, some articles may distort trial findings by omitting important data or by modifying prespecified outcome measures. Lack of access to detailed information about clinical trials can undermine the integrity of medical knowledge."

Here is a great list of very recent resources that may convince you of the merits of this concern:

Yesterday, the US Secretary of Health and Human Services announced (in an FR notice) that the FDA was now charged with ensuring all organizations comply with the heretofore enacted but relatively unenforced  requirement to submit all relevant clinical trial data to http://www.clinicaltrials.gov

For further commentary on this move see the following reports from:
What is abundantly clear to me is that the FDA is left almost powerless - and if not powerless than certainly without sufficient resources - to successfully enforce its new power.  This requires collective industry leadership.  Bold, industry-initiated standards, infrastructure and old-fashioned peer pressure.

Here's what I wish.  

I wish that as a cell therapy industry we - through organizations like ISSCR, ARM, ISCT, etc and leading publishers of some of our leading journals like Regenerative Medicine, Cytotherapy, Cell Stem Cell, Stem Cells, etc - would take a leadership position on an issue like this.

I believe that as a relatively small and nascent sector of the biopharma industry we are more likely capable of collaborating on something important like this than larger, more established [entrenched] and diverse sectors.  Of course it requires the political will and cajones.

The payoff from our sector in taking a leadership role on this issue could potentially be enormous in terms of providing our sector with truly transparent and useful data.  Perhaps even more important would be the public profile such leadership would provide the sector.  Such a move requires bold leadership, pain, and cost but this is the kind of stuff that moves the needle and goes down as critical pivot points in history. 

Just my thought for the day...

--Lee

http://www.celltherapyblog.com hosted by http://www.celltherapygroup.com

Source:
http://feeds.feedburner.com/CellTherapyBlog

Read More...

Anticipated short-term cell therapy industry clinical milestones

Sunday, September 30th, 2012
Tweet 

What follows is an interesting but not exhaustive list of cell therapy industry clinical milestones we anticipate in the next 3-9 months as selected from the list of cell therapy products we are tracking in late-stage or post-commercial development.  


There are other commercial milestones we are monitoring as well as other clinical milestones we expect to see related to cell therapy products in earlier stages of the development pipeline that are not included below.


CellCoTec (http://www.cellcotec.com)
  • Having completed a trial in Europe of their device to enable POC production of an autologous chondrocyte cellular product in/with a biodegradable, load-bearing scaffold for the treatment of articular cartilage defects, they have now submitted their CE market application.  The CE mark application is under review and they anticipate a response in October.  
  • This device and the potential emergence of Sanofi's MACI in the European market next year may have an impact on Tigenix (EBR:TIG) most directly.



ERYtech Parma (http://www.erytech.com)

  • Their 'pivotal' phase 2/3 trial in Europe of lead product, GRASPA, for the treatment of Acute Lymphoblastic Leukemia (ALL) is scheduled for completion 2H 2012. 


GamidaCell (http://www.gamidacell.com)

  • Their 'pivotal' phase 2/3 trial in the US, Israel, and Europe of lead product, StemEx, for the treatment of leukemia and lymphoma, in joint development with Teva, completed enrollment in February and is scheduled for completion 2H 2012.  They have not been shy about the fact they expect to be in the market in 2013.


Innovacell (http://www.innovacell.com)

  • They raised over 8m Euro in April for a phase 3 trial in Europe for their lead product, ICES13, for the treatment of stress-urinary incontinence which was scheduled for a preliminary clinical data readout in Q4 2012 and be ready for market authorization in 2013. Since announcing the capital raise the company has been stone silent and no clinical trial registry has been filed.  Status unknown.


Miltenyi Biotec (www.miltenyibiotec.com)

  • Their phase 3 trial in Germany of CD133+ cells as an adjunct to CABG surgery for myocardial ischemia or coronary artery disease is scheduled for completion in January.


NovaRx (http://www.novarx.com)

  • Their phase 3 trial in US, Europe, and India of their lead product, Lucanix, for the treatment of advanced Non-small Cell Lung Cancer (NSCLC) following front-line chemotherapy is scheduled in clnicaltrials.gov for completion in October but we have learned they expect their next 'interim analysis' in February.


NuVasive (http://www.nuvasive.com)

  • They have a series of trials scheduled to complete 2H 2012 intended to provide additional clinical data to support its marketing of Osteocel Plus for the treatment of a growing number of orthopedic applications.


Sanofi's Genzyme (http://www.genzyme.com)

  • Having completed their phase 3 trial in Europe of MACI for knee repair (symptomatic articular cartilage defects of the femoral condyle including the trochlea), they expect to file their market authorization application (MAA) in 1H 2013.


Hope that's helpful and gives you a sense some of the late-stage things to watch for in the coming weeks and months.  



--Lee

http://www.celltherapyblog.com hosted by http://www.celltherapygroup.com

Source:
http://feeds.feedburner.com/CellTherapyBlog

Read More...

BioTime Forms BioTime Acquisition Corporation

Friday, September 28th, 2012

ALAMEDA, Calif.--(BUSINESS WIRE)--

BioTime, Inc. (NYSE MKT: BTX), an Alameda-based company engaged in research and development of innovative new products in the field of regenerative medicine utilizing stem cells and related technology, announced today that it has formed a new wholly owned subsidiary, BioTime Acquisition Corporation, to pursue opportunities and acquire assets and businesses in the fields of stem cells and regenerative medicine. Thomas Okarma, PhD, MD, will serve as the Chief Executive Officer and as a member of the board of directors of BioTimes new subsidiary. Dr. Okarma is the former President and Chief Executive Officer of Geron Corporation and served on that companys board of directors.

Since 2010, BioTime has expanded the scope of its business through strategic acquisitions and has been continually exploring other acquisition opportunities in its fields of interest. BioTimes strategic acquisitions include:

Global advances on multiple fronts of stem cell biology have established the foundation for an integrative business approach to consolidate and translate these discoveries into products that may revolutionize clinical medicine, said Thomas Okarma, the new companys CEO. Living cell therapies can now be scalably manufactured, efficiently distributed to points of care, and tested in controlled clinical trials.The goal of regenerative medicine is to go beyond the reach of pills and scalpels to achieve a new level of healing that may, after a single administration of therapeutic cells, permanently restore function to tissues and organs damaged by chronic disease or injury. BioTime Acquisition Corporation intends to build its business by identifying, consolidating, and commercially developing the best available cell therapy technologies to realize the potential of regenerative medicine. Ultimately, the goal is to bring these new therapies to the many millions of patients who need them.

The breadth of Dr. Okarmas experience in the field of cell-based therapeutics is simply spectacular, said Michael D. West, PhD, BioTimes Chief Executive Officer. We look forward to working together with him to translate these new scientific advances into commercial products for the large and growing markets driven by age-related degenerative diseases.

Dr. Okarma has had a distinguished career as a physician and an innovator and executive in the biotechnology industry. Dr. Okarma served as Gerons President, Chief Executive Officer, and as a member of its board of directors from July 1999 until February 2011, after having previously served as that companys Vice President of Research and Development and Vice President of Cell Therapies. In 1985, Dr. Okarma founded Applied Immune Sciences, Inc. (AIS) and served initially as its Vice President of Research and Development and subsequently as Chairman and Chief Executive Officer and as a director until that company was acquired by Rhone-Poulenc Rorer in 1995. After that acquisition, Dr. Okarma served as a Senior Vice President at Rhone-Poulenc Rorer until December 1996. From 1980 to 1992, Dr. Okarma was a member of the faculty of the Department of Medicine at Stanford University School of Medicine. Dr. Okarma holds an AB from Dartmouth College, an MD and PhD from Stanford University, and is a graduate of the Executive Education program of the Stanford Graduate School of Business.

About BioTime, Inc.

