header logo image


Page 3«..2345..1020..»

Archive for the ‘Regenerative Medicine’ Category

Science Saturday: A regenerative reset for aging

Tuesday, July 2nd, 2024

Biotherapeutics

October 9, 2021

Regenerative medicine could slow the clock on degenerative diseases that often ravage the golden years, a Mayo Clinic study finds. Life span has nearly doubled since the 1950s, but health span the number of disease-free years has not kept pace. According to a paper published in NPJ Regenerative Medicine., people are generally living longer, but the last decade of life is often racked with chronic, age-related diseases that diminish quality of life. These final years come with a great cost burden to society.

Researchers contend that new solutions for increasing health span lie at the intersection of regenerative medicine research, anti-senescent investigation, clinical care and societal supports. A regenerative approach offers hope of extending the longevity of good health, so a person's final years can be lived to the fullest.

"Diverse aging populations, vulnerable to chronic disease, are at the cusp of a promising future. Indeed, growing regenerative options offer opportunities to boost innate healing, and address aging-associated decline. The outlook for an extended well-being strives to achieve health for all," says Andre Terzic, M.D., Ph.D., a Mayo Clinic cardiologist and the senior author. Dr. Terzic is the Marriott Family Director, Comprehensive Cardiac Regenerative Medicine for the Center for Regenerative Medicine and the Marriott Family Professor of Cardiovascular Research.

Regenerative medicine is a new field of research and practice that is shifting the emphasis from fighting disease to rebuilding health. Mayo Clinic's Center for Regenerative Medicine is at the forefront of this movement, supporting research into new ways of delaying, preventing or even curing disease.

Research advancing regenerative options

Research has increased understanding of technologies that target and remove so-called "zombie" cells that accumulate with age. Zombie cells, also known as senescent cells, secrete harmful proteins and chemicals that contribute to disease and failing health. When cells become senescent, they no longer divide and differentiate, and they lose their ability to repair diseased tissue.

"Advances in anti-senescent and regenerative technology give hope of extending life span and living the older years disease-free," says Armin Garmany, first author and an M.D./Ph.D. student in the Regenerative Sciences Track in Mayo Clinic Alix School of Medicine.New regenerative interventions on the horizon show promise for addressing chronic diseases such as cancer, heart disease and diabetes. For example, advances in regenerative immunotherapies, such as chimeric antigen receptor-T cell therapy unleash the body's ability to recognize and destroy some cancers.

"The clinical readiness of regenerative therapies is maturing in age-related disease," says Satsuki Yamada, M.D., Ph.D., a Mayo Clinic cardiologist and co-author of the study. "The evolving knowledge in regenerative sciences is offering tools to halt or reverse refractory disease progression, transforming the goals of disease management from care to cure."

Clinical care poised to deliver regenerative care

The rise in electronic health records and artificial intelligence provides new ways of sifting through vast datasets and pinpointing regenerative therapies matched to individual need. This could delay the onset of chronic diseases that surface later in life. Targeting regenerative procedures to a multiplicity of chronic age-related diseases could be a powerful way to close the gap between health span and life span.

"The regenerative model of care is poised to advance a perspective of disease-free longevity, transforming current practice in patient care," says Dr. Terzic. "Effective implementation of next-generation medical innovation will be accelerated by augmented decision-making."

Societal supports help extend a healthy life

Public health initiatives could contribute to health longevity. For example, banning public smoking, enforcing Nutrition Facts labels and promoting vaccinations could lead to healthier lives, and delay or prevent degenerative conditions that arise later in life.

In addition, addressing social determinants of heath conditions in the environment where people live could factor into preventing or delaying disease.

"Childhood adversity, social alienation, maladaptive socioeconomic status and compromised health care access are all associated with health inequality and reduced life span," says Garmany. "Addressing these issues is at the core of preventing disease."

Worldwide demographics place life expectancy at 73, but the average age of chronic disease onset is 64. That gap between health span and life spans could be closed with proper public policy initiatives and application of new regenerative and anti-senescence discoveries to clinical care. Breakthroughs that extend life expectancy could potentially be matched with more years of good health.

###

Read more:
Science Saturday: A regenerative reset for aging

Read More...

Science Saturday: A year of new directions and advancements for …

Friday, March 29th, 2024

Biotherapeutics

January 29, 2022

2021 has been a year of significant innovation across the field of regenerative medicine at Mayo Clinic. Important advancements in preclinical research, as well as new regenerative treatments for patients, further are solidifying Mayo Clinics reputation as a world-class leader in regenerative medicine.

Regenerative medicine is still a relatively new field of practice, representing a paradigm shift from the traditional focus of health care of fighting disease to rebuilding health. Mayo Clinic's Center for Regenerative Medicine is leveraging its unique expertise, resources and capabilities to create the worlds most advanced and innovative ecosystem for the development, manufacture and delivery of novel regenerative biotherapeutics.

New directions in biomanufacturing

Mayo Clinic is focused on a newly refreshed strategy in regenerative medicine this year one that emphasizes an enhanced capability for biomanufacturing, with technology platforms supporting the development of new therapeutics known as biologics. Biologics are a new type of "drug" derived from living organisms that have the potential for targeted healing with fewer side effects. Many of these next-generation therapeutics can be scaled and mass produced for patients at Mayo Clinic and around the world. The Center for Regenerative Medicine is leading Mayos enterprise biomanufacturing strategy in close collaboration with Research, Practice and Education leaders and key stakeholders, including theCancer Center,Center for Individualized Medicine,Department of Laboratory Medicine and Pathology,Mayo Clinic Ventures, Mayo ClinicPlatform,Center for Digital Healthand Mayo ClinicInternational.

In August, Mayo welcomed Julie Allickson, Ph.D., as the Michael S. and Mary Sue Shannon Family Director of Mayo Clinic's Center for Regenerative Medicine and the Otto Bremer Trust director of Biomanufacturing and Product Development in the Center for Regenerative Medicine, and she will lead the execution of Mayos biomanufacturing strategy. Dr. Allickson joined Mayo Clinic from the Institute for Regenerative Medicine at Wake Forest School of Medicine in North Carolina.

"This is an exciting time in regenerative medicine, a new era with great promise for the impact that these new therapies and procedures can have for patients," says Dr. Allickson. "I am looking forward to working collaboratively with colleagues across the enterprise to position Mayo Clinic as the global leader in scientific discovery and clinical practice advancement in regenerative medicine."

Significant investments in biomanufacturing facilities continued this year with the buildout of current Good Manufacturing Practices facilities on all three Mayo campuses.These facilities meet strict quality controls and regulatory guidelines that are required for manufacturing new biologics. The long-term goal is to have these new types of healing solutions on-site where they can be used immediately for patients with unmet needs. Mayo will focus on biomanufacturing across seven prioritized technology platforms:

Research that advances the practice

From helping establish common terminology for regenerative medicine to discovering new ways of manufacturing cardiopoietic stem cells with heart healing potential for select patients with advanced heart failure, Mayo Clinic physicians and scientists have made significant advancements in the discovery-translation-application continuum in regenerative medicine. Examples include:

Difficult-to-treat, chronic wounds healed with normal scar-free skin in preclinical models after treatment with an acellular product discovered at Mayo Clinic. Derived from platelets, the purified exosomal product, known as PEP, was used to deliver healing messages into cells of animal models of ischemic wounds. In a groundbreaking study published in Theranostics, the Mayo Clinic research team documented restoration of skin integrity, hair follicles, sweat glands, skin oils and normal hydration.

