header logo image


Page 50«..1020..49505152..»

Archive for the ‘Regenerative Medicine’ Category

ViaCyte Receives $10.1M Strategic Partnership Award From CIRM To Continue Development Of Diabetes Therapy

Thursday, November 1st, 2012

San Diego, CA/PRNewswire/ - ViaCyte, Inc., a leading regenerative medicine company developing a transformative cell therapy for treatment of diabetes, announced today that it has received a$10.1 millionStrategic Partnership Award from the California Institute for Regenerative Medicine (CIRM).

ViaCyte's innovative stem cell-based therapy for diabetes has been supported by several previous rounds of funding from CIRM, including a$20 millionDisease Team Award in 2009. This support has directly aided the development of VC-01, a regenerative medicine, combination product consisting of pancreatic beta cell progenitors encapsulated in a durable macroencapsulation device. When implanted under the skin of a patient with diabetes, VC-01 is expected to produce insulin and other factors which should safely and effectively control their disease. In its review of ViaCyte's application, CIRM's Grants Working Group characterized the Company's proposed therapy as the "holy grail" of diabetes treatments.

ViaCyte recently held a successful Pre-IND meeting with the United States Food and Drug Administration (FDA) and is on track to file an Investigational New Drug (IND) Application and initiate clinical evaluation of VC-01 in 2014. The Strategic Partnership Award from CIRM will be used to support these efforts, reflecting CIRM's commitment to following promising science through the progressive stages of product development.

"We are very grateful for the assistance that we are receiving from CIRM to advance our promising technology", stated Dr.Paul Laikind, President and CEO of ViaCyte. "Today's grant allows us to continue our efforts on behalf of theCaliforniataxpayers to break new ground with our stem cell-based product that has the potential to essentially cure patients with type 1 diabetes and provide a powerful new treatment for those with type 2 disease as well."

Approval of the award came from CIRM's governing board, the Independent Citizens Oversight Committee (ICOC), with advisement from the Scientific and Medical Research Funding Working Group. "ViaCyte has made good on their initial Disease Team award from CIRM, including a successful Pre-IND FDA meeting, and as a consequence, CIRM and the ICOC are glad to have the opportunity to continue funding ViaCyte's efforts to provide this product to patients with diabetes inCaliforniaand the rest of the world," said Dr.Alan Trounson, President of CIRM.

About ViaCyte

ViaCyte is a private company focused on developing a novel cell therapy for the treatment of diabetes. The Company's technology is based on the production of pancreatic beta cell progenitors derived from human pluripotent stem cells. These cells are implanted using a durable and retrievable encapsulation device. Once implanted and matured, these cells secrete insulin and other regulatory factors in response to blood glucose levels. ViaCyte's goal is long term insulin independence without immune suppression, and without risk of hypoglycemia and other diabetes-related complications.

ViaCyte is headquartered inSan Diego, Californiawith additional operations inAthens, Georgia. The Company is funded in part by the California Institute for Regenerative Medicine (CIRM) and JDRF.

This news release may contain forward-looking statements made pursuant to the provisions of the Private Securities Litigation Reform Act of 1995.

About CIRM

Read the original post:
ViaCyte Receives $10.1M Strategic Partnership Award From CIRM To Continue Development Of Diabetes Therapy

Read More...

Canadian Regenerative Medicine Community Growing Stronger

Thursday, November 1st, 2012

TORONTO, ONTARIO--(Marketwire - Oct 29, 2012) - The collaborative network created by the Centre for Commercialization of Regenerative Medicine (CCRM) has been strengthened with the addition of Stem Cell Therapeutics Corp. to its 20-member industry consortium.

"I am pleased to welcome Stem Cell Therapeutics Corp. to the industry consortium," says Dr. Michael May, CEO of CCRM. "Since our Centre mobilizes business and scientific expertise to translate regenerative medicine (RM) and stem cell-based medical discoveries into commercial products and therapies, the industry consortium provides critical expertise, experience and market-pull information for the development of innovative RM technologies. We are delighted to have them on board."

CCRM is working with its industry consortium to address real-life bottlenecks in their RM and stem cell-based product pipelines. The companies in the industry consortium represent the key sectors of the industry: therapeutics, devices, reagents, and cells as tools.

"Being included in CCRM''s industry consortium is a step in the repositioning of our company - an aim described in our corporate objectives - to participate along with the other 20 Canadian, American and international companies," says David Allan, Executive Chairman of Stem Cell Therapeutics Corp. "The concept of CCRM as a hub for the commercialization of Canada''s extraordinary commitment to stem cell research, and its provision of facilities and infrastructure, is outstanding.

"As Canada''s only public company dedicated to the development of stem cell therapeutics from academic research, we hope to become one of CCRM''s commercialization partners of choice for the novel work ongoing at so many of Canada''s internationally recognized academic centres."

To-date, CCRM has launched its first industry project with EMD Millipore and created an innovation fund with Pfizer Canada. CCRM has built three core development platforms: reprogramming and engineering; cell manufacturing; and, biomaterials and devices to carry out projects commissioned by academia and industry. CCRM has a fully resourced, 6,000 square foot development facility where all development work takes place.

Please visit http://www.ccrm.ca to see a complete list of CCRM''s industry consortium members.

About the Centre for Commercialization of Regenerative Medicine (CCRM)

CCRM, a Canadian not-for-profit organization funded by the Government of Canada''s Networks of Centres of Excellence program and six academic partners, supports the development of technologies that accelerate the commercialization of stem cell- and biomaterials-based technologies and therapies. A network of academics, industry and entrepreneurs, CCRM aims to translate scientific discoveries into marketable products for patients. CCRM launched in Toronto''s Discovery District on June 14, 2011.

See original here:
Canadian Regenerative Medicine Community Growing Stronger

Read More...

CIRM addresses some tough questions. Is it all just glass towers and basic research?

Sunday, October 21st, 2012
Tweet 

At an industry conference recently I heard several new grumbles from companies about CIRM's alleged heavy bias toward funding basic, pre-clinical, embryonic stem cell-focused, academic-based research over clinical-stage, adult stem cell-focused, industry-sponsored product trials, testing, and development.

I myself have shared some concern that for an agency with a key goal of bringing new medicines to the next generation, having less than a handful of projects at the clinical stage this far into its mandate and budget was falling short well of its timeline.

I'll also admit to occasionally harboring a similar sentiment to that of former Intel CEO, Andy Grove, who is, of late, a grumpy critic of the slow pace of life science research when he said of CIRM in a great piece by Jeffrey O'Brien in Fortune Magazine, "CIRM? "There are gleaming fucking buildings everywhere. That wasn't necessary." (The great stem cell dilemma. Fortune. Sept 28, 2012)  
So...I decided to try to hit these concerns and criticisms head on with my friends at the California Institute for Regenerative Medicine (CIRM).  

What follows is an online interview CellTherapyBlog.com (CTB) conducted with the California Institute for Regenerative Medicine (CIRM) the week of October 15, 2012.  In the interview that follows, we were particularly interested in addressing the degree to which CIRM is focused - moving forward - on funding clinical-stage research, industry-sponsored trials, and clinical/commercial-focused product development.  

CTB: Would you please remind us of CIRM’s mandate?

CIRM: “To support and advance stem cell research and regenerative medicine under the highest ethical and medical standards for the discovery and development of cures, therapies, diagnostics and research technologies to relieve human suffering from chronic disease and injury.”

CTB: What percentage of grants or grant money distributed to-date has gone to companies?

CIRM: For-profit entities have been and currently are eligible for CIRM funding covering stages of research which range from basic biology programs (in which industry has shown little interest) through Phase II clinical trials. Of these programs, 13% have been awarded to companies thus far. Having built 12 state of the art stem cell facilities and having seeded  the field with training and other types of grants of similar purpose, CIRM is now focusing on funding translational and clinical programs.  

This is where companies' primary interests are and we expect greater company participation in our translation and clinical Request for Application. The translation and clinical awards programs provide for much larger awards as compared to the basic research and the overall amount of later stage funding is significantly larger than the earlier basic research awards. The number of awards made in the translational and clinical development funding rounds is much less than in the basic science area. 

CIRM’s Strategic Partnership Funding Program is a cornerstone of our efforts to fund industry.   We expect to make awards through this program approximately every six months to assist companies whose financing demands is frequently at shorter intervals than academic institutions. These awards will be made following a robust peer review process ensuring that awards are made to projects that are based on sound scientific data and have a reasonable chance of success.

CTB: How many CIRM-funded projects will be in clinical trial this year?  How many anticipated to be in 2013?

CIRM: Four clinical trials that were fostered by CIRM funds are already in clinical trials for cancer and blood disorders. We expect one or more CIRM-funded projects to join that list in the next year. This includes projects that are in clinical trial already for which we have funded and are funding the follow on studies.

CTB: Is CIRM actively seeking applications for clinical-stage projects? from companies?