BioTime, headquartered in Alameda, California, is a biotechnology company focused on regenerative medicine and blood plasma volume expanders. Its broad platform of stem cell technologies is enhanced through subsidiaries focused on specific fields of application. BioTime develops and markets research products in the fields of stem cells and regenerative medicine, including a wide array of proprietary ACTCellerate cell lines, HyStem hydrogels, culture media, and differentiation kits. BioTime is developing Renevia (formerly known as HyStem-Rx), a biocompatible, implantable hyaluronan and collagen-based matrix for cell delivery in human clinical applications. BioTime's therapeutic product development strategy is pursued through subsidiaries that focus on specific organ systems and related diseases for which there is a high unmet medical need. BioTime's majority owned subsidiary Cell Cure Neurosciences Ltd. is developing therapeutic products derived from stem cells for the treatment of retinal and neural degenerative diseases. BioTime's subsidiary OrthoCyte Corporation is developing therapeutic applications of stem cells to treat orthopedic diseases and injuries. Another subsidiary, OncoCyte Corporation, focuses on the diagnostic and therapeutic applications of stem cell technology in cancer, including the diagnostic product PanC-Dx currently being developed for the detection of cancer in blood samples. ReCyte Therapeutics, Inc. is developing applications of BioTime's proprietary induced pluripotent stem cell technology to reverse the developmental aging of human cells to treat cardiovascular and blood cell diseases. BioTime's subsidiary LifeMap Sciences, Inc. markets GeneCards, the leading human gene database, and is developing an integrated database suite to complement GeneCards that will also include the LifeMap database of embryonic development, stem cell research and regenerative medicine, and MalaCards, the human disease database. LifeMap will also market BioTime research products. BioTime's lead product, Hextend, is a blood plasma volume expander manufactured and distributed in the U.S. by Hospira, Inc. and in South Korea by CJ CheilJedang Corporation under exclusive licensing agreements. Additional information about BioTime can be found on the web at http://www.biotimeinc.com.

Forward-Looking Statements

Statements pertaining to future financial and/or operating results, future growth in research, technology, clinical development, and potential opportunities for BioTime and its subsidiaries, along with other statements about the future expectations, beliefs, goals, plans, or prospects expressed by management constitute forward-looking statements. Any statements that are not historical fact (including, but not limited to statements that contain words such as "will," "believes," "plans," "anticipates," "expects," "estimates") should also be considered to be forward-looking statements. Forward-looking statements involve risks and uncertainties, including, without limitation, risks inherent in the development and/or commercialization of potential products, uncertainty in the ability to identify and complete potential acquisitions, the ability to realize anticipated benefits of and achieve expected financial performance following completed acquisitions, the results of clinical trials or regulatory approvals, need and ability to obtain future capital, and maintenance of intellectual property rights. Actual results may differ materially from the results anticipated in these forward-looking statements and as such should be evaluated together with the many uncertainties that affect the business of BioTime and its subsidiaries, particularly those mentioned in the cautionary statements found in BioTime's Securities and Exchange Commission filings. BioTime disclaims any intent or obligation to update these forward-looking statements.

See the rest here:
BioTime Forms BioTime Acquisition Corporation

Read More...

Discovery of reprogramming signature may help further stem cell-based regenerative medicine research

Wednesday, September 19th, 2012

Public release date: 18-Sep-2012 [ | E-mail | Share ]

Contact: Andy Hoang ahoang@salk.edu 619-861-5811 Salk Institute

LA JOLLA, CA---- Salk scientists have identified a unique molecular signature in induced pluripotent stem cells (iPSCs), "reprogrammed" cells that show great promise in regenerative medicine thanks to their ability to generate a range of body tissues.

In this week's Proceedings of the National Academy of Sciences, the Salk scientists and their collaborators at University of California, San Diego, report that there is a consistent, signature difference between embryonic and induced pluripotent stem cells. The findings could help overcome hurdles to using the induced stem cells in regenerative medicine.

"We believe that iPSCs hold a great potential for the treatment of human patients," says Juan Carlos Izpisua Belmonte, a professor in Salk's Gene Expression Laboratory and the senior author on the paper. "Yet we must thoroughly understand the molecular mechanisms governing their safety profile in order to be confident of their function in the human body. With the discovery of these small, yet apparent, epigenetic differences, we believe that we are now one step closer to that goal."

Embryonic stem cells (ESCs) are known for their "pluripotency," the ability to differentiate into nearly any cell in the body. Because of this ability, it has long been thought that ESCs would be ideal to customize for therapeutic uses. However, when ESCs mature into specific cell types, and are then transplanted into a patient, they may elicit immune responses, potentially causing the patient to reject the cells.

In 2006, scientists discovered how to revert mature cells, which had already differentiated into particular cell types, such as skin cells or hair cells, back into a pluripotent state. These "induced pluripotent stem cells" (iPSCs), which could be developed from the patient's own cells, would theoretically carry no risk of immune rejection.

However, scientists found that iPSCs had molecular differences from embryonic stem cells. Specifically, there were epigenetic changes, chemical modifications in DNA that might alter genetic activity. At certain points in the iPSC's genome, scientists could see the presence of different patterns of methyl groups when compared to the genomes of ESCs. It seemed these changes occurred randomly.

Izpisua Belmonte and his colleagues wanted to understand more about these differences. Were they truly random, or was there a discernable pattern?

Unlike previous studies, which had primarily analyzed iPSCs derived from only one mature type of cells (mainly connective tissue cells called fibroblasts), the Salk and UCSD researchers examined iPSCs derived from six different mature cell types to see if there were any commonalities. They discovered that while there were hundreds of unpredictable changes, there were some that remained consistent across the cell types: the same nine genes were associated with these common changes in all iPSCs.

Read more:
Discovery of reprogramming signature may help further stem cell-based regenerative medicine research

Read More...

Cytomedix to Present at BIOX; Noble Financial Capital Markets' Life Sciences Exposition

Wednesday, September 19th, 2012

GAITHERSBURG, MD--(Marketwire - Sep 19, 2012) - Cytomedix, Inc. ( OTCQX : CMXI ), a fully integrated regenerative medicine company commercializing and developing innovative platelet and adult stem cell technologies, today announced that Martin P. Rosendale, Chief Executive Officer of Cytomedix, will present a corporate update at BIOX; Noble Financial Capital Markets' Life Sciences Exposition to be held at the University of Connecticut, Stamford Campus on September, 24-25, 2012.Mr. Rosendale's presentation will take place on Monday, September 24th at 8:00 a.m. Eastern time.

In addition to the corporate presentation, Mr. Rosendale will be a participant on the panel presentation titled "Advancements in Cell Therapy & Regenerative Medicine," on September 24th at 11:45 a.m.

Following the event, a high-definition video webcast of the Company's presentation and a copy of the presentation materials will be available on the Company's web site at http://www.cytomedix.com, or through the Noble Financial websites: http://www.noblefcm.com, or http://www.nobleresearch.com/BioExposition.htm. Microsoft SilverLight viewer (a free download from the presentation link) is required to participate. The webcast will be archived on Cytomedix's website for 90 days following the event.

About Noble Financial Noble Financial Capital Markets was established in 1984 and is an equity research driven, full-service, investment banking boutique focused on life sciences, technology and media, emerging growth, companies. The company has offices in New York, Boston, New Jersey, Los Angeles, and Boca Raton, FL. In addition to non-deal road shows and sector-specific conferences throughout the year, Noble Financial hosts its large format annual equity conference in January in South Florida featuring 150 presenting companies from across North America and total attendance of close to 600. For more information: http://www.noblefcm.com.