A Mayo Clinic collaborative study documented a remote-controlled bronchoscope functioned like a GPS system, tracking hard-to-find lung masses and accurately biopsying them. This multisite research, published in Annals of Thoracic Surgery, lays the foundation for precisely finding early stage cancer when it is most treatable, and targeting it with regenerative biotherapeutics needed to stimulate healing.

"In the past, we didn't have a reliable way of reaching these nodules in the lungs from within the airway. This is a very small catheter that gets almost anywhere, and is able to access and biopsy lung nodules," says Janani Reisenauer, M.D., first author on the study and a Mayo Clinic thoracic surgeon. "It's very similar to driving a car and having your normal street view with the aid of the GPS in your car telling you in real-time where to turn right and left to arrive at your destination."

Mayo Clinic researchers biomanufactured chimeric antigen receptor-T cell therapy (CAR-T cell therapy) in a new way to track the cells' cancer fighting journey and predict toxic side effects. This Mayo Clinic breakthrough, published in Cancer Immunology Research, could make this immunotherapy easier for patients to tolerate. Perhaps more importantly, it could unravel the mystery of how to expand CAR-T cell therapy to more types of cancers.

"This new technology allows us to image CAR-T cells after they are given to patients and study their fate," says Saad Kenderian, M.B., Ch.B., a Mayo Clinic hematologist and researcher, and lead author. "This allows us to investigate strategies that could improve CAR-T cell trafficking and penetration into the tumor cells, and thus canimprove tumor killing."

Mayo Clinic is applying regenerative medicine to cosmetic services aimed at resetting the body's clock to a time of more youthful function and appearance. Regenerative procedures, such as platelet-rich plasma to rejuvenate aging skin and stimulate hair growth for people with alopecia or baldness, are offered on all three campuses. Many regenerative services go beyond cosmetics to facial reconstruction after disease, cancer or traumatic injury. For example, The Multidisciplinary Cosmetic Center at Mayo Clinic in Arizona pairs general and facial plastic surgery with dermatologists, gynecologists, vascular surgeons, urologists and aestheticists to deliver services grounded in scientific evidence and the latest regenerative technologies.

Training the emerging regenerative sciences workforce

A well-trained regenerative science workforce is needed to apply the newest discoveries to clinical care. Mayo Clinic has made significant strides this past year in educating future physicians, scientists and allied health staff in regenerative medicine.

Mayo Clinic achieved an important milestone when it admitted its first five students as inaugural scholars in the newly established Regenerative Sciences Track within the Ph.D. program in the Mayo Clinic Graduate School of Biomedical Sciences. The new doctoral program that began this fall fulfills Mayo's objective of providing first-of-its-kind education in the evolving field of regenerative science and medicine

Taught by regenerative science and medicine experts, the curriculum embraces a training paradigm that includes fundamental cellular and molecular science principles, and transdisciplinary education in regulatory issues, quality control, bio-business and entrepreneurial pathways, data science, medical sciences, ethics, and emerging technologies.

Throughout the four-day symposium, experts at Mayo Clinic and around the world shared regenerative medicine applications to aging, musculoskeletal conditions, lung diseases, organ transplantation and cancer. The symposium featured presentations on promising research, navigating regulatory pathways and seeking opportunities for commercialization.

Peter Marks, M.D., Ph.D.,director of the Food and Drug Administration (FDA) Center for Biologics Evaluation made a virtual presentation where he pledged FDA support for regenerative technologies that offer new solutions for unmet patient needs.

Another promising year in 2022

Mayo Clinic in Arizona is among the first to offer larynx transplantation and is currently evaluating patients for this landmark surgery. In addition, Center for Regenerative Medicine continues to support initiatives, such as expanding of CAR-T therapy and making organ transplantation more available and successful for patients.

New advanced biomanufacturing facilities will be operational in One Discovery Square in Rochester and in the Discovery & Innovation Building in Florida. Biomanufacturing expansion on the Phoenix campus will be strategically assessed as the buildout of Arizona "Bold. Forward" continues. The Center for Regenerative Medicine continues to spur innovation to rapidly advance novel regenerative therapies into the clinic to support Mayo Clinic's 2030 Vision to cure, connect and transform care.

###

Link:
Science Saturday: A year of new directions and advancements for ...

Read More...

Diverse ways regenerative medicine is advancing health care

Friday, March 29th, 2024

Biotherapeutics

January 13, 2021

Regenerative medicine has contributed to patient care in 2020 more than ever before, bolstered by synergies in research, practice and education. Mayo Clinic's Center for Regenerative Medicine is at the forefront of a biotherapy revolution in which health care advances from treating disease to restoring health.

"The centrality of the body to regenerate itself is paving the way for new horizons in regenerative care. The triad of protecting against disease, preventing disease progression and promoting healing is at the core of the regenerative vision," says Andre Terzic, M.D., Ph.D., director of Mayo Clinic's Center for Regenerative Medicine. "To this end, the regenerative toolkit has grown more robust over the past year with new technologies now available to boost the body's ability to repair and restore health of an organ and importantly of the patient as a whole."

The convergence of research, practice and education, empowered by strong innovation and advanced biomanufacturing, is creating an increased level of readiness for applying validated regenerative science to new areas of health care, Dr. Terzic says.

Practice advancement

A deeper understanding of the biology of health and disease is driving the ongoing regenerative medicine evolution.

"The remarkable progress in science that is advancing our fundamental comprehension of both health and disease has guided the informed and responsible development of patient-ready curative strategies," says Dr. Terzic.

New discoveries at Mayo Clinic that may shape future practice include:

The largest regenerative medicine clinical trial to date for heart failure, spanning 39 medical centers and 315 patients from 10 countries, validated the long-term safety of stem cell therapy. The late-stage research found stem cell therapy shows particular benefit for patients with advanced left ventricular enlargement. This Mayo Clinic-led study offers guidance on which patients are most likely to respond to stem cell therapy for heart failure.

Mayo Clinic researchers uncovered stem cell-activated molecular mechanisms of healing after a heart attack. Stem cells restored the makeup of failing cardiac muscle back to its condition before the heart attack, providing an intimate blueprint of how they may work to heal diseased tissue. This research offers utility to delineate and interpret complex regenerative outcomes.

Mayo Clinic research discovered a molecular switch that turns on a substance that repairs neurological damage. This early research could bolster a therapy approved by the Food and Drug Administration, and that could lead to new strategies for treating diseases of the central nervous system such as multiple sclerosis.

The federal regulatory environment is making it possible to more seamlessly integrate new discoveries into the practice. The 21st Century Cures Act, for example, seeks to create an accelerated path to market for safe, validated procedures that could provide new therapies for patients with serious conditions.