CIRM: Yes, we have recently held the first round of applications for our Strategic Partnership Awards that are designed specifically to attract applications from industry and include significant leveraged funding from multinational biopharmaceutical companies and/or venture capital. The first of these awards will be announced at an upcoming meeting of our governing board, the Independent Citizens Oversight Committee. Industry also accesses CIRM funding through the Disease Team awards, which include teams comprised of both academic researchers and industry as partners, consultants and advisors. 

CTB: In its funding to-date more CIRM funding has gone to pre-clinical over clinical science, embryonic over adult stem cell research, and infrastructure over labor.  Is that a fair assessment?

CIRM: No. We have awarded more basic research grants in numbers, but those grants are much smaller in dollars than those in our translational portfolio. That translational portfolio includes 75 projects that have been awarded nearly $600 million, well over half of the research dollars committed.

When CIRM funding was initiated in late 2006, there was a need to build intellectual and facility capacity because doubts about support from federal sources had limited the entry of scientists into the field and there was a need for “safe harbor facilities. “ Research into stem cells was also at an early stage and so it made sense for us to focus on the discovery phase of basic biology and pre-clinical work to enable more effective utilization of the potential that was evident.

Increasingly however we are moving towards clinical science, to enable a proper assessment of the value of cell therapies and related approaches for advancement of human medicine.

Our focus has always included all stem and progenitor cells. Pluripotential stem cells are immortal and develop into all cells of the body, so the potential is large and the available funding outside CIRM has been modest. We have concentrated on human rather than animal model cells because this is where the need has been greatest. Our goal is to fund transformational research with the highest potential benefit to patients, regardless of the stem cell type they utilize.

As for infrastructure, we spent $271 million in major facilities grants to help create new, state-of-the-art safe harbor research facilities in California which are essential for  delivering  the goals of CIRM. That investment was used to leverage almost $900 million in additional funds from private donors and institutions to help pay for those facilities. Each facility  attracted new researchers to the state,  employed local construction workers  and created expanded research facilities that will now be able to offer long-term employment for the high tech innovators in stem cell research, transformative new medicines  for intractable disease and deliver economic benefit for Californians.

CTB: Given the juxtaposition of the relative dearth of CIRM-funded clinical projects to-date and the mandate to support bringing therapies to the clinic, in the last half of its mandate does CIRM intend to emphasize funding of more clinical projects? 

CIRM: Yes, our focus in our new Strategic Plan does just that, emphasizing the increased focus on translation and clinical trials. As described above, we are investing strongly in this sector. But we firmly believe that advancement in medicine is dependent on the science that underpins the medical strategies. We will also  continue to support high quality basic science that can transform medical opportunities.  

CTB:  If so, do you anticipate more of those will involve the use of adult cells over embryonic just by virtue of the fact more of these are closer to or already in clinical testing?

CIRM: We are required by our statute to fund in those areas that are under-invested. Otherwise we are agnostic to cell type. We expect a mixture of embryonic (induced pluripotent stem cells as well when they are ready for clinical studies), fetal, adult, cancer stem and progenitor cells, as well as small molecules, biologics and other approaches, evolving from stem cell assays and research. We are most concerned with the ability to produce results for patients.

CTB: I understand CIRM has made efforts over the past couple year to ease the burden or restrictions on companies applying for funds, is that true? 

Yes, we have appointed a Vice President with business development responsibilities and are further strengthening this capacity with key staff. We are actively working with industry to develop sustainable partnerships in research, we hold webinars and face to face meetings with the FDA to better equip industry with the tools that can aid in their investigational new drug (IND) submissions . We also assist industry to better understand what they need to do to successfully apply for CIRM funding.

We have also made changes to our intellectual property regulations and loan regulations to make it even more attractive for companies  to partner with us in research.

CTB:  I have heard it said that CIRM is not interested in funding late-stage trials.  Is that outside CIRM’s mandate or is it simply a matter of not having enough money to fund a late-stage trial?

Our focus has been in moving promising research through the "Valley of Death" phase, from the lab through Phase 1 and 2 clinical trials. We are working with major industry and financial institutions to inform them of our developing portfolio with the belief that they will be interested in taking many of these products to the market place. We are probably unable to afford to do these late stage clinical trials alone and feel it is likely that commercial interests will provide the follow on funding. 

CTB: If CIRM’s $20M could be matched with another $20M to fund a late-stage trial, would that be appropriate and feasible to entertain?

CIRM: We are always interested in proposals that will enhance our mission. While this hypothetical has not been put to us we would have to assess the proposal on its merits and our available finances. 

CTB: For clinical-stage companies outside California, what legitimate ties to California can be put in place to make one eligible for CIRM funding?  Is a company required to have a Californian entity or is it enough to have collaborations with a Californian entity or key service providers located within the state such as a California-based manufacturer or clinical sites in California?  What about having some staff in California?  Other ways?

CIRM:  In our RFA’s we have provided guidance as to what entities qualify for CIRM funding.  Future requirments  are presently under review by our General Counsel. Certainly, companies will need to show genuine steps at the time of application  towards relocation of a significant component of their research activities to California in addition to establishing a California operation with California employees. CIRM funding would be largely limited to in-state  activities.



My synopsis:  

I'm willing to reserve judging CIRM's overall track record of funding of clinical-stage and industry-sponsored research based on what it has done to-date.

My assessment of CIRM's contributions to clinical-stage science and product development will be heavily weighted on what it does from this point forward.

There is a certain rationale at play here that says they had to spend the first part of the mandate building the research infrastructure and scientific underpinnings required to move successful clinical and product development forward in the last half of its mandate. It may not be a rationale you whole-heartedly endorse but it is credible and I, for one, and willing to give CIRM the benefit of the doubt on this one. 
Having said that, my expectations for CIRM in the latter part of its mandate are very high with respect to how much they are going to dedicate to clinical-stage, industry-sponsored research.  

However, CIRM cannot do this in a vacuum.  What is required is for companies to do what they can to work with CIRM.  Don't give up on them based on their past record or your past experience.  Let's work with CIRM to help them focus their resources on moving some meaningful clinical milestones forward.
____________

I hope this interview helps clarify for readers just how CIRM views its ongoing and future participation in clinical-stage and industry-sponsored regenerative medicine research, testing, and development.

I would be happy to entertain and channel further questions anyone might have about CIRM (excluding those pertaining to specific applications or projects).


http://www.celltherapyblog.com hosted by http://www.celltherapygroup.com

Source:
http://feedproxy.google.com/~r/CellTherapyBlog/~3/wzhx7dkP3vk/cirm-addresses-some-tough-questions-is.html

Read More...

CIRM addresses some tough questions. Is it all just glass towers and basic research?

Sunday, October 21st, 2012
Tweet 

At an industry conference recently I heard several new grumbles from companies about CIRM's alleged heavy bias toward funding basic, pre-clinical, embryonic stem cell-focused, academic-based research over clinical-stage, adult stem cell-focused, industry-sponsored product trials, testing, and development.

I myself have shared some concern that for an agency with a key goal of bringing new medicines to the next generation, having less than a handful of projects at the clinical stage this far into its mandate and budget was falling short well of its timeline.

I'll also admit to occasionally harboring a similar sentiment to that of former Intel CEO, Andy Grove, who is, of late, a grumpy critic of the slow pace of life science research when he said of CIRM in a great piece by Jeffrey O'Brien in Fortune Magazine, "CIRM? "There are gleaming fucking buildings everywhere. That wasn't necessary." (The great stem cell dilemma. Fortune. Sept 28, 2012)  
So...I decided to try to hit these concerns and criticisms head on with my friends at the California Institute for Regenerative Medicine (CIRM).  

What follows is an online interview CellTherapyBlog.com (CTB) conducted with the California Institute for Regenerative Medicine (CIRM) the week of October 15, 2012.  In the interview that follows, we were particularly interested in addressing the degree to which CIRM is focused - moving forward - on funding clinical-stage research, industry-sponsored trials, and clinical/commercial-focused product development.  

CTB: Would you please remind us of CIRM’s mandate?

CIRM: “To support and advance stem cell research and regenerative medicine under the highest ethical and medical standards for the discovery and development of cures, therapies, diagnostics and research technologies to relieve human suffering from chronic disease and injury.”

CTB: What percentage of grants or grant money distributed to-date has gone to companies?

CIRM: For-profit entities have been and currently are eligible for CIRM funding covering stages of research which range from basic biology programs (in which industry has shown little interest) through Phase II clinical trials. Of these programs, 13% have been awarded to companies thus far. Having built 12 state of the art stem cell facilities and having seeded  the field with training and other types of grants of similar purpose, CIRM is now focusing on funding translational and clinical programs.  

This is where companies' primary interests are and we expect greater company participation in our translation and clinical Request for Application. The translation and clinical awards programs provide for much larger awards as compared to the basic research and the overall amount of later stage funding is significantly larger than the earlier basic research awards. The number of awards made in the translational and clinical development funding rounds is much less than in the basic science area. 