About Cytomedix, Inc. Cytomedix, Inc. is a fully integrated regenerative medicine company commercializing and developing innovative platelet and adult stem cell separation products that enhance the body's natural healing processes. The Company's advanced autologous technologies offer clinicians a new treatment paradigm for wound and tissue repair. The Company's patient-derived PRP systems are marketed by Cytomedix in the U.S. and distributed internationally.Our commercial products include the AutoloGel System, cleared by the FDA for wound care and the Angel Whole Blood Separation System. The Company is developing novel regenerative therapies using our proprietary ALDH Bright Cell ("ALDHbr") technology to isolate a unique, biologically active population of a patient's own stem cells.A Phase 2 trial evaluating the use of ALDHbr for the treatment of ischemic stroke is underway. For additional information please visit http://www.cytomedix.com.

Safe Harbor Statement Statements contained in this press release not relating to historical facts are forward-looking statements that are intended to fall within the safe harbor rule for such statements under the Private Securities Litigation Reform Act of 1995. The information contained in the forward-looking statements is inherently uncertain, and Cytomedix' actual results may differ materially due to a number of factors, many of which are beyond Cytomedix' ability to predict or control, including among many others, risks and uncertainties related to the Company's reimbursement related efforts,the Company's ability to capitalize on the benefits of the above-referenced CMS determination, the Company's ability to successfully and favorably conclude the negotiations and related discussions with the above-referenced global pharmaceutical company, the Company's ability to successfully integrate the Aldagen acquisition, to successfully manage contemplated clinical trials, to manage and address the capital needs, human resource, management, compliance and other challenges of a larger, more complex and integrated business enterprise, viability and effectiveness of the Company's sales approach and overall marketing strategies, commercial success or acceptance by the medical community, competitive responses, the Company's ability to raise additional capital and to continue as a going concern, and Cytomedix's ability to execute on its strategy to market the AutoloGel System as contemplated. To the extent that any statements made here are not historical, these statements are essentially forward-looking. The Company uses words and phrases such as "believes," "forecasted," "projects," "is expected," "remain confident," "will" and/or similar expressions to identify forward-looking statements in this press release. Undue reliance should not be placed on forward-looking information. These forward-looking statements are subject to known and unknown risks and uncertainties that could cause actual events to differ from the forward-looking statements. More information about some of these risks and uncertainties may be found in the reports filed with the Securities and Exchange Commission by Cytomedix, Inc. Cytomedix operates in a highly competitive and rapidly changing business and regulatory environment, thus new or unforeseen risks may arise. Accordingly, investors should not place any reliance on forward-looking statements as a prediction of actual results. Except as is expressly required by the federal securities laws, Cytomedix undertakes no obligation to update or revise any forward-looking statements, whether as a result of new information, changed circumstances or future events or for any other reason. Additional risks that could affect our future operating results are more fully described in our U.S. Securities and Exchange Commission filings, including our Annual Report on Form 10-K for the year ended December 31, 2011 and other subsequent filings. These filings are available at http://www.sec.gov.

Excerpt from:
Cytomedix to Present at BIOX; Noble Financial Capital Markets' Life Sciences Exposition

Read More...

BioTime CEO Michael D. West to Present at Stem Cells USA & Regenerative Medicine Congress 2012

Wednesday, September 19th, 2012

ALAMEDA, Calif.--(BUSINESS WIRE)--

BioTime, Inc. (NYSE MKT: BTX) announced that Chief Executive Officer Michael D. West, Ph.D. will present at the Stem Cells USA & Regenerative Medicine Congress 2012 in Cambridge, MA on Thursday, September 20, 2012. Dr. West will speak on Second Generation hES Cell-Based Therapies: Achieving Purity and Scalability in the Midst of Diversity in the session Developments in Novel Therapeutics. The presentation will be made available on BioTime's website at http://www.biotimeinc.com.

The Stem Cells USA & Regenerative Medicine Congress 2012, September 20-21, is North Americas leading commercial stem cell event. This years conference will focus on strategies and business models for navigating the stem cell and regenerative medicine marketplace for pharma, biotech, and investors.

About BioTime, Inc.

BioTime, headquartered in Alameda, California, is a biotechnology company focused on regenerative medicine and blood plasma volume expanders. Its broad platform of stem cell technologies is enhanced through subsidiaries focused on specific fields of application. BioTime develops and markets research products in the field of stem cells and regenerative medicine, including a wide array of proprietary ACTCellerate cell lines, HyStem hydrogels, culture media, and differentiation kits. BioTime is developing Renevia (formerly known as HyStem-Rx), a biocompatible, implantable hyaluronan and collagen-based matrix for cell delivery in human clinical applications. BioTime's therapeutic product development strategy is pursued through subsidiaries that focus on specific organ systems and related diseases for which there is a high unmet medical need. BioTime's majority owned subsidiary Cell Cure Neurosciences Ltd. is developing therapeutic products derived from stem cells for the treatment of retinal and neural degenerative diseases. BioTime's subsidiary OrthoCyte Corporation is developing therapeutic applications of stem cells to treat orthopedic diseases and injuries. Another subsidiary, OncoCyte Corporation, focuses on the diagnostic and therapeutic applications of stem cell technology in cancer, including the diagnostic product PanC-Dx currently being developed for the detection of cancer in blood samples. ReCyte Therapeutics, Inc. is developing applications of BioTime's proprietary induced pluripotent stem cell technology to reverse the developmental aging of human cells to treat cardiovascular and blood cell diseases. BioTime's subsidiary, LifeMap Sciences, Inc., markets GeneCards, the leading human gene database, and is developing an integrated database suite to complement GeneCards that will also include the LifeMap database of embryonic development, stem cell research and regenerative medicine, and MalaCards, the human disease database. LifeMap will also market BioTime research products. BioTime's lead product, Hextend, is a blood plasma volume expander manufactured and distributed in the U.S. by Hospira, Inc. and in South Korea by CJ CheilJedang Corporation under exclusive licensing agreements. Additional information about BioTime can be found on the web at http://www.biotimeinc.com.

Forward-Looking Statements

Statements pertaining to future financial and/or operating results, future growth in research, technology, clinical development, and potential opportunities for BioTime and its subsidiaries, along with other statements about the future expectations, beliefs, goals, plans, or prospects expressed by management constitute forward-looking statements. Any statements that are not historical fact (including, but not limited to statements that contain words such as "will," "believes," "plans," "anticipates," "expects," "estimates") should also be considered to be forward-looking statements. Forward-looking statements involve risks and uncertainties, including, without limitation, risks inherent in the development and/or commercialization of potential products, uncertainty in the results of clinical trials or regulatory approvals, need and ability to obtain future capital, and maintenance of intellectual property rights. Actual results may differ materially from the results anticipated in these forward-looking statements and as such should be evaluated together with the many uncertainties that affect the business of BioTime and its subsidiaries, particularly those mentioned in the cautionary statements found in BioTime's Securities and Exchange Commission filings. BioTime disclaims any intent or obligation to update these forward-looking statements.

To receive ongoing BioTime corporate communications, please click on the following link to join our email alert list:

http://phx.corporate-ir.net/phoenix.zhtml?c=83805&p=irol-alerts

See original here:
BioTime CEO Michael D. West to Present at Stem Cells USA & Regenerative Medicine Congress 2012

Read More...

Developments of Stem Cell Therapy and Regenerative Medicine

Wednesday, September 19th, 2012

Queenstown Regenerative Medicine - http://www.queenstownRM.co.nz

Professor Richard Boyd and Dr Dan Bates Latest developments of Stem Cell Therapy and Regenerative Medicine

Queenstown Regenerative Medicine, in association with Monash University Immunology and Stem Cell Centre (MISCL), has the pleasure of requesting your attendance at an evening lecture by Prof Richard Boyd, Head of MISCL and Dr Dan Bates, Sports Medicine Physician from Melbourne AFL Club.

Professor Richard Boyd is a world leader in the research and development of potential uses of stem cells to treat disease in both human and animal. He is the Director of Australia's largest and most prestigious Stem Cell Laboratory and a recipient of numerous International Awards for unique research into how stem cells and the immune system develop and how they have their effects in the body.