Examples of how that new regulatory environment is accelerating discoveries into regenerative care at Mayo Clinic are:

With FDA permission, Mayo Clinic performs surgery before birth to correct a congenital defect known as spina bifida. Spina bifida is a condition in which the spinal cord does not close properly. Fetal surgery at Mayo Clinic to repair the spinal cord not only closed the spine, but also restored brain structure. Clinical experience to date, published in Mayo Clinic Proceedings, concluded that fetal surgery to treat spina bifida is effective at early healing of neurological structures. Mayo continues to evaluate this regenerative procedure.

Mayo Clinic has FDA permission for investigational new drug use in regenerative surgery aimed at restoring damaged knee cartilage in a single surgical procedure. Bits of a patient's cartilage are recycled and mixed with donor mesenchymal stem cells. Mesenchymal stem cells are adult stem cells derived from sources such as fat tissue or bone marrow. Much like filling potholes in a street, the cellular mixture repairs holes within the cartilage. Mayo Clinic is treating patients with this surgery and hopes to make it available to patients more broadly within the coming year.

Mayo Clinic promotes responsible adoption of validated procedures. An example of this ongoing effort is a regenerative procedure that augments standard surgery for cancer.

Mayo Clinic orthopedic oncologists are teaming with plastic surgeons to restore muscle strength after some cancer surgeries, particularly surgery to remove soft tissue sarcoma. Advancements in microsurgery are making it possible to transfer large muscle to close a surgical wound where it functions like the muscle lost to cancer. This so-called "oncoregenerative" surgery combines free muscle transfers with pain management and lymphatic reconstruction, while preventing damaged nerves and lymph nodes that can cause pain and swelling.

Regenerative medicine know-how is advancing immunotherapy options for cancer patients, including chimeric antigen receptor-T cell therapy (CAR-T cell therapy). CAR-T cell therapy seeks to unleash the power of the immune system by genetically modifying cells, equipping them to go on search-and-destroy missions to kill cancer. These engineered cells act like a living drug, continually working within the body to cure disease.

"On-demand regenerative immunity is being built against blood cancers and is advancing how hemato-oncologists treat lymphomas and leukemias. We hope that regenerative sciences will discover and perfect ways to expand this treatment approach to solid cancers, as well," says Dr. Terzic.

Biomanufacturing and supply chain readiness

Mayo Clinic is on the cusp of validating new advanced biomanufacturing facilities where it will engineer the latest cellular, acellular and gene therapies needed for regenerative care. In doing so, Mayo is establishing its in-house supply chain, ensuring quality, and potentially saving time and resources.

Center for Regenerative Medicine has increased supply chain readiness in 2020 in these ways:

Supported by active research and development programs, Mayo Clinic is poised to test acellular healing products known as exosomes in the first clinical trials. Exosomes are extracellular vesicles that are like a delivery service moving cargo from one cell to another, with instructions for healing. It's an example of the emerging field of nanomedicine. Nanodrugs are very small structures that contain enveloped proteins and genetic materials that can be targeted to exact tissues in need of repair.

"Over the past five years, we discovered the healing potential of exosomes, established the science, and ultimately figured out how to manufacture them so that they would meet strict quality standards. Now we are ready to take the important step of introducing them in human safety trials," says Atta Behfar, M.D., Ph.D., deputy director of translation for Mayo Clinic's Center for Regenerative Medicine. "I think the evolution into nanomedicine as a regenerative tool is major milestone. Compared to more traditional living alternatives, these biological messages can be easier to store, ship, analyze and even manufacture."

Exosomes are an example of how Mayo Clinic is manufacturing new healing products that, unlike living stem cells, can be stored at room temperature on-site for immediate use in a hospital or clinic

"Technologies that can be stored at room temperature on the shelf provide the ability to introduce regenerative medicine into new areas of practice such as heart attack and stroke, where therapies need to be delivered on an emergent basis," says Dr. Behfar. "As we move forward, this type of accessibility may help to facilitate adoption of biologics-based therapies and continue to broaden our ability to offer innovative cures to patients in need."

New 3D printing capabilities at Mayo Clinic in Arizona are providing options to improve laryngeal or vocal fold function. For example, 3D printing is providing new ways to close the gap between vocal folds for people with glottic insufficiency a common but difficult-to-treat condition that causes problems with speaking, breathing and swallowing. A 3D implant is printed to fit the exact patient-specific dimensions of the vocal folds and implanted into the voicebox, where it improves voice, swallowing and breathing.

Mayo Clinic in Florida launched the CAR-T Translational Research program that aims to expand regenerative immunotherapy products beyond blood cancers, potentially to neurological and autoimmune disorders. Clinical-grade biotherapies can be manufactured on-site, which potentially will lower the cost and increase patient access to regenerative immunotherapies such as CAR-T cell therapy.

Workforce proficiency

Educating future physicians, scientists and the broader health care workforce to provide the latest, most innovative regenerative medicine technologies is a key objective of the Center for Regenerative Medicine. That strategic priority is reflected in the regenerative curricula that are integrated across each of the five schools of Mayo Clinic College of Medicine and Science.

"We are educating regenerative medicine practitioners who are grounded in scientific knowledge to responsibly translate the latest innovations into patient solutions. They are becoming a trusted source of regenerative care," says Dr. Terzic.

Advancements in training the future workforce in regenerative medicine and science include:

Mayo Clinic graduated the first students in the doctoral research training program known as the Regenerative Sciences Training Program. Established in 2017, this program combines laboratory research with training that covers the complete spectrum of discovery to translation topics.

Mayo Clinic launched one of the first-ever doctoral tracks in regenerative sciences in Mayo Clinic Graduate School of Biomedical Sciences. The curriculum will embrace a training paradigm that includes fundamental cellular and molecular science principles, and transdisciplinary education in regulatory issues, quality control, entrepreneurial pathways, data science, medical sciences, ethics and emerging technologies. Applications opened in the fall, and the first students will be admitted in fall 2021.

In recognition of the scholarly identify of regenerative medicine, Mayo Clinic elevated regenerative medicine to a field of academic rank. Implementing academic ranks paves the way for attracting a new community of dedicated physicians, scientists and engineers focused on advancing regenerative medicine.

"Regenerative medicine touches all medical, surgical, radiology and laboratory medicine specialties across Mayo Clinic. Establishing this new academic rank is like opening a new chapter in medicine. It is a key differentiator for Mayo Clinic," says Dr. Terzic.

Advancements to watch for in 2021

The opening of two major manufacturing facilities in Rochester and Jacksonville, Florida, will propel Mayo Clinic to a new realm of biomanufacturing and supply chain management of therapeutics for rare and complex medical conditions. The two facilities are cornerstones of a coordinated biomanufacturing strategy that positions Mayo Clinic to deliver first-in-the-world therapeutics produced on-site for use in research and practice. Together with industry partners, Mayo will accelerate these new regenerative products toward the market to benefit Mayo Clinic patients and others around the world.