CIRM’s Strategic Partnership Funding Program is a cornerstone of our efforts to fund industry.   We expect to make awards through this program approximately every six months to assist companies whose financing demands is frequently at shorter intervals than academic institutions. These awards will be made following a robust peer review process ensuring that awards are made to projects that are based on sound scientific data and have a reasonable chance of success.

CTB: How many CIRM-funded projects will be in clinical trial this year?  How many anticipated to be in 2013?

CIRM: Four clinical trials that were fostered by CIRM funds are already in clinical trials for cancer and blood disorders. We expect one or more CIRM-funded projects to join that list in the next year. This includes projects that are in clinical trial already for which we have funded and are funding the follow on studies.

CTB: Is CIRM actively seeking applications for clinical-stage projects? from companies?

CIRM: Yes, we have recently held the first round of applications for our Strategic Partnership Awards that are designed specifically to attract applications from industry and include significant leveraged funding from multinational biopharmaceutical companies and/or venture capital. The first of these awards will be announced at an upcoming meeting of our governing board, the Independent Citizens Oversight Committee. Industry also accesses CIRM funding through the Disease Team awards, which include teams comprised of both academic researchers and industry as partners, consultants and advisors. 

CTB: In its funding to-date more CIRM funding has gone to pre-clinical over clinical science, embryonic over adult stem cell research, and infrastructure over labor.  Is that a fair assessment?

CIRM: No. We have awarded more basic research grants in numbers, but those grants are much smaller in dollars than those in our translational portfolio. That translational portfolio includes 75 projects that have been awarded nearly $600 million, well over half of the research dollars committed.

When CIRM funding was initiated in late 2006, there was a need to build intellectual and facility capacity because doubts about support from federal sources had limited the entry of scientists into the field and there was a need for “safe harbor facilities. “ Research into stem cells was also at an early stage and so it made sense for us to focus on the discovery phase of basic biology and pre-clinical work to enable more effective utilization of the potential that was evident.

Increasingly however we are moving towards clinical science, to enable a proper assessment of the value of cell therapies and related approaches for advancement of human medicine.

Our focus has always included all stem and progenitor cells. Pluripotential stem cells are immortal and develop into all cells of the body, so the potential is large and the available funding outside CIRM has been modest. We have concentrated on human rather than animal model cells because this is where the need has been greatest. Our goal is to fund transformational research with the highest potential benefit to patients, regardless of the stem cell type they utilize.

As for infrastructure, we spent $271 million in major facilities grants to help create new, state-of-the-art safe harbor research facilities in California which are essential for  delivering  the goals of CIRM. That investment was used to leverage almost $900 million in additional funds from private donors and institutions to help pay for those facilities. Each facility  attracted new researchers to the state,  employed local construction workers  and created expanded research facilities that will now be able to offer long-term employment for the high tech innovators in stem cell research, transformative new medicines  for intractable disease and deliver economic benefit for Californians.

CTB: Given the juxtaposition of the relative dearth of CIRM-funded clinical projects to-date and the mandate to support bringing therapies to the clinic, in the last half of its mandate does CIRM intend to emphasize funding of more clinical projects? 

CIRM: Yes, our focus in our new Strategic Plan does just that, emphasizing the increased focus on translation and clinical trials. As described above, we are investing strongly in this sector. But we firmly believe that advancement in medicine is dependent on the science that underpins the medical strategies. We will also  continue to support high quality basic science that can transform medical opportunities.  

CTB:  If so, do you anticipate more of those will involve the use of adult cells over embryonic just by virtue of the fact more of these are closer to or already in clinical testing?

CIRM: We are required by our statute to fund in those areas that are under-invested. Otherwise we are agnostic to cell type. We expect a mixture of embryonic (induced pluripotent stem cells as well when they are ready for clinical studies), fetal, adult, cancer stem and progenitor cells, as well as small molecules, biologics and other approaches, evolving from stem cell assays and research. We are most concerned with the ability to produce results for patients.

CTB: I understand CIRM has made efforts over the past couple year to ease the burden or restrictions on companies applying for funds, is that true? 

Yes, we have appointed a Vice President with business development responsibilities and are further strengthening this capacity with key staff. We are actively working with industry to develop sustainable partnerships in research, we hold webinars and face to face meetings with the FDA to better equip industry with the tools that can aid in their investigational new drug (IND) submissions . We also assist industry to better understand what they need to do to successfully apply for CIRM funding.

We have also made changes to our intellectual property regulations and loan regulations to make it even more attractive for companies  to partner with us in research.

CTB:  I have heard it said that CIRM is not interested in funding late-stage trials.  Is that outside CIRM’s mandate or is it simply a matter of not having enough money to fund a late-stage trial?

Our focus has been in moving promising research through the "Valley of Death" phase, from the lab through Phase 1 and 2 clinical trials. We are working with major industry and financial institutions to inform them of our developing portfolio with the belief that they will be interested in taking many of these products to the market place. We are probably unable to afford to do these late stage clinical trials alone and feel it is likely that commercial interests will provide the follow on funding. 

CTB: If CIRM’s $20M could be matched with another $20M to fund a late-stage trial, would that be appropriate and feasible to entertain?

CIRM: We are always interested in proposals that will enhance our mission. While this hypothetical has not been put to us we would have to assess the proposal on its merits and our available finances. 

CTB: For clinical-stage companies outside California, what legitimate ties to California can be put in place to make one eligible for CIRM funding?  Is a company required to have a Californian entity or is it enough to have collaborations with a Californian entity or key service providers located within the state such as a California-based manufacturer or clinical sites in California?  What about having some staff in California?  Other ways?

CIRM:  In our RFA’s we have provided guidance as to what entities qualify for CIRM funding.  Future requirments  are presently under review by our General Counsel. Certainly, companies will need to show genuine steps at the time of application  towards relocation of a significant component of their research activities to California in addition to establishing a California operation with California employees. CIRM funding would be largely limited to in-state  activities.



My synopsis:  

I'm willing to reserve judging CIRM's overall track record of funding of clinical-stage and industry-sponsored research based on what it has done to-date.

My assessment of CIRM's contributions to clinical-stage science and product development will be heavily weighted on what it does from this point forward.

There is a certain rationale at play here that says they had to spend the first part of the mandate building the research infrastructure and scientific underpinnings required to move successful clinical and product development forward in the last half of its mandate. It may not be a rationale you whole-heartedly endorse but it is credible and I, for one, and willing to give CIRM the benefit of the doubt on this one. 
Having said that, my expectations for CIRM in the latter part of its mandate are very high with respect to how much they are going to dedicate to clinical-stage, industry-sponsored research.  

However, CIRM cannot do this in a vacuum.  What is required is for companies to do what they can to work with CIRM.  Don't give up on them based on their past record or your past experience.  Let's work with CIRM to help them focus their resources on moving some meaningful clinical milestones forward.
____________

I hope this interview helps clarify for readers just how CIRM views its ongoing and future participation in clinical-stage and industry-sponsored regenerative medicine research, testing, and development.

I would be happy to entertain and channel further questions anyone might have about CIRM (excluding those pertaining to specific applications or projects).


http://www.celltherapyblog.com hosted by http://www.celltherapygroup.com

Source:
http://feedproxy.google.com/~r/CellTherapyBlog/~3/wzhx7dkP3vk/cirm-addresses-some-tough-questions-is.html

Read More...

Journal Stem Cell Translational Medicine to Publish Article on FDA Communications and the Regulatory Pathway for Cell …

Thursday, October 18th, 2012

WASHINGTON, DC--(Marketwire - Oct 17, 2012) - The Alliance for Regenerative Medicine (ARM), the international organization representing the interests of the regenerative medicine community, announced the publication today of an article on FDA communications to help companies developing cell-based therapies by clarifying the development pathway. The article, entitled "Communications with the FDA on the Development Pathway for a Cell-Based Therapy: Why, What, When, and How?" will be published in the journal Stem Cells Translational Medicine. It is co-authored by representatives from ARM, Janssen R&D, GE Healthcare and Life Technologies, with the lead author from the California Institute for Regenerative Medicine (CIRM).

"There are a number of ways cell-based therapy companies can communicate with FDA that will help them navigate the road from the bench to a regulatory submission," said Michael Werner, Executive Director of ARM. "We hope that our combined experience as co-authors, and our attempt to create a single source of guidance on the regulatory process, will help companies bring new cell-based therapies through clinical trials and the regulatory review process more quickly so they can reach patients faster," added Mr. Werner.

Lead author Ellen Feigal, MD, Senior Vice President for Research and Development at the California Institute for Regenerative Medicine (CIRM) commented, "Cell-based therapies represent a fundamentally new way to treat or cure disease, but developing a new therapy is costly, time consuming and fraught with uncertainty. Our paper takes a practical approach to clarifying the path to market."