Professor Boyd's talk will give an overall background to stem cells and the work going on around the world to put these cellular therapies and regenerative medicine into the clinic.

Doctor Dan Bates is a Sports Medicine Physician working with Professor Boyd in the development and use of cellular medicine applications in the field of Sports Medicine and musculoskeletal injuries. Dan is the current team doctor of the Melbourne AFL club and will speak on his experiences using Platelet Rich Plasma to treat musculoskeletal injuries and the opening of stem cell treatment centres in conjunction with MISCL in Australia.

This is a unique opportunity to get first- hand knowledge from some of the best people in the field. These talks will be aimed at the practical applications of how you can use these therapies currently, as well as giving an idea of what the near future holds.

Date: Friday 21 September 2012 Time: from 6 pm 7.30 pm Location: Heritage Hotel, 91 Fernhill Road, Queenstown (Icon Conference Room) Cost: Free of charge

Scoop Media

See the original post here:
Developments of Stem Cell Therapy and Regenerative Medicine

Read More...

Discovery of reprogramming signature may help overcome barriers to stem cell-based regenerative medicine

Wednesday, September 19th, 2012

ScienceDaily (Sep. 18, 2012) Salk scientists have identified a unique molecular signature in induced pluripotent stem cells (iPSCs), "reprogrammed" cells that show great promise in regenerative medicine thanks to their ability to generate a range of body tissues.

In this week's Proceedings of the National Academy of Sciences, the Salk scientists and their collaborators at University of California, San Diego, report that there is a consistent, signature difference between embryonic and induced pluripotent stem cells. The findings could help overcome hurdles to using the induced stem cells in regenerative medicine.

"We believe that iPSCs hold a great potential for the treatment of human patients," says Juan Carlos Izpisua Belmonte, a professor in Salk's Gene Expression Laboratory and the senior author on the paper. "Yet we must thoroughly understand the molecular mechanisms governing their safety profile in order to be confident of their function in the human body. With the discovery of these small, yet apparent, epigenetic differences, we believe that we are now one step closer to that goal."

Embryonic stem cells (ESCs) are known for their "pluripotency," the ability to differentiate into nearly any cell in the body. Because of this ability, it has long been thought that ESCs would be ideal to customize for therapeutic uses. However, when ESCs mature into specific cell types, and are then transplanted into a patient, they may elicit immune responses, potentially causing the patient to reject the cells.

In 2006, scientists discovered how to revert mature cells, which had already differentiated into particular cell types, such as skin cells or hair cells, back into a pluripotent state. These "induced pluripotent stem cells" (iPSCs), which could be developed from the patient's own cells, would theoretically carry no risk of immune rejection.

However, scientists found that iPSCs had molecular differences from embryonic stem cells. Specifically, there were epigenetic changes, chemical modifications in DNA that might alter genetic activity. At certain points in the iPSC's genome, scientists could see the presence of different patterns of methyl groups when compared to the genomes of ESCs. It seemed these changes occurred randomly.

Izpisua Belmonte and his colleagues wanted to understand more about these differences. Were they truly random, or was there a discernable pattern?

Unlike previous studies, which had primarily analyzed iPSCs derived from only one mature type of cells (mainly connective tissue cells called fibroblasts), the Salk and UCSD researchers examined iPSCs derived from six different mature cell types to see if there were any commonalities. They discovered that while there were hundreds of unpredictable changes, there were some that remained consistent across the cell types: the same nine genes were associated with these common changes in all iPSCs.

"We knew there were differences between iPSCs and ESCs," says Sergio Ruiz, first author of the paper, "We now have an identifying mark for what they are."

The therapeutic significance of these nine genes awaits further research. The importance of the current study is that it gives stem cells researchers a new and more precise understanding of iPSCs.

Read the original here:
Discovery of reprogramming signature may help overcome barriers to stem cell-based regenerative medicine

Read More...

Leading stem cell scientists to focus on diabetes, eye diseases at Cedars-Sinai symposium

Tuesday, September 18th, 2012

Public release date: 17-Sep-2012 [ | E-mail | Share ]

Contact: Nicole White nicole.white@cshs.org 310-423-5215 Cedars-Sinai Medical Center

LOS ANGELES Sept. 17, 2012 Leading scientists and clinicians from across the nation will discuss the latest findings on potential stem cell treatments for diabetes and eye diseases at the second Cedars-Sinai Regenerative Medicine Scientific Symposium.

WHO: Stem cell scientists, clinicians and industry leaders.

The symposium is being hosted by the Cedars-Sinai Regenerative Medicine Institute, led by Clive Svendsen, PhD. The institute brings together basic scientists with specialist clinicians, physician scientists and translational scientists across multiple medical specialties to convert fundamental stem cell studies to therapeutic regenerative medicine.

FEATURED RESEARCH: The symposium's morning session will feature an overview of the current state of stem cells and diabetes, including efforts to start the first clinical trials with stem cells for the treatment of diabetes. Other research to be presented includes an update on regenerative medicine approaches to treating macular degeneration, a progressive deterioration of the eye that causes gradual loss of vision. This will include an update from Gad Heilweil , MD, on a key, stem-cell clinical trial on macular degeneration at the University of California Los Angeles.

WHEN: Sept. 21, 2012 8:30 a.m. to 6 p.m. Thomson's lecture begins at 8:40 a.m.

WHERE: Harvey Morse Auditorium Cedars-Sinai Medical Center 8700 Beverly Boulevard Los Angeles, CA 90048

How to register: http://www.cedars-sinai.edu/RMI

###

Go here to read the rest:
Leading stem cell scientists to focus on diabetes, eye diseases at Cedars-Sinai symposium

Read More...

Cytomedix Shares Now Trading on OTCQX

Monday, September 17th, 2012

GAITHERSBURG, Md., Sept. 17, 2012 /PRNewswire/ -- Cytomedix, Inc. (CMXI), a fully integrated regenerative medicine company commercializing and developing innovative platelet and adult stem cell technologies, today announced that its common shares are now trading on the highest OTC marketplace, OTCQX, under the ticker symbol "CMXI."

Cytomedix upgraded from OTCQB today to trade on the OTC market's prestigious marketplace, OTCQX. Investors can find current financial disclosure and real-time Level 2 quotes for the Company's common shares at http://www.otcmarkets.com.

"We believe investors will appreciate the quality-controlled admission process, the transparent trading and easy access to company information that are hallmarks of the OTCQX," said Martin P. Rosendale, Chief Executive Officer of Cytomedix.

C. K. Cooper & Company will serve as Cytomedix's Designated Advisor for Disclosure ("DAD") on OTCQX, and will be responsible for providing guidance on OTCQX requirements.

About Cytomedix, Inc. Cytomedix, Inc. is a fully integrated regenerative medicine company commercializing and developing innovative platelet and adult stem cell separation products that enhance the body's natural healing processes. The Company's advanced autologous technologies offer clinicians a new treatment paradigm for wound and tissue repair. The Company's patient-derived PRP systems are marketed by Cytomedix in the U.S. and distributed internationally. The Company's commercial products include the AutoloGel System, cleared by the FDA for wound care and the Angel Whole Blood Separation System. The Company is developing novel regenerative therapies using the proprietary ALDH Bright Cell ("ALDHbr") technology to isolate a unique, biologically active population of a patient's own stem cells. A Phase 2 trial evaluating the use of ALDHbr for the treatment of ischemic stroke is underway. For additional information please visit http://www.cytomedix.com.

About OTC Markets Group Inc. OTC Markets Group Inc. (OTCM) operates Open, Transparent and Connected financial marketplaces for investors to easily trade almost 10,000 equity and debt securities through the broker of their choice. Our OTC Link ATS directly links a diverse network of broker-dealers that provide liquidity and execution services for a wide spectrum of securities. We organize these securities into tiered marketplaces to inform investors of opportunities and risks including OTCQX - The Intelligent Marketplace for the Best OTC Companies; OTCQB - The Venture Marketplace; and OTC Pink - The Open Marketplace. Our data-driven platform enables efficient trading through any broker at the best possible price and empowers a broad range of companies to improve the quality and availability of information for their investors. To learn more about how we create smarter financial marketplaces, visit http://www.otcmarkets.com.