Here are some specific examples of things to watch for:

The Center for Regenerative Medicine's advanced biomanufacturing facility is nearing completion at One Discovery Square in Rochester. The new facility is equipped with current Good Manufacturing Practices capable of producing clinical-grade regenerative therapies that are easily accessible for clinical trials and patient care. Biomanufacturing will focus on tissue engineering, cellular, acellular and gene therapy products.

Construction is complete on the Center for Regenerative Medicine's advanced biomanufacturing facility in the new Discovery and Innovation Building at Mayo Clinic in Florida. When fully operational, it will deploy current Good Manufacturing Practices facilities where new patient-ready immunotherapies can be manufactured under strict sterile quality control measures that meet FDA guidelines. That could eventually increase patient access to CAR-T cell therapy and other regenerative immunotherapies through clinical trials. On site manufacturing will reduce cost and broaden the access for this curative technology to Mayo patients suffering from lymphoma.

Mayo Clinic will conduct first-in-human safety and dosing studies of exosomes noncellular structures that deliver healing to damaged cells and tissues. After discovering, scaling and manufacturing exosomes, Mayo will evaluate them in the first human trials for wound healing and tissue repair after a heart attack.

Mayo Clinic is on track to launch one of the first-ever living donor cartilage banks. Mayo Clinic orthopedics and sports medicine surgeons, in collaboration with the Center for Regenerative Medicine, have validated methods to collect and store living cartilage tissue that would otherwise be discarded after knee replacement surgery. The donor cartilage bank will dramatically reduce wait times for this valuable tissue used to repair knee damage in younger patients with cartilage and bone damage in their knee.

Regenerative procedures may trigger healing of diseased tissues in some patients, but those therapies may not work for others. One of the key riddles regenerative medicine research seeks to crack is how to target patients who are most likely to benefit from restorative therapies.

"With the assimilation of data sets, we hope to decode the attributes that define regenerative responsiveness. That is the holy grail of regenerative medicine right now," says Dr. Terzic.

As 2020 wraps up and 2021 begins, Mayo Clinic seeks to further its understanding of regenerative medicine, and make new approved therapies accessible and affordable for all patients, particularly those with unmet needs and those in underserved communities.

Dr. Terzic is the Michael S. and Mary Sue Shannon Director, Mayo Clinic Center for Regenerative Medicine, and Marriott Family Professor in Cardiovascular Diseases Research.

####

Go here to see the original:
Diverse ways regenerative medicine is advancing health care

Read More...

Stem cell-based regenerative medicine – PMC – National Center for …

Tuesday, February 27th, 2024

Stem Cell Investig. 2019; 6: 19.

1Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran;

2Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran;

2Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran;

3Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran

1Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran;

2Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran;

3Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran

Contributions: (I) Conception and design: E Fathi, R Farahzadi; (II) Administrative support: E Fathi, R Farahzadi; (III) Provision of study materials or patients: None; (IV) Collection and assembly of data: R Farahzadi, N Rajabzadeh; (V) Data analysis and interpretation: All authors; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors.

#These authors contributed equally to this work.

Received 2018 Nov 11; Accepted 2019 Mar 17.

Recent developments in the stem cell biology provided new hopes in treatment of diseases and disorders that yet cannot be treated. Stem cells have the potential to differentiate into various cell types in the body during age. These provide new cells for the body as it grows, and replace specialized cells that are damaged. Since mesenchymal stem cells (MSCs) can be easily harvested from the adipose tissue and can also be cultured and expanded in vitro they have become a good target for tissue regeneration. These cells have been widespread used for cell transplantation in animals and also for clinical trials in humans. The purpose of this review is to provide a summary of our current knowledge regarding the important and types of isolated stem cells from different sources of animal models such as horse, pig, goat, dog, rabbit, cat, rat, mice etc. In this regard, due to the widespread use and lot of attention of MSCs, in this review, we will elaborate on use of MSCs in veterinary medicine as well as in regenerative medicine. Based on the studies in this field, MSCs found wide application in treatment of diseases, such as heart failure, wound healing, tooth regeneration etc.

Keywords: Mesenchymal stem cells (MSCs), animal model, cell-based therapy, regenerative medicine

Stem cells are one of the main cells of the human body that have ability to grow more than 200 types of body cells (1). Stem cells, as non-specialized cells, can be transformed into highly specialized cells in the body (2). In the other words, Stem cells are undifferentiated cells with self-renewal potential, differentiation into several types of cells and excessive proliferation (3). In the past, it was believed that stem cells can only differentiate into mature cells of the same organ. Today, there are many evidences to show that stem cells can differentiate into the other types of cell as well as ectoderm, mesoderm and endoderm. The numbers of stem cells are different in the tissues such as bone marrow, liver, heart, kidney, and etc. (3,4). Over the past 20 years, much attention has been paid to stem cell biology. Therefore, there was a profound increase in the understanding of its characteristics and the therapeutic potential for its application (5). Today, the utilization of these cells in experimental research and cell therapy represents in such disorders including hematological, skin regeneration and heart disease in both human and veterinary medicine (6).The history of stem cells dates back to the 1960s, when Friedenstein and colleagues isolated, cultured and differentiated to osteogenic cell lineage of bone marrow-derived cells from guinea pigs (7). This project created a new perspective on stem cell research. In the following, other researchers discovered that the bone marrow contains fibroblast-like cells with congenic potential in vitro, which were capable of forming colonies (CFU-F) (8). For over 60 years, transplantation of hematopoietic stem cells (HSCs) has been the major curative therapy for several genetic and hematological disorders (9). Almost in 1963, Till and McCulloch described a single progenitor cell type in the bone marrow which expand clonally and give rise to all lineages of hematopoietic cells. This research represented the first characterization of the HSCs (10). Also, the identification of mouse embryonic stem cells (ESCs) in 1981 revolutionized the study of developmental biology, and mice are now used extensively as one of the best option to study stem cell biology in mammals (11). Nevertheless, their application a model, have limitations in the regenerative medicine. But this model, relatively inexpensive and can be easily manipulated genetically (12). Failure to obtain a satisfactory result in the selection of many mouse models, to recapitulate particular human disease phenotypes, has forced researchers to investigate other animal species to be more probably predictive of humans (13). For this purpose, to study the genetic diseases, the pig has been currently determined as one the best option of a large animal model (14).

Stem cells, based on their differentiation ability, are classified into different cell types, including totipotent, pluripotent, multipotent, or unipotent. Also, another classification of these cells are based on the evolutionary stages, including embryonic, fetal, infant or umbilical cord blood and adult stem cells (15). shows an overview of stem cells classifications based on differentiation potency.

An overview of the stem cell classification. Totipotency: after fertilization, embryonic stem cells (ESCs) maintain the ability to form all three germ layers as well as extra-embryonic tissues or placental cells and are termed as totipotent. Pluripotency: these more specialized cells of the blastocyst stage maintain the ability to self-renew and differentiate into the three germ layers and down many lineages but do not form extra-embryonic tissues or placental cells. Multipotency: adult or somatic stem cells are undifferentiated cells found in postnatal tissues. These specialized cells are considered to be multipotent; with very limited ability to self-renew and are committed to lineage species.