"Communications with the FDA on the Development Pathway for a Cell-Based Therapy: Why, What, When, and How?" provides detailed information on options for communicating with the FDA at different stages; the official communications tied to each stage of development; and the most common reasons regulatory applications are delayed. The article can be accessed at: http://stemcellstm.alphamedpress.org/content/early/recent

About CIRM: CIRM was established in November 2004 with the passage of Proposition 71, the California Stem Cell Research and Cures Act. The statewide ballot measure, which provided $3 billion in funding for stem cell research at California universities and research institutions, was overwhelmingly approved by voters, and called for the establishment of an entity to make grants and provide loans for stem cell research, research facilities, and other vital research opportunities. A list of grants and loans awarded to date may be seen here: http://www.cirm.ca.gov/for-researchers/researchfunding.

About ARM: The Alliance for Regenerative Medicine is a Washington, DC-based multi-stakeholder advocacy organization that promotes legislative, regulatory and reimbursement initiatives necessary to facilitate access to life-giving advances in regenerative medicine. ARM also works to increase public understanding of the field and its potential to transform human healthcare, providing business development and investor outreach services to support the growth of its member companies and research organizations. Prior to the formation of ARM in 2009, there was no advocacy organization operating in Washington, DC to specifically represent the interests of the companies, research institutions, investors and patient groups that comprise the entire regenerative medicine community. Today ARM has more than 120 members and is the leading global advocacy organization in this field. In March 2012, ARM launched a sister organization in Europe -- the Alliance for Advanced Therapies. For more information go to http://www.alliancerm.org.

View original post here:
Journal Stem Cell Translational Medicine to Publish Article on FDA Communications and the Regulatory Pathway for Cell ...

Read More...

Cell therapy portfolio outperforms major indices year-to-date

Sunday, October 14th, 2012
Tweet 


On August 10 we created a model portfolio in Google Finance of 29 public companies in the cell therapy sector then we compared how that portfolio was doing against the major indices year-to-date (Since 1 January 2012).  See that post here.  Bottom line: even though we are still in a relatively bullish market, the CT portfolio was doing better.  Significantly better.
So how is the sector portfolio doing now that we've been through three quarters?
CT model portfolio compared to 3 major indices YTD
In case you can't read the image above, the blue line represents the cell therapy portfolio and here are the stats on performance since 1 January 2012:
  • Cell Therapy Portfolio:  +24.44%
  • Dow Jones:  +4.5%
  • S+P 500:  +6.78%
  • Nasdaq:  +10.26%
The only change I've made to the portfolio of 29 companies listed in our August 10 post is to add Thermogenesis (KOOL).  Today its stock is at .968 up from .7 at the beginning of the year.
You do or should know, I'm no financial analyst.  I'm not entirely sure what assumptions are behind this 'model portfolio' or precisely what one should take from this snapshot but what is clear to me is that at least from one perspective the sector is treating investors fairly well.
I certainly welcome comments from more sophisticated investors or analysts.  In fact, if anyone with that kind of experience or expertise wants to write a guest post on this blog providing a more sophisticated commentary on what this all means, I would very much welcome the contribution.
In the meantime, I hope this helps.
_________________
Post-publication addition:
Carter Gould, Associate Biotech Analyst at Dawson James Securities emailed me to point out that the cell therapy portfolio is simply riding the bull wave of biotech in general and and the portfolio has not done even half as well as the broader biotech (BTK) index which is up 45% YTD.  All very true.  Here is a YahooFinance snapshot of the BTK performance vs the three major indices.















http://www.celltherapyblog.com hosted by http://www.celltherapygroup.com

Source:
http://feedproxy.google.com/~r/CellTherapyBlog/~3/ediPNE1NBDw/cell-therapy-portfolio-outperforms.html

Read More...

Cell therapy portfolio outperforms major indices year-to-date

Sunday, October 14th, 2012
Tweet 


On August 10 we created a model portfolio in Google Finance of 29 public companies in the cell therapy sector then we compared how that portfolio was doing against the major indices year-to-date (Since 1 January 2012).  See that post here.  Bottom line: even though we are still in a relatively bullish market, the CT portfolio was doing better.  Significantly better.
So how is the sector portfolio doing now that we've been through three quarters?
CT model portfolio compared to 3 major indices YTD
In case you can't read the image above, the blue line represents the cell therapy portfolio and here are the stats on performance since 1 January 2012:
  • Cell Therapy Portfolio:  +24.44%
  • Dow Jones:  +4.5%
  • S+P 500:  +6.78%
  • Nasdaq:  +10.26%
The only change I've made to the portfolio of 29 companies listed in our August 10 post is to add Thermogenesis (KOOL).  Today its stock is at .968 up from .7 at the beginning of the year.
You do or should know, I'm no financial analyst.  I'm not entirely sure what assumptions are behind this 'model portfolio' or precisely what one should take from this snapshot but what is clear to me is that at least from one perspective the sector is treating investors fairly well.
I certainly welcome comments from more sophisticated investors or analysts.  In fact, if anyone with that kind of experience or expertise wants to write a guest post on this blog providing a more sophisticated commentary on what this all means, I would very much welcome the contribution.
In the meantime, I hope this helps.
_________________
Post-publication addition:
Carter Gould, Associate Biotech Analyst at Dawson James Securities emailed me to point out that the cell therapy portfolio is simply riding the bull wave of biotech in general and and the portfolio has not done even half as well as the broader biotech (BTK) index which is up 45% YTD.  All very true.  Here is a YahooFinance snapshot of the BTK performance vs the three major indices.















http://www.celltherapyblog.com hosted by http://www.celltherapygroup.com

Source:
http://feedproxy.google.com/~r/CellTherapyBlog/~3/ediPNE1NBDw/cell-therapy-portfolio-outperforms.html

Read More...

Leading Researchers to Unite at Texas State Capitol for Regenerative Medicine and Stem Cell Research

Saturday, October 13th, 2012

AUSTIN, Texas, Oct. 12th, 2012 /PRNewswire-USNewswire/ -- Prominent stem cell scientists, physicians, and advocates from leading medical facilities and research institutions across Texas and California will highlight the 3rd Annual Stem Cell Research Symposium: Spotlight on Texas, on October 19, 2012, at the Texas State Capitol.

This free, public symposium, produced and co-hosted by the Austin-based nonprofit Texas Cures Education Foundation (Texas Cures), is designed to educate the public about the exciting stem cell research andclinical trials currently under way in Texas.The event will also include a discussion of recent Texas laws affecting stem cell research, the potential economic impact of stem cell research and highlight the current progress in one of the most promising areas of medicine.

This year, more than a dozen local and national advocacy groups, institutions and foundations showed their support for the efforts of the hosting organizations Texas Cures and Texans for Stem Cell Research including the Genetics Policy Institute, Alliance for Regenerative Medicine and Texans for Advancement of Medical Research.

The symposium begins at 8:30 a.m. in the Capitol Extension Auditorium (E1.004), located at the Texas State Capitol Building. Admission is free and open to the public.Registration is recommended.

This program unites the diverse stem cell research and regenerative medicine community to provide a unified voice for promising science that holds unmatched potential to benefit patients. Leading speakers at the event will include:

For additional details about the program and presentation topics, please visit TexasCures.org.

The 3rd Annual Stem Cell Research Symposium: Spotlight on Texas is an official World Stem Cell Awareness Day Event. Follow @TexasCures and #stemcellday for live Twitter updates and announcements.

Texas Cures Education Foundation (Texas Cures) TexasCures.orgis a non-partisan, nonprofit 501(c)3] organization based in Austin, Texas. It was founded for the purpose of advancing knowledge of the life-saving work that doctors and researchers perform every day on behalf of patients and their families. Texas Cures facilitates stem cell public education for the betterment of healthcare and the growth of companies, research hospitals, and institutions, charities, and volunteer patient group organizations that include a broad range of regenerative medicine stakeholders. Texas Cures advocates for responsible public policy and encourages legislative and regulatory proposals that expand access to stem cell clinical applications.

SOURCE Texas Cures Education Foundation

Read the original post:
Leading Researchers to Unite at Texas State Capitol for Regenerative Medicine and Stem Cell Research

Read More...

Scientists Identify Mammal Model of Bladder Regeneration

Saturday, October 13th, 2012

Newswise WINSTON-SALEM, N.C. While it is well known that starfish, zebrafish and salamanders can re-grow damaged limbs, scientists understand very little about the regenerative capabilities of mammals. Now, researchers at Wake Forest Baptist Medical Centers Institute for Regenerative Medicine report on the regenerative process that enables rats to re-grow their bladders within eight weeks.

In PLOS ONE, a peer-reviewed, online publication, the scientists characterize this unique model of bladder regeneration with the goal of applying what they learn to human patients.