OTC Link ATS is operated by OTC Link LLC, member FINRA/SIPC and SEC registered ATS.

About Cytomedix, Inc.Cytomedix, Inc. is a fully integrated regenerative medicine company commercializing and developing innovative platelet and adult stem cell separation products that enhance the body's natural healing processes. The Company's advanced autologous technologies offer clinicians a new treatment paradigm for wound and tissue repair. The Company's patient-derived PRP systems are marketed by Cytomedix in the U.S. and distributed internationally. Our commercial products include the AutoloGel System, cleared by the FDA for wound care and the Angel Whole Blood Separation System. The Company is developing novel regenerative therapies using our proprietary ALDH Bright Cell ("ALDHbr") technology to isolate a unique, biologically active population of a patient's own stem cells. A Phase 2 trial evaluating the use of ALDHbr for the treatment of ischemic stroke is underway. For additional information please visit http://www.cytomedix.com.

Safe Harbor Statement Statements contained in this press release not relating to historical facts are forward-looking statements that are intended to fall within the safe harbor rule for such statements under the Private Securities Litigation Reform Act of 1995. The information contained in the forward-looking statements is inherently uncertain, and Cytomedix' actual results may differ materially due to a number of factors, many of which are beyond Cytomedix' ability to predict or control, including among many others, risks and uncertainties related to the Company's reimbursement related efforts, the Company's ability to capitalize on the benefits of the above-referenced CMS determination, the Company's ability to successfully and favorably conclude the negotiations and related discussions with the above-referenced global pharmaceutical company, the Company's ability to successfully integrate the Aldagen acquisition, to successfully manage contemplated clinical trials, to manage and address the capital needs, human resource, management, compliance and other challenges of a larger, more complex and integrated business enterprise, viability and effectiveness of the Company's sales approach and overall marketing strategies, commercial success or acceptance by the medical community, competitive responses, the Company's ability to raise additional capital and to continue as a going concern, and Cytomedix's ability to execute on its strategy to market the AutoloGel System as contemplated. To the extent that any statements made here are not historical, these statements are essentially forward-looking. The Company uses words and phrases such as "believes", "forecasted," "projects," "is expected," "remain confident," "will" and/or similar expressions to identify forward-looking statements in this press release. Undue reliance should not be placed on forward-looking information. These forward-looking statements are subject to known and unknown risks and uncertainties that could cause actual events to differ from the forward-looking statements. More information about some of these risks and uncertainties may be found in the reports filed with the Securities and Exchange Commission by Cytomedix, Inc. Cytomedix operates in a highly competitive and rapidly changing business and regulatory environment, thus new or unforeseen risks may arise. Accordingly, investors should not place any reliance on forward-looking statements as a prediction of actual results. Except as is expressly required by the federal securities laws, Cytomedix undertakes no obligation to update or revise any forward-looking statements, whether as a result of new information, changed circumstances or future events or for any other reason. Additional risks that could affect our future operating results are more fully described in our U.S. Securities and Exchange Commission filings, including our Annual Report on Form 10-K for the year ended December 31, 2011 and other subsequent filings. These filings are available at http://www.sec.gov.

Contacts:

Read more:
Cytomedix Shares Now Trading on OTCQX

Read More...

Regenerative Medicine Gets A Boost With Quick Printing Of 3D Microstructures

Monday, September 17th, 2012

September 16, 2012

Image Caption: NanoEngineering Professor Shaochen Chen has demonstrated the capability of printing three-dimensional blood vessels in mere seconds out of soft, biocompatible hydrogels. Being able to print blood vessels is essential to achieving the promise of regenerative medicine because it is how the body distributes oxygen and nutrients. Image Credit: Biomedical Nanotechnology Laboratory, Chen Research Group, UC San Diego Jacobs School of Engineering.

April Flowers for redOrbit.com Your Universe Online

Nanoengineers at the University of California, San Diego have created a new technology that has far-reaching implications for regenerative medicine. The results of the project have been reported in Advanced Materials.

The team has been able to fabricate, in seconds, microscale three-dimensional (3D) structures out of soft biocompatible hydrogels. This could lead to better systems for growing and studying cells, including stem cells, in the laboratory. In the long-term, the goal is to be able to print biological tissues for regenerative medicine. For example, repairing the damage caused by a heart attack by replacing it with tissue from a printer.

Professor Shaochen Chen developed this new biofabrication technology, called dynamic optical projection stereolithography (DOPsL). Current fabrication techniques, such as photolithography and micro-contact printing, are limited to generating simple geometries or 2D patterns. Stereolithography is best known for its ability to print large objects such as tools and car parts.

The difference between earlier stereolithography and DOPsL, Chen says, is in the micro- and nanoscale resolution required to print tissues that mimic natures fine-grained details, including blood vessels, which are essential for distributing nutrients and oxygen throughout the body. Without the ability to print vasculature, an engineered liver or kidney, for example, is useless in regenerative medicine. With DOPsL, Chens team was able to achieve more complex geometries common in nature such as flowers, spirals and hemispheres. Other current 3D fabrication techniques, such as two-photon photopolymerization, can take hours to fabricate a 3D part.

The system uses a computer projection system and precisely controlled micromirrors to shine light on a selected area of a solution containing photo-sensitive biopolymers and cells. This begins the solidification process, which forms one layer of solid structure at a time, but in a continuous fashion. The Obama administration in March launched a $1 billion investment in advanced manufacturing technologies, including creating the National Additive Manufacturing Innovation Institute with $30 million in federal funding to focus on 3D printing. The term additive manufacturing refers to the way 3D structures are built layering very thin materials.

The development of this new technology is part of a grant that Chen received from the National Institutes of Health (NIH). Chens research group focuses on fabrication of nanostructured biomaterials and nanophotonics for biomedical engineering.

Source: April Flowers for redOrbit.com - Your Universe Online

Originally posted here:
Regenerative Medicine Gets A Boost With Quick Printing Of 3D Microstructures

Read More...

Two lessons I learned this week.

Sunday, September 16th, 2012
Tweet 

I learned two valuable things this week I thought I'd pass on in a Friday afternoon post.  Actually strictly speaking these are likely things I've learned before but needed to re-learn or to be 'reminded' of their importance.
Please pardon a little stroll away from the typically strict focus on cell therapy -- but in a way that's the theme of today's post.
1.  Take time each week to read something from outside your specific profession or job focus.  
I'm not talking here about the importance of escaping in the evening with a fiction novel (also very important) but rather reading something professional but from well outside your area of focus.  Here are my examples.

I always read WIRED magazine.  Aside from GEN it's the only magazine I read.  Just reading something outside of cell therapy or biotech often infuses me with an idea that otherwise would have never occurred to me like the need for a cell therapy X Prize or cellular aggregates as microcarriers or tissue-engineered memory and processing devices or even just the conviction to better represent cell therapy to the broader world out there of scientists, engineers, journalists, policy-makers, or perhaps people with too much money looking to be inspired and wanting to make a difference.