Toti-potent cells have the potential for development to any type of cell found in the organism. In the other hand, the capacity of these cells to develop into the three primary germ cell layers of the embryo and into extra-embryonic tissues such as the placenta is remarkable (15).

The pluripotent stem cells are kind of stem cells with the potential for development to approximately all cell types. These cells contain ESCs and cells that are isolated from the mesoderm, endoderm and ectoderm germ layers that are organized in the beginning period of ESC differentiation (15).

The multipotent stem cells have less proliferative potential than the previous two groups and have ability to produce a variety of cells which limited to a germinal layer [such as mesenchymal stem cells (MSCs)] or just a specific cell line (such as HSCs). Adult stem cells are also often in this group. In the word, these cells have the ability to differentiate into a closely related family of cells (15).

Despite the increasing interest in totipotent and pluripotent stem cells, unipotent stem cells have not received the most attention in research. A unipotent stem cell is a cell that can create cells with only one lineage differentiation. Muscle stem cells are one of the example of this type of cell (15). The word uni is derivative from the Latin word unus meaning one. In adult tissues in comparison with other types of stem cells, these cells have the lowest differentiation potential. The unipotent stem cells could create one cell type, in the other word, these cells do not have the self-renewal property. Furthermore, despite their limited differentiation potential, these cells are still candidates for treatment of various diseases (16).

ESCs are self-renewing cells that derived from the inner cell mass of a blastocyst and give rise to all cells during human development. It is mentioned that these cells, including human embryonic cells, could be used as suitable, promising source for cell transplantation and regenerative medicine because of their unique ability to give rise to all somatic cell lineages (17). In the other words, ESCs, pluripotent cells that can differentiate to form the specialized of the various cell types of the body (18). Also, ESCs capture the imagination because they are immortal and have an almost unlimited developmental potential. Due to the ethical limitation on embryo sampling and culture, these cells are used less in research (19).

HSCs are multipotent cells that give rise to blood cells through the process of hematopoiesis (20). These cells reside in the bone marrow and replenish all adult hematopoietic lineages throughout the lifetime of the human and animal (21). Also, these cells can replenish missing or damaged components of the hematopoietic and immunologic system and can withstand freezing for many years (22).The mammalian hematopoietic system containing more than ten different mature cell types that HSCs are one of the most important members of this. The ability to self-renew and multi-potency is another specific feature of these cells (23).

Adult stem cells, as undifferentiated cells, are found in numerous tissues of the body after embryonic development. These cells multiple by cell division to regenerate damaged tissues (24). Recent studies have been shown that adult stem cells may have the ability to differentiate into cell types from various germ layers. For example, bone marrow stem cells which is derived from mesoderm, can differentiate into cell lineage derived mesoderm and endoderm such as into lung, liver, GI tract, skin, etc. (25). Another example of adult stem cells is neural stem cells (NSCs), which is derived from ectoderm and can be differentiate into another lineage such as mesoderm and endoderm (26). Therapeutic potential of adult stem cells in cell therapy and regenerative medicine has been proven (27).

For the first time in the late 1990s, CSCs were identified by John Dick in acute myeloid diseases. CSCs are cancerous cells that found within tumors or hematological cancers. Also, these cells have the characteristics of normal stem cells and can also give rise to all cell types found in a particular cancer sample (28). There is an increasing evidence supporting the CSCs hypothesis. Normal stem cells in an adult living creature are responsible for the repair and regeneration of damaged as well as aged tissues (29). Many investigations have reported that the capability of a tumor to propagate and proliferate relies on a small cellular subpopulation characterized by stem-like properties, named CSCs (30).

Embryonic connective tissue contains so-called mesenchymes, from which with very close interactions of endoderm and ectoderm all other connective and hematopoietic tissues originate, Whereas, MSCs do not differentiate into hematopoietic cell (31). In 1924, Alexander A. Maxi mow used comprehensive histological detection to identify a singular type of precursor cell within mesenchyme that develops into various types of blood cells (32). In general, MSCs are type of cells with potential of multi-lineage differentiation and self-renewal, which exist in many different kinds of tissues and organs such as adipose tissue, bone marrow, skin, peripheral blood, fallopian tube, cord blood, liver and lung et al. (4,5). Today, stem cells are used for different applications. In addition to using these cells in human therapy such as cell transplantation, cell engraftment etc. The use of stem cells in veterinary medicine has also been considered. The purpose of this review is to provide a summary of our current knowledge regarding the important and types of isolated stem cells from different sources of animal models such as horse, pig, goat, dog, rabbit, cat, rat, mice etc. In this regard, due to the widespread use and lot of attention of MSCs, in this review, we will elaborate on use of MSCs in veterinary medicine.

The isolation method, maintenance and culture condition of MSCs differs from the different tissues, these methods as well as characterization of MSCs described as (36). MSCs could be isolated from the various tissues such as adipose tissue, bone marrow, umbilical cord, amniotic fluid etc. (37).

Diagram for adipose tissue-derived mesenchymal stem cell isolation (3).

Diagram for bone marrow-derived MSCs isolation (33). MSC, mesenchymal stem cell.

Diagram for umbilical cord-derived MSCs isolation (34). MSC, mesenchymal stem cell.

Diagram for isolation of amniotic fluid stem cells (AFSCs) (35).

Diagram for MSCs characterization (35). MSC, mesenchymal stem cell.

The diversity of stem cell or MSCs sources and a wide aspect of potential applications of these cells cause to challenge for selecting an appropriate cell type for cell therapy (38). Various diseases in animals have been treated by cell-based therapy. However, there are immunity concerns regarding cell therapy using stem cells. Improving animal models and selecting suitable methods for engraftment and transplantation could help address these subjects, facilitating eventual use of stem cells in the clinic. Therefore, for this purpose, in this section of this review, we provide an overview of the current as well as previous studies for future development of animal models to facilitate the utilization of stem cells in regenerative medicine (14). Significant progress has been made in stem cells-based regenerative medicine, which enables researchers to treat those diseases which cannot be cured by conventional medicines. The unlimited self-renewal and multi-lineage differentiation potential to other types of cells causes stem cells to be frontier in regenerative medicine (24). More researches in regenerative medicine have been focused on human cells including embryonic as well as adult stem cells or maybe somatic cells. Today there are versions of embryo-derived stem cells that have been reprogrammed from adult cells under the title of pluripotent cells (39). Stem cell therapy has been developed in the last decade. Nevertheless, obstacles including unwanted side effects due to the migration of transplanted cells as well as poor cell survival have remained unresolved. In order to overcome these problems, cell therapy has been introduced using biocompatible and biodegradable biomaterials to reduce cell loss and long-term in vitro retention of stem cells.

Currently in clinical trials, these biomaterials are widely used in drug and cell-delivery systems, regenerative medicine and tissue engineering in which to prevent the long-term survival of foreign substances in the body the release of cells are controlled (40).