A better understanding of the regenerative process at the molecular and cellular level is a key to more rapid progress in applying regenerative medicine to help patients, said George Christ, Ph.D., senior researcher and professor of regenerative medicine at Wake Forest Baptist.

In a previous study by Christs team, research in rats showed that when about 75 percent of the animals bladders were removed, they were able to regenerate a complete functional bladder within eight weeks. The current study focused on how the regeneration occurs.

There is very little data on the mechanisms involved in organ regeneration in mammals, said Christ. To our knowledge, bladder regeneration holds a unique position there is no other mammalian organ capable of this type of regeneration.

The ability of the liver to grow in size when lobes are removed is sometimes referred to as regeneration, but this is a misnomer, said co-author Bryon Petersen, Ph.D., who was a professor of regenerative medicine at Wake Forest Baptist during the period the research occurred. Instead, through a proliferation of cells, the remaining tissue grows to compensate for the lost size. In contrast, the hallmark of true regeneration is following natures pattern to exactly duplicate size, form and function, Petersen said.

If we can understand the bladders regenerative process, the hope is that we can prompt the regeneration of other organs and tissues where structure is important from the intestine and spinal cord to the heart, said Petersen.

The current study showed that the animals bodies responded to injury by increasing the rate at which certain cells divided and grew. The most notable proliferative response occurred initially in the urothelium, the layer of tissue that lines the bladder.

As the proliferative activity in the bladder lining waned, it continued elsewhere: in the fibrous band (lamina propria) that separates the bladder lining from the bladder muscles and in the bladder muscle itself.

The researchers have several theories about how the process works, said Christ. One possibility is that cells in the bladder lining transition and become a type of stem cell that can proliferate throughout the bladder. Other theories are that cells in the bladder lining signal other cells to replicate and that injury prompts stem cells to arrive through the blood stream to repair the bladder damage.

Follow this link:
Scientists Identify Mammal Model of Bladder Regeneration

Read More...

ACT Announces Approval to Treat Additional Stargardt’s Disease Patients with Higher RPE Dosage in Both U.S. and …

Tuesday, October 9th, 2012

MARLBOROUGH, Mass.--(BUSINESS WIRE)--

Advanced Cell Technology, Inc. (ACT; OTCBB: ACTC), a leader in the field of regenerative medicine, announced today that the Data and Safety Monitoring Board (DSMB), an independent group of medical experts closely monitoring the Companys three ongoing clinical trials, has authorized the Company to move forward with enrollment and treatment of second and third additional patients with Stargardts macular dystrophy (SMD) in the second patient cohort of its U.S. trial for the condition. Additionally, the DSMB has authorized the Company to treat all three patients in the second cohort of its European trial for SMD.

The UK Medicines and Healthcare products Regulatory Agency (MHRA) recently approved a protocol modification to the DSMB review, streamlining the process, allowing the company to treat the first patient in a new cohort if the DSMB has allowed this in the US study, and once clearance has been received in the US trial to treat the next two patients in the US cohort. This would also allow for treatment of the UK patients without an additional review by the DSMB. Moreover, according to the protocol for both trials, each patient in the second cohort will be injected with 100,000 human embryonic stem cell (hESC)-derived retinal pigment epithelial (RPE) cells, up from 50,000 in the first cohort.

This authorization to treat the next five patients in the second, higher-dosage cohort in both our clinical trials for SMD represents a significant step forward for our clinical programs, commented Gary Rabin, chairman and CEO of ACT. We are also encouraged with the MHRAs approval of the DSMBs streamlined review process. Clearly this has the potential to help accelerate the pace of our European trial.

ACT is conducting three clinical trials in the U.S. and Europe using hESC-derived RPE cells to treat forms of macular degeneration, SMD and dry age-related macular degeneration (dry AMD). Each trial will enroll a total of 12 patients, with cohorts of three patients each in an ascending dosage format, from 50,000 hESC-derived RPE cells in the first patient cohort to 200,000 in the last and final cohort. These trials are prospective, open-label studies, designed to determine the safety and tolerability of hESC-derived RPE cells following sub-retinal transplantation into patients with dry-AMD or SMD at 12 months, the studys primary endpoint.

We are eagerly anticipating treating these final two patients in the second cohort of our U.S. trial for SMD, and all three patients in the second cohort of our E.U. trial, commented Robert Lanza, M.D., ACTs chief scientific officer. We are encouraged by the preliminary data in the first patient in this second, higher-dosage cohort and look forward to gathering more data.

Further information about patient eligibility for ACTs SMD studies in the U.S. and E.U. as well as its dry AMD study are available atwww.clinicaltrials.gov,with the following Identifiers: NCT01345006 (U.S. SMD), NCT01469832 (E.U. SMD), and NCT01344993 (dry AMD).

About Advanced Cell Technology, Inc.

Advanced Cell Technology, Inc., is a biotechnology company applying cellular technology in the field of regenerative medicine. For more information, visit http://www.advancedcell.com.

Forward-Looking Statements

Read the original:
ACT Announces Approval to Treat Additional Stargardt’s Disease Patients with Higher RPE Dosage in Both U.S. and ...

Read More...

Stem Cell Scientists Awarded Nobel Prize in Physiology and Medicine

Tuesday, October 9th, 2012

Kyodo / Reuters

Kyoto University Professor Shinya Yamanaka (left) and John Gurdon of the Gurdon Institute in Cambridge, England, at a symposium on induced pluripotent stem cells in Tokyo in April 2008

In a testament to the revolutionary potential of the field of regenerative medicine, in which scientists are able to create and replace any cells that are at fault in disease, the Nobel Prize committee on Monday awarded the 2012 Nobel in Physiology or Medicine to two researchers whose discoveries have made such cellular alchemy possible.

The prize went to John B. Gurdon of the University of Cambridge in England, who was among the first to clone an animal, a frog, in 1962, and to Shinya Yamanaka of Kyoto University in Japan who in 2006 discovered the four genes necessary to reprogram an adult cell back to an embryonic state.

Sir John Gurdon, who is now a professor at an institute that bears his name, earned the ridicule of many colleagues back in the 1960s when he set out on a series of experiments to show that the development of cells could be reversed. At the time, biologists knew that all cells in an embryo had the potential to become any cell in the body, but they believed that once a developmental path was set for each cell toward becoming part of the brain, or a nerve or muscle it could not be returned to its embryonic state. The thinking was that as a cell developed, it would either shed or silence the genes it no longer used, so that it would be impossible for a cell from an adult animal, for example, to return to its embryonic state and make other cells.

(MORE: Stem Cell Miracle? New Therapies May Cure Chronic Conditions Like Alzheimers)

Working with frogs, Gurdon proved his critics wrong, showing that some reprogramming could occur. Gurdon took the DNA from a mature frogs gut cell and inserted it into an egg cell. The resulting egg, when fertilized, developed into a normal tadpole, a strong indication that the genes of the gut cell were amenable to reprogramming; they had the ability to function as more than just an intestinal cell, and could give rise to any of the cells needed to create an entirely new frog.

Just as Gurdon was facing his critics in England, a young boy was born in Osaka, Japan, who would eventually take Gurdons finding to unthinkable extremes. Initially, Shinya Yamanaka would follow his fathers wishes and become an orthopedic surgeon, but he found himself ill-suited to the surgeons life. Intrigued more by the behind-the-scenes biological processes that make the body work, he found himself drawn to basic research, and began his career by trying to find a way to lower cholesterol production. That work also wasnt successful, but it drew him to the challenge of understanding what makes cells divide, proliferate and develop in specific ways.

In 2006, while at Kyoto University, Yamanaka stunned scientists by announcing he had successfully achieved what Gurdon had with the frog cells, but without using eggs at all. Yamanaka mixed four genes in with skin cells from adult mice and turned those cells back to an embryo-like state, essentially erasing their development and turning back their clock. The four genes reactivated other genes that are prolific in the early embryo, and turned off those that directed the cells to behave like skin.

(MORE: Ovary Stem Cells Can Produce New Human Eggs)

See more here:
Stem Cell Scientists Awarded Nobel Prize in Physiology and Medicine

Read More...

Regenerative medicine could be 'next big thing' for Va. biotech

Tuesday, October 9th, 2012

Regenerative medicine, a field that didn't exist 20 years ago and contains techniques seemingly straight out of science fiction, could be the next big thing in Virginia's biotechnology sector.

That's the opinion of Roy Ogle, an expert in the field who works at Old Dominion University as head of its new school of Medical Diagnostic and Translational Sciences.

So what is regenerative medicine? Simply put, it's the process of re-growing human cells to repair damaged tissues and organs.

In a meeting Thursday hosted by the Virginia Biotechnology Association, Ogle and Brian Pollok, principal of Rapidan BioAdvisors, discussed one of the field's newest developments: induced pluripotent stem cells, or iPSCs.