Similarly, on a flight this week I reached into the seat pocket in front of me and discovered a recent copy of the Journal of the American Medical Association.  I read a fascinating article that has me excited about an idea for how we as a cell therapy industry might lead the way in addressing clinical trial and data transparency that would put our sector in a leadership position, lend the industry a much-needed spotlight, and has the potential to facilitate the kind of meta-analysis and data-mining that could only be done through data aggregation.  I believe the concept has the potential to be disproportionately significant for a sector defined by so many small, under-powered trials.
The idea may never see the light of day but the point is the source of the inspiration.  In order to 'think' outside the box one typically has to 'be' outside the box.  Lesson?  Spend some time outside your box.
2. It often takes something very small to make a disproportionately significant impact on someone.  
I was reminded recently through an exchange of simple kindnesses just how little it sometimes takes to make a big difference in someone's life.  For you what might be so easy to give might be of unparalleled value to someone for whom that is so unattainable.  
Lesson?  When the opportunity knocks for you to give something small or simple, take it.  This kind of charity almost always has the potential to be mre impactful than you might ever imagine.
http://www.celltherapyblog.com hosted by http://www.celltherapygroup.com

Source:
http://feeds.feedburner.com/CellTherapyBlog

Read More...

Two lessons I learned this week.

Sunday, September 16th, 2012
Tweet 

I learned two valuable things this week I thought I'd pass on in a Friday afternoon post.  Actually strictly speaking these are likely things I've learned before but needed to re-learn or to be 'reminded' of their importance.
Please pardon a little stroll away from the typically strict focus on cell therapy -- but in a way that's the theme of today's post.
1.  Take time each week to read something from outside your specific profession or job focus.  
I'm not talking here about the importance of escaping in the evening with a fiction novel (also very important) but rather reading something professional but from well outside your area of focus.  Here are my examples.

I always read WIRED magazine.  Aside from GEN it's the only magazine I read.  Just reading something outside of cell therapy or biotech often infuses me with an idea that otherwise would have never occurred to me like the need for a cell therapy X Prize or cellular aggregates as microcarriers or tissue-engineered memory and processing devices or even just the conviction to better represent cell therapy to the broader world out there of scientists, engineers, journalists, policy-makers, or perhaps people with too much money looking to be inspired and wanting to make a difference.

Similarly, on a flight this week I reached into the seat pocket in front of me and discovered a recent copy of the Journal of the American Medical Association.  I read a fascinating article that has me excited about an idea for how we as a cell therapy industry might lead the way in addressing clinical trial and data transparency that would put our sector in a leadership position, lend the industry a much-needed spotlight, and has the potential to facilitate the kind of meta-analysis and data-mining that could only be done through data aggregation.  I believe the concept has the potential to be disproportionately significant for a sector defined by so many small, under-powered trials.
The idea may never see the light of day but the point is the source of the inspiration.  In order to 'think' outside the box one typically has to 'be' outside the box.  Lesson?  Spend some time outside your box.
2. It often takes something very small to make a disproportionately significant impact on someone.  
I was reminded recently through an exchange of simple kindnesses just how little it sometimes takes to make a big difference in someone's life.  For you what might be so easy to give might be of unparalleled value to someone for whom that is so unattainable.  
Lesson?  When the opportunity knocks for you to give something small or simple, take it.  This kind of charity almost always has the potential to be mre impactful than you might ever imagine.
http://www.celltherapyblog.com hosted by http://www.celltherapygroup.com

Source:
http://feeds.feedburner.com/CellTherapyBlog

Read More...

Cytomedix's AutoloGel System Highlighted in Multiple Poster Presentations at the Symposium on Advanced Wound Care Fall …

Wednesday, September 12th, 2012

GAITHERSBURG, MD--(Marketwire - Sep 11, 2012) - Cytomedix, Inc. ( OTCQB : CMXI ), a fully integrated regenerative medicine company commercializing and developing innovative platelet and adult stem cell technologies, today announced that the Company's AutoloGel System will be highlighted in three poster presentations at the Symposium on Advanced Wound Care Fall 2012 ("SAWC Fall 2012") taking place September 12-14 at the Baltimore Convention Center.

The AutoloGel System is a device for the production of autologous platelet rich plasma ("PRP") gel, and is the only PRP device cleared by the U.S. Food and Drug Administration ("FDA") for use in wound management.

Posters will be showcased in the Poster Reception September 13 from 5:30 p.m. to 6:15 p.m. local time, and posters will be available for viewing September 12 and September 13 from 8:00 a.m. to 4:00 p.m. local time. The following posters highlighting Cytomedix's PRP technology will be presented at SAWC Fall 2012.

Cytomedix will host a booth at the Symposium for clinicians and other attendees to learn more about the AutoloGel System and the benefits it provides in the management of complex recalcitrant wounds. Cytomedix will be showcasing AutoloGel at Booth #1007 in the Exhibit Hall.

"SAWC Fall 2012 is the ideal venue to showcase our growing body of positive clinical data on AutoloGel as it is the premier educational wound care program and the largest annual gathering of wound care professionals in the U.S., with more than 1,000 physicians, podiatrists, nurses, therapists and researchers expected to attend," stated Martin P. Rosendale, Chief Executive Officer of Cytomedix. "These poster presentations underscore the robust nature of AutoloGel to advance the speed and progress to healing in a variety of recalcitrant wounds in a number of healthcare settings."

About The Association for the Advancement of Wound Care Since 1995 the Association for the Advancement of Wound Care ("AAWC") has been the leader in interdisciplinary wound healing and tissue preservation. It is a not-for-profit association headquartered in the U.S. open to everyone involved in wound care, including clinicians, patients and their lay caregivers, facilities, industry, students, retirees and other advocates interested in the care of wounds. AAWC spreads awareness by promoting excellence in education, clinical practice, public policy and research. Through numerous association benefits and activities, AAWC members have the opportunity to be part of a collaborative community that facilitates optimal care for those who suffer with wounds. This community encourages an equal partnership among all individuals who are involved in the care of patients.

For more information about the AAWC and member benefits, please visit http://www.aawconline.org.

About Cytomedix, Inc. Cytomedix, Inc. is a fully integrated regenerative medicine company commercializing and developing innovative platelet and adult stem cell separation products that enhance the body's natural healing processes. The Company's advanced autologous technologies offer clinicians a new treatment paradigm for wound and tissue repair. The Company's patient-derived PRP systems are marketed by Cytomedix in the U.S. and distributed internationally. Our commercial products include the AutoloGel System, cleared by the FDA for wound care and the Angel Whole Blood Separation System. The Company is developing novel regenerative therapies using our proprietary ALDH Bright Cell ("ALDHbr") technology to isolate a unique, biologically active population of a patient's own stem cells. A Phase 2 trial evaluating the use of ALDHbr for the treatment of ischemic stroke is underway. For additional information please visit http://www.cytomedix.com.

Safe Harbor Statement Statements contained in this press release not relating to historical facts are forward-looking statements that are intended to fall within the safe harbor rule for such statements under the Private Securities Litigation Reform Act of 1995. The information contained in the forward-looking statements is inherently uncertain, and Cytomedix' actual results may differ materially due to a number of factors, many of which are beyond Cytomedix' ability to predict or control, including among many others, risks and uncertainties related to the Company's reimbursement related efforts, the Company's ability to capitalize on the benefits of the above-referenced CMS determination, the Company's ability to successfully and favorably conclude the negotiations and related discussions with the above-referenced global pharmaceutical company, the Company's ability to successfully integrate the Aldagen acquisition, to successfully manage contemplated clinical trials, to manage and address the capital needs, human resource, management, compliance and other challenges of a larger, more complex and integrated business enterprise, viability and effectiveness of the Company's sales approach and overall marketing strategies, commercial success or acceptance by the medical community, competitive responses, the Company's ability to raise additional capital and to continue as a going concern, and Cytomedix's ability to execute on its strategy to market the AutoloGel System as contemplated. To the extent that any statements made here are not historical, these statements are essentially forward-looking. The Company uses words and phrases such as "believes," "forecasted," "projects," "is expected," "remain confident," "will" and/or similar expressions to identify forward-looking statements in this press release. Undue reliance should not be placed on forward-looking information. These forward-looking statements are subject to known and unknown risks and uncertainties that could cause actual events to differ from the forward-looking statements. More information about some of these risks and uncertainties may be found in the reports filed with the Securities and Exchange Commission by Cytomedix, Inc. Cytomedix operates in a highly competitive and rapidly changing business and regulatory environment, thus new or unforeseen risks may arise. Accordingly, investors should not place any reliance on forward-looking statements as a prediction of actual results. Except as is expressly required by the federal securities laws, Cytomedix undertakes no obligation to update or revise any forward-looking statements, whether as a result of new information, changed circumstances or future events or for any other reason. Additional risks that could affect our future operating results are more fully described in our U.S. Securities and Exchange Commission filings, including our Annual Report on Form 10-K for the year ended December 31, 2011 and other subsequent filings. These filings are available at http://www.sec.gov.