Today, the incidence and prevalence of heart failure in human societies is a major and increasing problem that unfortunately has a poor prognosis. For decades, MSCs have been used for cardiovascular regenerative therapy as one of the potential therapeutic agents (41). Dhein et al. [2006] found that autologous bone marrow-derived mesenchymal stem cells (BMSCs) transplantation improves cardiac function in non-ischemic cardiomyopathy in a rabbit model. In one study, Davies et al. [2010] reported that transplantation of cord blood stem cells in ovine model of heart failure, enhanced the function of heart through improvement of right ventricular mass, both systolic and diastolic right heart function (42). In another study, Nagaya et al. [2005] found that MSCs dilated cardiomyopathy (DCM), possibly by inducing angiogenesis and preventing cardial fibrosis. MSCs have a tremendous beneficial effect in cell transplantation including in differentiating cardiomyocytes, vascular endothelial cells, and providing anti-apoptotic as well angiogenic mediators (43). Roura et al. [2015] shown that umbilical cord blood mesenchymal stem cells (UCBMSCs) are envisioned as attractive therapeutic candidates against human disorders progressing with vascular deficit (44). Ammar et al., [2015] compared BMSCs with adipose tissue-derived MSCs (ADSCs). It was demonstrated that both BMSCs and ADSCs were equally effective in mitigating doxorubicin-induced cardiac dysfunction through decreasing collagen deposition and promoting angiogenesis (45).

There are many advantages of small animal models usage in cardiovascular research compared with large animal models. Small model of animals has a short life span, which allow the researchers to follow the natural history of the disease at an accelerated pace. Some advantages and disadvantages are listed in (46).

Despite of the small animal model, large animal models are suitable models for studies of human diseases. Some advantages and disadvantages of using large animal models in a study protocol planning was elaborated in (47).

Chronic wound is one of the most common problem and causes significant distress to patients (48). Among the types of tissues that stem cells derived it, dental tissuederived MSCs provide good sources of cytokines and growth factors that promote wound healing. The results of previous studies showed that stem cells derived deciduous teeth of the horse might be a novel approach for wound care and might be applied in clinical treatment of non-healing wounds (49). However, the treatment with stem cells derived deciduous teeth needs more research to understand the underlying mechanisms of effective growth factors which contribute to the wound healing processes (50). This preliminary investigation suggests that deciduous teeth-derived stem cells have the potential to promote wound healing in rabbit excisional wound models (49). In the another study, Lin et al. [2013] worked on the mouse animal model and showed that ADSCs present a potentially viable matrix for full-thickness defect wound healing (51).

Many studies have been done on dental reconstruction with MSCs. In one study, Khorsand et al. [2013] reported that dental pulp-derived stem cells (DPSCs) could promote periodontal regeneration in canine model. Also, it was shown that canine DPSCs were successfully isolated and had the rapid proliferation and multi-lineage differentiation capacity (52). Other application of dental-derived stem cells is shown in .

Diagram for application of dental stem cell in dentistry/regenerative medicine (53).

As noted above, stem cells have different therapeutic applications and self-renewal capability. These cells can also differentiate into the different cell types. There is now a great hope that stem cells can be used to treat diseases such as Alzheimer, Parkinson and other serious diseases. In stem cell-based therapy, ESCs are essentially targeted to differentiate into functional neural cells. Today, a specific category of stem cells called induced pluripotent stem (iPS) cells are being used and tested to generate functional dopamine neurons for treating Parkinson's disease of a rat animal model. In addition, NSC as well as MSCs are being used in neurodegenerative disorder therapies for Alzheimers disease, Parkinsons disease, and stroke (54). Previous studies have shown that BMSCs could reduce brain amyloid deposition and accelerate the activation of microglia in an acutely induced Alzheimers disease in mouse animal model. Lee et al. [2009] reported that BMSCs can increase the number of activated microglia, which effective therapeutic vehicle to reduce A deposits in AD patients (55). In confirmation of previous study, Liu et al. [2015] showed that transplantation of BMSCs in brain of mouse model of Alzheimers disease cause to decrease in amyloid beta deposition, increase in brain-derived neurotrophic factor (BDNF) levels and improvements in social recognition (56). In addition of BMSCs, NSCs have been proposed as tools for treating neurodegeneration disease because of their capability to create an appropriate cell types which transplanted. kerud et al. [2001] demonstrated that NSCs efficiently express high level of glial cell line-derived neurotrophic factor (GDNF) in vivo, suggesting a use of these cells in the treatment of neurodegenerative disorders, including Parkinsons disease (57). In the following, Venkataramana et al. [2010] transplanted BMSCs into the sub lateral ventricular zones of seven Parkinsons disease patients and reported encouraging results (58).

The human body is fortified with specialized cells named MSCs, which has the ability to self-renew and differentiate into various cell types including, adipocyte, osteocyte, chondrocyte, neurons etc. In addition to mentioned properties, these cells can be easily isolated, safely transplanted to injured sites and have the immune regulatory properties. Numerous in vitro and in vivo studies in animal models have successfully demonstrated the potential of MSCs for various diseases; however, the clinical outcomes are not very encouraging. Based on the studies in the field of stem cells, MSCs find wide application in treatment of diseases, such as heart failure, wound healing, tooth regeneration and etc. In addition, these cells are particularly important in the treatment of the sub-branch neurodegenerative diseases like Alzheimer and Parkinson.

The authors wish to thank staff of the Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.

Funding: The project described was supported by Grant Number IR.TBZMED.REC.1396.1218 from the Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.

Ethical Statement: The authors are accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Conflicts of Interest: The authors have no conflicts of interest to declare.

The rest is here:
Stem cell-based regenerative medicine - PMC - National Center for ...

Read More...

Regenerative medicine | NIST

Saturday, February 10th, 2024

Regenerative medicine therapy, including cell therapy, gene therapy, and therapeutic tissue engineering, provides unprecedented potential to treat, modify, reverse, or cure previously intractable diseases, such as cancer and organ failures. This class of therapy has completely changed the paradigm and the trajectory for medical treatment. Broad clinical translation and patient access requires advances in manufacturing technologies and measurements to ensure the safety, quality, and consistency of the therapy and to reduce the cost.

NIST is committed to solving the measurement challenges of this fast-moving sector of the bioeconomy by providing underpinning measurement infrastructure and platform technologies, as well as standards to promote manufacturing innovation, improve supply chain resilience, and support characterization and testing to facilitate regulatory approval.

The NIST Regenerative Medicine program is working closely with the U.S. Food and Drug Administration'sCenter for Biologics Evaluation and Research(FDA/CBER) and the Standards Coordinating Body (SCB) as well as the broader industry to develop global manufacturing and measurement standards underpinned by a robust measurement infrastructure needed to advance product development and translation as directed by Sec. 3036 of the 21st Century Cures Act.

The NIST laboratory programs support this growing industry as well as the broader industry ecosystem by:

NIST has developed a suite of standards and tools for characterizing biological systems and components using advanced measurement science strategies that enable the generation of high-quality data. Some recent examples of NISTs work include:

See original here:
Regenerative medicine | NIST

Read More...