Let's go back to high school biology: Perhaps you remember embryonic stem cells. These cells can differentiate into different types of cells skin, blood, bone, muscle before a baby is born. But their use in scientific research has become controversial and difficult.

So scientists needed a new way to develop stem cells. iPSCs are already formatted cells that are "induced," or returned, to their original state as a stem cell. Then that stem cell can be reprogrammed to become a different type of cell. For example, a researcher can take a red blood cell, turn it into an iPSC, and then turn that into a muscle cell. (Yeah, our jaw dropped at this point, too). So you get most of the benefits of an embryonic stem cell without the controversy.

What's that mean for the business community?

"Ten or 20 years from now, we could have a way to do cell replacements and make a new spinal cord or new and healthy muscles," Ogle said. "But right now, there are genetic discoveries and methods of development with a giant potential that a small company can sell to (pharmaceutical giants such as) Roche or Sanofi-Aventis."

Ogle said this sort of intermediate work after invention but before the science is proven enough for big pharma to get involved is the perfect space for startups, especially those affiliated with research universities. He said small companies are best placed to do this work and sell the results to big companies because a startup is better suited to tolerate the risk and uncertainty.

"While we think about the long-term development as scientists, there are applications right now where we could serve society and make a lot of money," he said.

Original post:
Regenerative medicine could be 'next big thing' for Va. biotech

Read More...

K computer may be used in regenerative medicine

Saturday, October 6th, 2012

The Yomiuri Shimbun/Asia News Network Friday, Oct 05, 2012

The K supercomputer, which once held the world's fastest computing speed, may be used to shorten the time needed in regenerative medicine from several months, or even years, to several hours, according to the Riken Center of Developmental Biology and other institutions.

Researchers aim to create organs from human embryonic stem cells (ES cells) or induced pluripotent stem cells (iPS cells), but the length of time normally needed to accomplish this task is a problem.

The institutions hope to put regenerative medicine into practical use as soon as possible using iPS cells, a Japanese technology, and other cells, and this is where the supercomputer will come in.

Yoshiki Sasai, group director at the Riken Center, and other researchers are planning to use the K supercomputer to determine the best method to create organs from these cells.

The researchers successfully developed an optic cup, a basic part of the eye, from ES cells for the first time in the world. While it takes about six months to transform ES cells into an optic cup, the researchers spent about three years to find how to do this through trial and error.

Currently, it takes several years to complete basic experiments to transform ES cells or iPS cells into target organs, and in many cases the experiments fail to achieve their purpose.

Plans are under way to use the K supercomputer to develop new medicines, work out disaster prevention measures and conduct research on cosmic evolution and for other purposes.

Sasai and the other researchers, therefore, decided the supercomputer, which performs 10 quadrillion (or one kei in Japanese) calculations per second, would be ideal in completing basic experiments in a fraction of the time it now takes.

If the K supercomputer calculates mathematized data on divisions, growth and internal changes of iPS cells to which protein or certain kinds of genes are added, it will become possible to create target organs more effectively, according to the researchers.

Read the rest here:
K computer may be used in regenerative medicine

Read More...

Histogenics Honored as a 2012 “Fierce 15” Company by FierceMedicalDevices

Wednesday, October 3rd, 2012

WALTHAM, Mass.--(BUSINESS WIRE)--

Histogenics, a regenerative medicine company combining cell therapy and tissue engineering technologies to develop highly innovative products for tissue repair and regeneration, announced today that it has been named to the FierceMedicalDevices Fierce 15 list, designating it as one of the leading medical device and diagnostic companies of 2012. FierceMedicalDevicesEditors Mark Hollmer and Damian Garde, in conjunction with Editor-in-Chief John Carroll and Executive Editor Ryan McBride, chose this years winners based on their top management teams, notable financial backing, and promising technologies and market opportunities.

We have worked hard over the past year, securing $49 million in financing and adding key new staff, investors and board members, so that we are now in the position to focus our full attention on continued successful clinical and regulatory execution for NeoCart cartilage regeneration implant, which is currently enrolling patients into the Phase 3 IND clinical study, and the EU regulatory development of our VeriCart cartilage repair scaffold, said Patrick ODonnell, President and Chief Executive Officer of Histogenics. We believe our product candidates have the potential to transform the treatment of cartilage injury with the goal of returning some of the estimated 1.8 million patients each year in the U.S. and E.U. that undergo arthroscopy for knee cartilage defects to their pre-injury level of activity.

Nailing down $49 million in financing in July reinforces the notion that this regenerative medicine company stands out for doing things differently.One example how: The company is well underway enrolling patients in a Phase 3 trial for NeoCart, a cartilage implant that uses a patients own cells to build it before treating cartilage lesions in the knee, said Hollmer.

NeoCart is an autologous neocartilage tissue implant in an ongoing Phase 3 clinical program that utilizes the patients own cells to regenerate cartilage in patients suffering from cartilage lesions in the knee.VeriCart, is a single-step, cell-free collagen scaffold uniquely designed to be used in conjunction with the patients own stem cells to repair small cartilage defects frequently observed in meniscal and anterior cruciate ligament repair procedures. Histogenics is seeking regulatory clearance in the European Union for VeriCart.

An internationally recognized e-newsletter reaching more than 34,000 medical device and diagnostic industry professionals, FierceMedicalDevices provides subscribers with a quick authoritative briefing on the days top stories, with a special focus on clinical studies, FDA/EMEA regulations and post-marketing. Sign up is free at http://www.fiercemedicaldevices.com/signup.

About FierceMarkets

FierceMarkets, a wholly owned subsidiary of Questex Media Group, is a leader in B2B emedia, providing information and marketing services in the telecommunications, life sciences, healthcare, IT, energy, government and finance industries through its portfolio of email newsletters, websites, webinars and live events. Every business day, FierceMarkets wide array of publications reaches more than 1.3 million executives in more than 100 countries.

About Histogenics

Histogenics is a leading regenerative medicine company that combines cell therapy and tissue engineering technologies to develop highly innovative products for tissue repair and regeneration. In May of 2011, Histogenics acquired Israeli cell-therapy company ProChon BioTech. Histogenics flagship products focus on the treatment of active patients suffering from articular cartilage derived pain and immobility. The Company takes an interdisciplinary approach to engineering neocartilage that looks, acts and lasts like hyaline cartilage. It is developing new treatments for sports injuries and other orthopedic conditions, where demand is growing for long-term alternatives to joint replacement. Histogenics has successfully completed Phase 1 and Phase 2 clinical trials in which the NeoCart autologous tissue implants effectiveness is compared to that of standard microfracture surgery. Based in Waltham, Massachusetts, the company is privately held. For more information, visitwww.histogenics.com.

Read the original:
Histogenics Honored as a 2012 “Fierce 15” Company by FierceMedicalDevices

Read More...

Translational Regenerative Medicine: Market Prospects 2012-2022

Tuesday, October 2nd, 2012

NEW YORK, Oct. 1, 2012 /PRNewswire/ -- Reportlinker.com announces that a new market research report is available in its catalogue:

Translational Regenerative Medicine: Market Prospects 2012-2022

http://www.reportlinker.com/p0595030/Translational-Regenerative-Medicine-Market-Prospects-2012-2022.html#utm_source=prnewswire&utm_medium=pr&utm_campaign=Blood_Supply,_Tissue_Banking_and_Transplantation

Report Details

New study shows you commercial potential of regenerative treatments

See what the future holds for translational regenerative medicine. Visiongain's updated report lets you assess forecasted sales at overall world market, submarket, product and regional level to 2022.

There you investigate the most lucrative areas in that research field, industry and market. Discover prospects for tissue-engineered products, stem cell treatments and gene therapy.

We pack our study with information and analysis to help your work and save you time:

Access to present and predicted trends, with commercial opportunities and prospects revealed

Data and discussions - including our revenue forecasts to 2022 - for your research, analyses and decision making

Read the original:
Translational Regenerative Medicine: Market Prospects 2012-2022

Read More...

Anticipated short-term cell therapy industry clinical milestones

Sunday, September 30th, 2012
Tweet 

What follows is an interesting but not exhaustive list of cell therapy industry clinical milestones we anticipate in the next 3-9 months as selected from the list of cell therapy products we are tracking in late-stage or post-commercial development.  


There are other commercial milestones we are monitoring as well as other clinical milestones we expect to see related to cell therapy products in earlier stages of the development pipeline that are not included below.


CellCoTec (http://www.cellcotec.com)
  • Having completed a trial in Europe of their device to enable POC production of an autologous chondrocyte cellular product in/with a biodegradable, load-bearing scaffold for the treatment of articular cartilage defects, they have now submitted their CE market application.  The CE mark application is under review and they anticipate a response in October.  
  • This device and the potential emergence of Sanofi's MACI in the European market next year may have an impact on Tigenix (EBR:TIG) most directly.