See more here:
Cytomedix's AutoloGel System Highlighted in Multiple Poster Presentations at the Symposium on Advanced Wound Care Fall ...

Read More...

CIRM Funds Six UC San Diego Stem Cell Researchers

Saturday, September 8th, 2012

Newswise The governing board of the California Institute for Regenerative Medicine (CIRM) has announced that six investigators from the University of California, San Diego Stem Cell Research program have received a total of more than $7 million in the latest round of CIRM funding. This brings UC San Diegos total to more than $128 million in CIRM funding since the first awards in 2006.

UC San Diego scientists funded by the newly announced CIRM Basic Biology Awards IV include Maike Sander, MD, professor of Pediatrics and Cellular and Molecular Medicine; Miles Wilkinson, PhD, professor, Division of Reproductive Endocrinology; Gene Yeo, PhD, MBA, assistant professor with the Department of Cellular and Molecular Medicine and the Institute for Genomic Medicine; George L. Sen, PhD, assistant professor of cellular and molecular medicine; David Traver, PhD, associate professor with the Department of Cellular and Molecular Medicine and Ananda Goldrath, PhD, associate professor in the Division of Biological Sciences.

Sander was awarded nearly $1.4 million for her proposal to define and characterize the key transcription factors necessary to promote maturation of human embryonic stem cell (hESC)-derived pancreatic progenitors into mature insulin-secreting beta cells. The loss of pancreatic beta cells in type 1 diabetes results in the absence of insulin secreted by the pancreas. The goal of this work is to enable scientists to one day produce an unlimited source of transplantable beta-cells for patients with diabetes.

Wilkinsons grant of $1.36 million will allow his lab to develop and test induced pluripotent stem cells (iPS cells) from patients with genetic mutations in a component of the pathway that results in intellectual disabilities. Many of these patients also have autism, attention-deficit disorders or schizophrenia. Directed towards understanding fundamental mechanisms by which all stem cells are maintained, his research has the potential to impact non-psychiatric disorders as well.

A grant of almost $1.4 million will fund Yeos research to help decode the mechanisms that underlie the single most frequent genetic mutation found to contribute to neurodegenerative diseases amyotrophic lateral sclerosis (ALS or Lou Gehrigs disease) and frontotemporal dementia (FTD). Yeo will generate iPSCs and differentiated motor neurons derived from patients with these mutations, then use genome-wide technologies to analyze these and normal cells and test strategies to rescue mutation-induced defects in iPSC-derived motor neurons.

Sen received a grant of just over $1 million to investigate how tissue specific stem and progenitor cells exist to replenish both healthy, normal tissue and for regeneration from a wound. Disease and aging deplete stem and progenitor cells, impeding the bodys ability to regenerate itself. Sens work aims to better understand the mechanisms of self-renewal and differentiation in epidermal (skin) stem cells. Imbalanced growth and differentiation of epidermal cells can lead to a variety of human skin disorders, including psoriasis and cancer.

Traver, who was awarded a CIRM grant of more than $1.3 million in collaboration with Thierry Jaffredo of the Universit Pierre et Marie Curie in Paris, studies hematopoietic stem cells. HSCs are rare, multipotent stem cells that give rise to all blood cell types, including red blood and immune cells. Travers lab investigates the genes and signaling pathways used by vertebrate embryos to create the first HSCs. An understanding of this developmental process has implications for producing restorative stem cell-based therapies for diseases like leukemia and congenital blood disorders. Currently, medical treatments using HSCs are hampered by cell shortages and finding compatible matches between donors and recipients.

Goldraths $1.16 million grant will help develop strategies to induce immunological tolerance to hESC-derived tissues and cells. Immune-mediated rejection of hESC-derived tissues remains a significant barrier to the promise of regenerative therapies. She proposes a novel approach to promote long-term acceptance of hESC-derived tissues by exploring the molecular pathways and immune cell types that mediate the induction of immune tolerance and pursuing additional targets that halt rejection of tissue grafts derived from these stem cells. If successful, this would increase the potential reach of cellular therapies by decreasing the undesirable side effects of generalized immune suppression.

The CIRM Basic Biology Awards are designed to fund investigations into the basic mechanisms underlying stem cell biology, cellular plasticity, and cellular differentiation. These awards will also fund the development and use human stem cell based models for exploring disease. According to CIRM, studies supported by these awards will form the foundation for future translational and clinical advances, enabling the realization of the full potential of human stem cells and reprogrammed cells for therapies and as tools for biomedical innovation.

CIRM was established in November 2004 with the passage of Proposition 71, the California Stem Cell Research and Cures Act. The statewide ballot measure provided $3 billion in funding for stem cell research at California universities and research institutions and called for the establishment of an entity to make grants and provide loans for stem cell research, research facilities, and other vital research opportunities.

Read more:
CIRM Funds Six UC San Diego Stem Cell Researchers

Read More...

StemCells, Inc. Awarded $20 Million From the California Institute for Regenerative Medicine for Alzheimer's Disease …

Friday, September 7th, 2012

NEWARK, Calif., Sept. 6, 2012 (GLOBE NEWSWIRE) -- StemCells, Inc. (STEM) today announced that the California Institute for Regenerative Medicine (CIRM) has approved an award to the Company for up to $20 million under CIRM's Disease Team Therapy Development Award program (RFA 10-05). The award is to fund preclinical development of StemCells' proprietary HuCNS-SC(R) product candidate (purified human neural stem cells) in Alzheimer's disease over a maximum four-year period, with the goal of filing an investigational new drug (IND) application for a clinical trial in that time. In July, CIRM approved a separate award to the Company under RFA 10-05 for up to $20 million to fund preclinical development of HuCNS-SC cells in cervical spinal cord injury.

"With the recent spate of late-stage clinical failures in Alzheimer's disease, it is clear that the field could benefit from alternative approaches to lessen the huge burden on families, caregivers and our healthcare system," commented Martin McGlynn, President and CEO of StemCells, Inc. "Our recently reported preclinical data, which showed that our neural stem cells restored memory and enhanced synaptic function in two animal models relevant to Alzheimer's disease, shows our approach has promise. We greatly appreciate the support from CIRM, which should help us accelerate our efforts to test our HuCNS-SC cells in Alzheimer's disease."

StemCells will evaluate its HuCNS-SC cells as a potential treatment for Alzheimer's disease in collaboration with Frank LaFerla, Ph.D., a world-renowned researcher in the field. Dr. LaFerla is Director of the University of California, Irvine (UCI) Institute for Memory Impairments and Neurological Disorders (UCI MIND), and Chancellor's Professor, Neurobiology and Behavior in the School of Biological Sciences at UCI.

Mr. McGlynn added, "CIRM's approval of two awards to StemCells illustrates the tremendous promise of our neural stem cell technology and the high degree of confidence in the world class team of scientists and clinicians who will be working to translate this technology into potential treatments and cures for these devastating diseases."

About CIRM

CIRM was established in November 2004 with the passage of Proposition 71, the California Stem Cell Research and Cures Act. The statewide ballot measure, which provided $3 billion in funding for stem cell research at California universities and research institutions, was overwhelmingly approved by voters, and called for the establishment of an entity to make grants and provide loans for stem cell research, research facilities, and other vital research opportunities. A list of grants and loans awarded to date may be seen here: http://www.cirm.ca.gov/for-researchers/researchfunding.