San Jose blood stem cell donor meets 15-year-old whose life he saved in Los Angeles – The Mercury News

Wednesday, May 17th, 2023

San Jose blood stem cell donor meets 15-year-old whose life he saved in Los Angeles  The Mercury News

See the rest here:
San Jose blood stem cell donor meets 15-year-old whose life he saved in Los Angeles - The Mercury News

Read More...

Regenerative medicine: Current therapies and future directions

Sunday, April 23rd, 2023

Abstract

Organ and tissue loss through disease and injury motivate the development of therapies that can regenerate tissues and decrease reliance on transplantations. Regenerative medicine, an interdisciplinary field that applies engineering and life science principles to promote regeneration, can potentially restore diseased and injured tissues and whole organs. Since the inception of the field several decades ago, a number of regenerative medicine therapies, including those designed for wound healing and orthopedics applications, have received Food and Drug Administration (FDA) approval and are now commercially available. These therapies and other regenerative medicine approaches currently being studied in preclinical and clinical settings will be covered in this review. Specifically, developments in fabricating sophisticated grafts and tissue mimics and technologies for integrating grafts with host vasculature will be discussed. Enhancing the intrinsic regenerative capacity of the host by altering its environment, whether with cell injections or immune modulation, will be addressed, as well as methods for exploiting recently developed cell sources. Finally, we propose directions for current and future regenerative medicine therapies.

Keywords: regenerative medicine, tissue engineering, biomaterials, review

Regenerative medicine has the potential to heal or replace tissues and organs damaged by age, disease, or trauma, as well as to normalize congenital defects. Promising preclinical and clinical data to date support the possibility for treating both chronic diseases and acute insults, and for regenerative medicine to abet maladies occurring across a wide array of organ systems and contexts, including dermal wounds, cardiovascular diseases and traumas, treatments for certain types of cancer, and more (13). The current therapy of transplantation of intact organs and tissues to treat organ and tissue failures and loss suffers from limited donor supply and often severe immune complications, but these obstacles may potentially be bypassed through the use of regenerative medicine strategies (4).

The field of regenerative medicine encompasses numerous strategies, including the use of materials and de novo generated cells, as well as various combinations thereof, to take the place of missing tissue, effectively replacing it both structurally and functionally, or to contribute to tissue healing (5). The body's innate healing response may also be leveraged to promote regeneration, although adult humans possess limited regenerative capacity in comparison with lower vertebrates (6). This review will first discuss regenerative medicine therapies that have reached the market. Preclinical and early clinical work to alter the physiological environment of the patient by the introduction of materials, living cells, or growth factors either to replace lost tissue or to enhance the body's innate healing and repair mechanisms will then be reviewed. Strategies for improving the structural sophistication of implantable grafts and effectively using recently developed cell sources will also be discussed. Finally, potential future directions in the field will be proposed. Due to the considerable overlap in how researchers use the terms regenerative medicine and tissue engineering, we group these activities together in this review under the heading of regenerative medicine.

Since tissue engineering and regenerative medicine emerged as an industry about two decades ago, a number of therapies have received Food and Drug Administration (FDA) clearance or approval and are commercially available (). The delivery of therapeutic cells that directly contribute to the structure and function of new tissues is a principle paradigm of regenerative medicine to date (7, 8). The cells used in these therapies are either autologous or allogeneic and are typically differentiated cells that still maintain proliferative capacity. For example, Carticel, the first FDA-approved biologic product in the orthopedic field, uses autologous chondrocytes for the treatment of focal articular cartilage defects. Here, autologous chondrocytes are harvested from articular cartilage, expanded ex vivo, and implanted at the site of injury, resulting in recovery comparable with that observed using microfracture and mosaicplasty techniques (9). Other examples include laViv, which involves the injection of autologous fibroblasts to improve the appearance of nasolabial fold wrinkles; Celution, a medical device that extracts cells from adipose tissue derived from liposuction; Epicel, autologous keratinocytes for severe burn wounds; and the harvest of cord blood to obtain hematopoietic progenitor and stem cells. Autologous cells require harvest of a patient's tissue, typically creating a new wound site, and their use often necessitates a delay before treatment as the cells are culture-expanded. Allogeneic cell sources with low antigenicity [for example, human foreskin fibroblasts used in the fabrication of wound-healing grafts (GINTUIT, Apligraf) (10)] allow off-the-shelf tissues to be mass produced, while also diminishing the risk of an adverse immune reaction.

Regenerative medicine FDA-approved products

Materials are often an important component of current regenerative medicine strategies because the material can mimic the native extracellular matrix (ECM) of tissues and direct cell behavior, contribute to the structure and function of new tissue, and locally present growth factors (11). For example, 3D polymer scaffolds are used to promote expansion of chondrocytes in cartilage repair [e.g., matrix-induced autologous chondrocyte implantation (MACI)] and provide a scaffold for fibroblasts in the treatment of venous ulcers (Dermagraft) (12). Decellularized donor tissues are also used to promote wound healing (Dermapure, a variety of proprietary bone allografts) (13) or as tissue substitutes (CryoLife and Toronto's heart valve substitutes and cardiac patches) (14). A material alone can sometimes provide cues for regeneration and graft or implant integration, as in the case of bioglass-based grafts that permit fusion with bone (15). Incorporation of growth factors that promote healing or regeneration into biomaterials can provide a local and sustained presentation of these factors, and this approach has been exploited to promote wound healing by delivery of platelet derived growth factor (PDGF) (Regranex) and bone formation via delivery of bone morphogenic proteins 2 and 7 (Infuse, Stryker's OP-1) (16). However, complications can arise with these strategies (Infuse, Regranex black box warning) (17, 18), likely due to the poor control over factor release kinetics with the currently used materials.

The efficacies of regenerative medicine products that have been cleared or approved by the FDA to date vary but are generally better or at least comparable with preexisting products (9). They provide benefit in terms of healing and regeneration but are unable to fully resolve injuries or diseases (1921). Introducing new products to the market is made difficult by the large time and monetary investments required to earn FDA approval in this field. For drugs and biologics, the progression from concept to market involves numerous phases of clinical testing, can require more than a dozen years of development and testing, and entails an average cost ranging from $802 million to $2.6 billion per drug (22, 23). In contrast, medical devices, a broad category that includes noncellular products, such as acellular matrices, generally reach the market after only 37 years of development and may undergo an expedited process if they are demonstrated to be similar to preexisting devices (24). As such, acellular products may be preferable from a regulatory and development perspective, compared with cell-based products, due to the less arduous approval process.

A broad range of strategies at both the preclinical and clinical stages of investigation are currently being explored. The subsequent subsections will overview these different strategies, which have been broken up into three broad categories: (i) recapitulating organ and tissue structure via scaffold fabrication, 3D bioprinting, and self assembly; (ii) integrating grafts with the host via vascularization and innervation; and (iii) altering the host environment to induce therapeutic responses, particularly through cell infusion and modulating the immune system. Finally, methods for exploiting recently identified and developed cell sources for regenerative medicine will be mentioned.