ERYtech Parma (http://www.erytech.com)

  • Their 'pivotal' phase 2/3 trial in Europe of lead product, GRASPA, for the treatment of Acute Lymphoblastic Leukemia (ALL) is scheduled for completion 2H 2012. 


GamidaCell (http://www.gamidacell.com)

  • Their 'pivotal' phase 2/3 trial in the US, Israel, and Europe of lead product, StemEx, for the treatment of leukemia and lymphoma, in joint development with Teva, completed enrollment in February and is scheduled for completion 2H 2012.  They have not been shy about the fact they expect to be in the market in 2013.


Innovacell (http://www.innovacell.com)

  • They raised over 8m Euro in April for a phase 3 trial in Europe for their lead product, ICES13, for the treatment of stress-urinary incontinence which was scheduled for a preliminary clinical data readout in Q4 2012 and be ready for market authorization in 2013. Since announcing the capital raise the company has been stone silent and no clinical trial registry has been filed.  Status unknown.


Miltenyi Biotec (www.miltenyibiotec.com)

  • Their phase 3 trial in Germany of CD133+ cells as an adjunct to CABG surgery for myocardial ischemia or coronary artery disease is scheduled for completion in January.


NovaRx (http://www.novarx.com)

  • Their phase 3 trial in US, Europe, and India of their lead product, Lucanix, for the treatment of advanced Non-small Cell Lung Cancer (NSCLC) following front-line chemotherapy is scheduled in clnicaltrials.gov for completion in October but we have learned they expect their next 'interim analysis' in February.


NuVasive (http://www.nuvasive.com)

  • They have a series of trials scheduled to complete 2H 2012 intended to provide additional clinical data to support its marketing of Osteocel Plus for the treatment of a growing number of orthopedic applications.


Sanofi's Genzyme (http://www.genzyme.com)

  • Having completed their phase 3 trial in Europe of MACI for knee repair (symptomatic articular cartilage defects of the femoral condyle including the trochlea), they expect to file their market authorization application (MAA) in 1H 2013.


Hope that's helpful and gives you a sense some of the late-stage things to watch for in the coming weeks and months.  



--Lee

http://www.celltherapyblog.com hosted by http://www.celltherapygroup.com

Source:
http://feeds.feedburner.com/CellTherapyBlog

Read More...

The cost of clinical trial data bias/loss, FDA’s new job and the need for bold leadership.

Sunday, September 30th, 2012
Tweet 

The scandal of clinical trial data loss is eroding the fundamentals of evidence-based research and clinical medicine.


Before you right this post off as the stuff of conspiracy theories, fear-mongering, and 'alternative world views' consider that this view is shared by the likes of the FDA, the International Committee of Medical Journal Editors, the Cochrane Collaboration, and researchers at institutions like Johns Hopkins School of Medicine.


Here's the underlying premise as succinctly described by author Ben Goldacre:

"Drugs are tested by the people who manufacture them, in poorly designed trials, on hopelessly small numbers of weird, unrepresentative patients, and analysed using techniques that are flawed by design, in such a way that they exaggerate the benefits of treatments. Unsurprisingly, these trials tend to produce results that favour the manufacturer.

When trials throw up results that companies don't like, they are perfectly entitled to hide them from doctors and patients, so we only ever see a distorted picture of any drug's true effects. Regulators see most of the trial data, but only from early on in a drug's life, and even then they don't give this data to doctors or patients, or even to other parts of government. This distorted evidence is then communicated and applied in a distorted fashion."

Authors M. Todwin and J. Abramson summarize it thusly:

"Trials with positive results generally are published more frequently than studies that conclude that a new drug poses greater risks or is no more effective than standard therapy or a placebo. Furthermore, some articles may distort trial findings by omitting important data or by modifying prespecified outcome measures. Lack of access to detailed information about clinical trials can undermine the integrity of medical knowledge."

Here is a great list of very recent resources that may convince you of the merits of this concern:

Yesterday, the US Secretary of Health and Human Services announced (in an FR notice) that the FDA was now charged with ensuring all organizations comply with the heretofore enacted but relatively unenforced  requirement to submit all relevant clinical trial data to http://www.clinicaltrials.gov

For further commentary on this move see the following reports from:
What is abundantly clear to me is that the FDA is left almost powerless - and if not powerless than certainly without sufficient resources - to successfully enforce its new power.  This requires collective industry leadership.  Bold, industry-initiated standards, infrastructure and old-fashioned peer pressure.

Here's what I wish.  

I wish that as a cell therapy industry we - through organizations like ISSCR, ARM, ISCT, etc and leading publishers of some of our leading journals like Regenerative Medicine, Cytotherapy, Cell Stem Cell, Stem Cells, etc - would take a leadership position on an issue like this.

I believe that as a relatively small and nascent sector of the biopharma industry we are more likely capable of collaborating on something important like this than larger, more established [entrenched] and diverse sectors.  Of course it requires the political will and cajones.

The payoff from our sector in taking a leadership role on this issue could potentially be enormous in terms of providing our sector with truly transparent and useful data.  Perhaps even more important would be the public profile such leadership would provide the sector.  Such a move requires bold leadership, pain, and cost but this is the kind of stuff that moves the needle and goes down as critical pivot points in history. 

Just my thought for the day...

--Lee

http://www.celltherapyblog.com hosted by http://www.celltherapygroup.com

Source:
http://feeds.feedburner.com/CellTherapyBlog

Read More...

The cost of clinical trial data bias/loss, FDA’s new job and the need for bold leadership.

Sunday, September 30th, 2012
Tweet 

The scandal of clinical trial data loss is eroding the fundamentals of evidence-based research and clinical medicine.


Before you right this post off as the stuff of conspiracy theories, fear-mongering, and 'alternative world views' consider that this view is shared by the likes of the FDA, the International Committee of Medical Journal Editors, the Cochrane Collaboration, and researchers at institutions like Johns Hopkins School of Medicine.


Here's the underlying premise as succinctly described by author Ben Goldacre:

"Drugs are tested by the people who manufacture them, in poorly designed trials, on hopelessly small numbers of weird, unrepresentative patients, and analysed using techniques that are flawed by design, in such a way that they exaggerate the benefits of treatments. Unsurprisingly, these trials tend to produce results that favour the manufacturer.

When trials throw up results that companies don't like, they are perfectly entitled to hide them from doctors and patients, so we only ever see a distorted picture of any drug's true effects. Regulators see most of the trial data, but only from early on in a drug's life, and even then they don't give this data to doctors or patients, or even to other parts of government. This distorted evidence is then communicated and applied in a distorted fashion."

Authors M. Todwin and J. Abramson summarize it thusly:

"Trials with positive results generally are published more frequently than studies that conclude that a new drug poses greater risks or is no more effective than standard therapy or a placebo. Furthermore, some articles may distort trial findings by omitting important data or by modifying prespecified outcome measures. Lack of access to detailed information about clinical trials can undermine the integrity of medical knowledge."

Here is a great list of very recent resources that may convince you of the merits of this concern:

Yesterday, the US Secretary of Health and Human Services announced (in an FR notice) that the FDA was now charged with ensuring all organizations comply with the heretofore enacted but relatively unenforced  requirement to submit all relevant clinical trial data to http://www.clinicaltrials.gov

For further commentary on this move see the following reports from:
What is abundantly clear to me is that the FDA is left almost powerless - and if not powerless than certainly without sufficient resources - to successfully enforce its new power.  This requires collective industry leadership.  Bold, industry-initiated standards, infrastructure and old-fashioned peer pressure.

Here's what I wish.  

I wish that as a cell therapy industry we - through organizations like ISSCR, ARM, ISCT, etc and leading publishers of some of our leading journals like Regenerative Medicine, Cytotherapy, Cell Stem Cell, Stem Cells, etc - would take a leadership position on an issue like this.

I believe that as a relatively small and nascent sector of the biopharma industry we are more likely capable of collaborating on something important like this than larger, more established [entrenched] and diverse sectors.  Of course it requires the political will and cajones.

The payoff from our sector in taking a leadership role on this issue could potentially be enormous in terms of providing our sector with truly transparent and useful data.  Perhaps even more important would be the public profile such leadership would provide the sector.  Such a move requires bold leadership, pain, and cost but this is the kind of stuff that moves the needle and goes down as critical pivot points in history. 

Just my thought for the day...

--Lee

http://www.celltherapyblog.com hosted by http://www.celltherapygroup.com

Source:
http://feeds.feedburner.com/CellTherapyBlog

Read More...

Anticipated short-term cell therapy industry clinical milestones

Sunday, September 30th, 2012
Tweet 

What follows is an interesting but not exhaustive list of cell therapy industry clinical milestones we anticipate in the next 3-9 months as selected from the list of cell therapy products we are tracking in late-stage or post-commercial development.  


There are other commercial milestones we are monitoring as well as other clinical milestones we expect to see related to cell therapy products in earlier stages of the development pipeline that are not included below.