About StemCells, Inc.

StemCells, Inc. is engaged in the research, development, and commercialization of cell-based therapeutics and tools for use in stem cell-based research and drug discovery. The Company's lead therapeutic product candidate, HuCNS-SC(R) cells (purified human neural stem cells), is currently in development as a potential treatment for a broad range of central nervous system disorders. In a Phase I clinical trial in Pelizaeus-Merzbacher disease (PMD), a fatal myelination disorder in children, the Company has shown preliminary evidence of progressive and durable donor-derived myelination in all four patients transplanted with HuCNS-SC cells. The Company is also conducting a Phase I/II clinical trial in chronic spinal cord injury in Switzerland and recently reported positive interim data for the first patient cohort. The Company has also initiated a Phase I/II clinical trial in dry age-related macular degeneration (AMD), and is pursuing preclinical studies in Alzheimer's disease. StemCells also markets stem cell research products, including media and reagents, under the SC Proven(R) brand. Further information about StemCells is available at http://www.stemcellsinc.com.

The StemCells, Inc. logo is available at http://www.globenewswire.com/newsroom/prs/?pkgid=7014

Apart from statements of historical fact, the text of this press release constitutes forward-looking statements within the meaning of the Securities Act of 1933, as amended, and the Securities Exchange Act of 1934, as amended, and is subject to the safe harbors created therein. These statements include, but are not limited to, statements regarding; the potential of the Company's HuCNS-SC cells to treat a broad range of central nervous system disorders such as Alzheimer's disease and spinal cord injury; the prospect of initiating a clinical trial in Alzheimer's disease or cervical spinal cord injury; the timing and prospects for funding by the California Institute for Regenerative Medicine; and the future business operations of the Company, including its ability to conduct clinical trials as well as its other research and product development efforts. These forward-looking statements speak only as of the date of this news release. The Company does not undertake to update any of these forward-looking statements to reflect events or circumstances that occur after the date hereof. Such statements reflect management's current views and are based on certain assumptions that may or may not ultimately prove valid. The Company's actual results may vary materially from those contemplated in such forward-looking statements due to risks and uncertainties to which the Company is subject, including the fact that additional trials will be required to demonstrate the safety and efficacy of the Company's HuCNS-SC cells for the treatment of any disease or disorder; uncertainty as to whether the results of the Company's preclinical studies will be replicated in humans; uncertainties about the prospect and timing of entering into the agreements necessary to receive funding from CIRM and whether the Company will satisfy, and continue to satisfy, all preconditions for such funding; uncertainties regarding the Company's ability to obtain the increased capital resources needed to continue its current and planned research and development operations; uncertainty as to whether HuCNS-SC cells and any products that may be generated in the future in the Company's cell-based programs will prove safe and clinically effective and not cause tumors or other adverse side effects; and other factors that are described under the heading "Risk Factors" in the Company's Annual Report on Form 10-K for the year ended December 31, 2011, and in its subsequent reports on Forms 10-Q and 8-K.

Link:
StemCells, Inc. Awarded $20 Million From the California Institute for Regenerative Medicine for Alzheimer's Disease ...

Read More...

Cytomedix's AutoloGel System Highlighted in Two Presentations at the 4th Congress of the World Union of Wound Healing …

Thursday, September 6th, 2012

GAITHERSBURG, MD--(Marketwire -09/05/12)- Cytomedix, Inc. (CMXI), a fully integrated regenerative medicine company commercializing and developing innovative platelet and adult stem cell technologies for wound and tissue repair, today announced that the Company's AutoloGel System will be highlighted in an oral abstract and a poster presentation at the 4th Congress of the World Union of Wound Healing Societies (WUWHS 2012) being held from September 2-6, in Yokohama, Japan.

The AutoloGel System is a device for the production of autologous platelet rich plasma ("PRP") gel, and is the only PRP device cleared by the U.S. Food and Drug Administration ("FDA") for use in wound management.

"The Impact of Autologous Platelet Rich Plasma (PRP) Gel on Chronic Wounds" will be presented September 5th from 3:00 to 4:30 p.m. JST as part of the Tissue Engineering and Regenerative Medicines in Wound Healing session. The poster, OR 206, will be presented by Laura Parnell, MSc, CWS, Precision Consulting on behalf of Carelyn P. Fylling, RN, MSN, CWS, CLNC, Vice President of Professional Services of Cytomedix and lead author on the poster.

Key Study Findings (all data reflects mean outcomes)

The study concluded that AutoloGel PRP Gel "initiated rapid size reduction in long-standing non-healing wounds of multiple etiologies in multiple health care sites even in patients with compromised status."

In addition, Dr. Chugo Rinoie, DPM, ABPO, CWS, Chief of Podiatric Surgery, Wound Healing Center, Methodist Hospital of Southern California, Arcadia, Calif., and Medical Director, Millennia Wound Management, Inc., Los Angeles, will present Poster 125, entitled "Healing Complex, Severe Diabetic and Ischemic Wounds in Japan Using Platelet-Rich Plasma Gel" in the Exhibit Hall as part of the Diabetic Foot, Critical Limb Ischemia and Foot Care session.

"We are honored to have these two presentations of positive data in support of the use of AutoloGel to accelerate wound healing in a variety of chronic wounds selected for presentation at WUWHS 2012, as more than 1,200 abstracts were submitted for inclusion at this prestigious international Congress," noted Martin P. Rosendale, Chief Executive Officer of Cytomedix. "The data from these studies support and validate previous studies showing that AutoloGel significantly and reliably improves the rate of healing, speed and progress to healing as compared with previous experience with standard wound care alone. The complexity and co-morbidities associated with the wounds treated in these studies would have excluded them from any randomized controlled trial, making the findings from these real-world studies even more compelling."

"We believe we will continue to generate data such as these through the comprehensive collection of evidence we are undertaking through the Centers for Medicare and Medicaid Services' Coverage with Evidence Development program. We are confident such data will continue to strongly support the ongoing coverage for autologous PRP gel for the benefit of the various stakeholders in improving clinical wound care outcomes while lowering overall costs," added Mr. Rosendale.

About the Congress of the World Union of Wound Healing SocietyThe Congress of the World Union of Wound Healing Societies is held once every four years and provides an international forum for announcement of the latest research relating to wound healing that draws between 3,500 to 5,000 clinicians, researchers and professionals who serve the wound care markets around the world. The Congress also helps to ensure the exchange of information, the improvement and development of education, international person-to-person support and the promotion of industrial collaboration. The ultimate aim is to develop the field of wound healing. Despite the fact that "wounds" are a fundamental component and important target for surgery, there are still many factors that have yet to be clarified or fully understood.

About Cytomedix, Inc. Cytomedix, Inc. is a fully integrated regenerative medicine company commercializing and developing innovative platelet and adult stem cell separation products that enhance the body's natural healing processes. The Company's advanced autologous technologies offer clinicians a new treatment paradigm for wound and tissue repair. The Company's patient-derived PRP systems are marketed by Cytomedix in the U.S. and distributed internationally. Our commercial products include the AutoloGel System, cleared by the FDA for wound care and the Angel Whole Blood Separation System. The Company is developing novel regenerative therapies using our proprietary ALDH Bright Cell ("ALDHbr") technology to isolate a unique, biologically active population of a patient's own stem cells. A Phase 2 trial evaluating the use of ALDHbr for the treatment of ischemic stroke is underway. For additional information please visit http://www.cytomedix.com.

Excerpt from:
Cytomedix's AutoloGel System Highlighted in Two Presentations at the 4th Congress of the World Union of Wound Healing ...

Read More...

Page 52«..1020..51525354..60..»


2025 © StemCell Therapy is proudly powered by WordPress
Entries (RSS) Comments (RSS) | Violinesth by Patrick