CellCoTec (http://www.cellcotec.com)
  • Having completed a trial in Europe of their device to enable POC production of an autologous chondrocyte cellular product in/with a biodegradable, load-bearing scaffold for the treatment of articular cartilage defects, they have now submitted their CE market application.  The CE mark application is under review and they anticipate a response in October.  
  • This device and the potential emergence of Sanofi's MACI in the European market next year may have an impact on Tigenix (EBR:TIG) most directly.



ERYtech Parma (http://www.erytech.com)

  • Their 'pivotal' phase 2/3 trial in Europe of lead product, GRASPA, for the treatment of Acute Lymphoblastic Leukemia (ALL) is scheduled for completion 2H 2012. 


GamidaCell (http://www.gamidacell.com)

  • Their 'pivotal' phase 2/3 trial in the US, Israel, and Europe of lead product, StemEx, for the treatment of leukemia and lymphoma, in joint development with Teva, completed enrollment in February and is scheduled for completion 2H 2012.  They have not been shy about the fact they expect to be in the market in 2013.


Innovacell (http://www.innovacell.com)

  • They raised over 8m Euro in April for a phase 3 trial in Europe for their lead product, ICES13, for the treatment of stress-urinary incontinence which was scheduled for a preliminary clinical data readout in Q4 2012 and be ready for market authorization in 2013. Since announcing the capital raise the company has been stone silent and no clinical trial registry has been filed.  Status unknown.


Miltenyi Biotec (www.miltenyibiotec.com)

  • Their phase 3 trial in Germany of CD133+ cells as an adjunct to CABG surgery for myocardial ischemia or coronary artery disease is scheduled for completion in January.


NovaRx (http://www.novarx.com)

  • Their phase 3 trial in US, Europe, and India of their lead product, Lucanix, for the treatment of advanced Non-small Cell Lung Cancer (NSCLC) following front-line chemotherapy is scheduled in clnicaltrials.gov for completion in October but we have learned they expect their next 'interim analysis' in February.


NuVasive (http://www.nuvasive.com)

  • They have a series of trials scheduled to complete 2H 2012 intended to provide additional clinical data to support its marketing of Osteocel Plus for the treatment of a growing number of orthopedic applications.


Sanofi's Genzyme (http://www.genzyme.com)

  • Having completed their phase 3 trial in Europe of MACI for knee repair (symptomatic articular cartilage defects of the femoral condyle including the trochlea), they expect to file their market authorization application (MAA) in 1H 2013.


Hope that's helpful and gives you a sense some of the late-stage things to watch for in the coming weeks and months.  



--Lee

http://www.celltherapyblog.com hosted by http://www.celltherapygroup.com

Source:
http://feeds.feedburner.com/CellTherapyBlog

Read More...

BioTime Forms BioTime Acquisition Corporation

Friday, September 28th, 2012

ALAMEDA, Calif.--(BUSINESS WIRE)--

BioTime, Inc. (NYSE MKT: BTX), an Alameda-based company engaged in research and development of innovative new products in the field of regenerative medicine utilizing stem cells and related technology, announced today that it has formed a new wholly owned subsidiary, BioTime Acquisition Corporation, to pursue opportunities and acquire assets and businesses in the fields of stem cells and regenerative medicine. Thomas Okarma, PhD, MD, will serve as the Chief Executive Officer and as a member of the board of directors of BioTimes new subsidiary. Dr. Okarma is the former President and Chief Executive Officer of Geron Corporation and served on that companys board of directors.

Since 2010, BioTime has expanded the scope of its business through strategic acquisitions and has been continually exploring other acquisition opportunities in its fields of interest. BioTimes strategic acquisitions include:

Global advances on multiple fronts of stem cell biology have established the foundation for an integrative business approach to consolidate and translate these discoveries into products that may revolutionize clinical medicine, said Thomas Okarma, the new companys CEO. Living cell therapies can now be scalably manufactured, efficiently distributed to points of care, and tested in controlled clinical trials.The goal of regenerative medicine is to go beyond the reach of pills and scalpels to achieve a new level of healing that may, after a single administration of therapeutic cells, permanently restore function to tissues and organs damaged by chronic disease or injury. BioTime Acquisition Corporation intends to build its business by identifying, consolidating, and commercially developing the best available cell therapy technologies to realize the potential of regenerative medicine. Ultimately, the goal is to bring these new therapies to the many millions of patients who need them.

The breadth of Dr. Okarmas experience in the field of cell-based therapeutics is simply spectacular, said Michael D. West, PhD, BioTimes Chief Executive Officer. We look forward to working together with him to translate these new scientific advances into commercial products for the large and growing markets driven by age-related degenerative diseases.

Dr. Okarma has had a distinguished career as a physician and an innovator and executive in the biotechnology industry. Dr. Okarma served as Gerons President, Chief Executive Officer, and as a member of its board of directors from July 1999 until February 2011, after having previously served as that companys Vice President of Research and Development and Vice President of Cell Therapies. In 1985, Dr. Okarma founded Applied Immune Sciences, Inc. (AIS) and served initially as its Vice President of Research and Development and subsequently as Chairman and Chief Executive Officer and as a director until that company was acquired by Rhone-Poulenc Rorer in 1995. After that acquisition, Dr. Okarma served as a Senior Vice President at Rhone-Poulenc Rorer until December 1996. From 1980 to 1992, Dr. Okarma was a member of the faculty of the Department of Medicine at Stanford University School of Medicine. Dr. Okarma holds an AB from Dartmouth College, an MD and PhD from Stanford University, and is a graduate of the Executive Education program of the Stanford Graduate School of Business.

About BioTime, Inc.

BioTime, headquartered in Alameda, California, is a biotechnology company focused on regenerative medicine and blood plasma volume expanders. Its broad platform of stem cell technologies is enhanced through subsidiaries focused on specific fields of application. BioTime develops and markets research products in the fields of stem cells and regenerative medicine, including a wide array of proprietary ACTCellerate cell lines, HyStem hydrogels, culture media, and differentiation kits. BioTime is developing Renevia (formerly known as HyStem-Rx), a biocompatible, implantable hyaluronan and collagen-based matrix for cell delivery in human clinical applications. BioTime's therapeutic product development strategy is pursued through subsidiaries that focus on specific organ systems and related diseases for which there is a high unmet medical need. BioTime's majority owned subsidiary Cell Cure Neurosciences Ltd. is developing therapeutic products derived from stem cells for the treatment of retinal and neural degenerative diseases. BioTime's subsidiary OrthoCyte Corporation is developing therapeutic applications of stem cells to treat orthopedic diseases and injuries. Another subsidiary, OncoCyte Corporation, focuses on the diagnostic and therapeutic applications of stem cell technology in cancer, including the diagnostic product PanC-Dx currently being developed for the detection of cancer in blood samples. ReCyte Therapeutics, Inc. is developing applications of BioTime's proprietary induced pluripotent stem cell technology to reverse the developmental aging of human cells to treat cardiovascular and blood cell diseases. BioTime's subsidiary LifeMap Sciences, Inc. markets GeneCards, the leading human gene database, and is developing an integrated database suite to complement GeneCards that will also include the LifeMap database of embryonic development, stem cell research and regenerative medicine, and MalaCards, the human disease database. LifeMap will also market BioTime research products. BioTime's lead product, Hextend, is a blood plasma volume expander manufactured and distributed in the U.S. by Hospira, Inc. and in South Korea by CJ CheilJedang Corporation under exclusive licensing agreements. Additional information about BioTime can be found on the web at http://www.biotimeinc.com.

Forward-Looking Statements

Statements pertaining to future financial and/or operating results, future growth in research, technology, clinical development, and potential opportunities for BioTime and its subsidiaries, along with other statements about the future expectations, beliefs, goals, plans, or prospects expressed by management constitute forward-looking statements. Any statements that are not historical fact (including, but not limited to statements that contain words such as "will," "believes," "plans," "anticipates," "expects," "estimates") should also be considered to be forward-looking statements. Forward-looking statements involve risks and uncertainties, including, without limitation, risks inherent in the development and/or commercialization of potential products, uncertainty in the ability to identify and complete potential acquisitions, the ability to realize anticipated benefits of and achieve expected financial performance following completed acquisitions, the results of clinical trials or regulatory approvals, need and ability to obtain future capital, and maintenance of intellectual property rights. Actual results may differ materially from the results anticipated in these forward-looking statements and as such should be evaluated together with the many uncertainties that affect the business of BioTime and its subsidiaries, particularly those mentioned in the cautionary statements found in BioTime's Securities and Exchange Commission filings. BioTime disclaims any intent or obligation to update these forward-looking statements.

See the rest here:
BioTime Forms BioTime Acquisition Corporation

Read More...

Page 50«..1020..49505152..»


2024 © StemCell Therapy is proudly powered by WordPress
Entries (RSS) Comments (RSS) | Violinesth by Patrick