Because tissue and organ architecture is deeply connected with function, the ability to recreate structure is typically believed to be essential for successful recapitulation of healthy tissue (25). One strategy to capture organ structure and material composition in engineered tissues is to decellularize organs and to recellularize before transplantation. Decellularization removes immunogenic cells and molecules, while theoretically retaining structure as well as the mechanical properties and material composition of the native extracellular matrix (26, 27). This approach has been executed in conjunction with bioreactors and used in animal models of disease with lungs, kidneys, liver, pancreas, and heart (25, 2831). Decellularized tissues, without the recellularization step, have also reached the market as medical devices, as noted above, and have been used to repair large muscle defects in a human patient (32). A variation on this approach involves the engineering of blood vessels in vitro and their subsequent decellularization before placement in patients requiring kidney dialysis (33). Despite these successes, a number of challenges remain. Mechanical properties of tissues and organs may be affected by the decellularization process, the process may remove various types and amounts of ECM-associated signaling molecules, and the processed tissue may degrade over time after transplantation without commensurate replacement by host cells (34, 35). The detergents and procedures used to strip cells and other immunogenic components from donor organs and techniques to recellularize stripped tissue before implantation are actively being optimized.

Synthetic scaffolds may also be fabricated that possess at least some aspects of the material properties and structure of target tissue (36). Scaffolds have been fabricated from naturally derived materials, such as purified extracellular matrix components or algae-derived alginate, or from synthetic polymers, such as poly(lactide-coglycolide) and poly(ethylene glycol); hydrogels are composed largely of water and are often used to form scaffolds due to their compositional similarity to tissue (37, 38). These polymers can be engineered to be biodegradable, enabling gradual replacement of the scaffold by the cells seeded in the graft as well as by host cells (39). For example, this approach was used to fabricate tissue-engineered vascular grafts (TEVGs), which have entered clinical trials, for treating congenital heart defects in both pediatric and adult patients (40) (). It was found using animal models that the seeded cells in TEVGs did not contribute structurally to the graft once in the host, but rather orchestrated the inflammatory response that aided in host vascular cells populating the graft to form the new blood vessel (41, 42). Biodegradable vascular grafts seeded with cells, cultured so that the cells produced extracellular matrix and subsequently decellularized, are undergoing clinical trials in the context of end-stage renal failure (Humacyte) (33). Scaffolds that encompass a wide spectrum of mechanical properties have been engineered both to provide bulk mechanical support to the forming tissue and to provide instructive cues to adherent cells (11). For example, soft fibrincollagen hydrogels have been explored as lymph node mimics (43) whereas more rapidly degrading alginate hydrogels improved regeneration of critical defects in bone (44). In some cases, the polymer's mechanical properties alone are believed to produce a therapeutic effect. For example, injection of alginate hydrogels to the left ventricle reduced the progression of heart failure in models of dilated cardiomyopathy (45) and is currently undergoing clinical trials (Algisyl). Combining materials with different properties can enhance scaffold performance, as was the case of composite polyglycolide and collagen scaffolds that were seeded with cells and served as bladder replacements for human patients (46). In another example, an electrospun nanofiber mesh combined with peptide-modified alginate hydrogel and loaded with bone morphogenic protein 2 improved bone formation in critically sized defects (47). Medical imaging technologies such as computed tomography (CT) and magnetic resonance imaging (MRI) can be used to create 3D images of replacement tissues, sometimes based on the patient's own body (48, 49) (). These 3D images can then be used as molds to fabricate scaffolds that are tailored specifically for the patient. For example, CT images of a patient were used for fabricating polyurethane and polyethylene-based synthetic trachea, which were then seeded with cells (50). Small building blocks, often consisting of cells embedded in a small volume of hydrogel, can also be assembled into tissue-like structures with defined architectures and cell patterning using a variety of recently developed techniques (51, 52) ().

Regenerative medicine strategies that recapitulate tissue and organ structure. (A) Scanning electron microscopy image of a TEVG cross-section. Reproduced with permission from ref. 41. (B) Engineered bladder consisting of a polyglycolide and collagen composite scaffold, fabricated based on CT image of patient and seeded with cells. Reproduced with permission from ref. 46. (C) CT image of bone regeneration in critically sized defects without (Left) and with (Right) nanofiber mesh and alginate scaffold loaded with growth factor. Reproduced with permission from ref. 47. (D) Small hydrogel building blocks are assembled into tissue-like structures with microrobots. Reproduced from ref. 52, with permission from Nature Communications. (E) Blueprint for 3D bioprinting of a heart valve using microextrusion printing, with different colors representing different cell types. (F) Printed product. Reproduced with permission from ref. 59. (G) Intestinal crypt stem cells seeded with supporting Paneth cells self-assemble into organoids in culture. Reproduced from ref. 67, with permission from Nature.

Although cell placement within scaffolds is generally poor controlled, 3D bioprinting can create structures that combine high resolution control over material and cell placement within engineered constructs (53). Two of the most commonly used bioprinting strategies are inkjet and microextrusion (54). Inkjet bioprinting uses pressure pulses, created by brief electrical heating or acoustic waves, to create droplets of ink that contains cells at the nozzle (55, 56). Microextrusion bioprinting dispenses a continuous stream of ink onto a stage (57). Both are being actively used to fabricate a wide range of tissues. For example, inkjet bioprinting has been used to engineer cartilage by alternating layer-by-layer depositions of electrospun polycaprolactone fibers and chondrocytes suspended in a fibrincollagen matrix. Cells deposited this way were found to produce collagen II and glycosaminoglycans after implantation (58). Microextrusion printing has been used to fabricate aortic valve replacements using cells embedded in an alginate/gelatin hydrogel mixture. Two cell types, smooth muscle cells and interstitial cells, were printed into two separate regions, comprising the valve root and leaflets, respectively (59) (). Microextrusion printing of inks with different gelation temperatures has been used to print complex 3D tubular networks, which were then seeded with endothelial cells to mimic vasculature (60). Several 3D bioprinting machines are commercially available and offer different capabilities and bioprinting strategies (54). Although extremely promising, bioprinting strategies often suffer trade-offs in terms of feature resolution, cell viability, and printing resolution, and developing bioprinting technologies that excel in all three aspects is an important area of research in this field (54).

In some situations, it may be possible to engineer new tissues with scaffold-free approaches. Cell sheet technology relies on the retrieval of a confluent sheet of cells from a temperature-responsive substrate, which allows cellcell adhesion and signaling molecules, as well as ECM molecules deposited by the cells themselves, to remain intact (61, 62). Successive sheets can be layered to produce thicker constructs (63). This approach has been explored in a variety of contexts, including corneal reconstruction (64). Autologous oral mucosal cells have been grown into sheets, harvested, and implanted, resulting in reepithelialization of human corneas (64). Autonomous cellular self-assembly may also be used to create tissues and be used to complement bioprinting. For example, vascular cells aggregated into multicellular spheroids were printed in layer-by-layer fashion, using microextrusion, alongside agarose rods; hollow and branching structures that resembled a vascular network resulted after physical removal of the agarose once the cells formed a continuous structure (65). Given the appropriate cues and initial cell composition, even complex structures may form autonomously (66). For example, intestinal crypt-like structures can be grown from a single crypt base columnar stem cell in 3D culture in conjunction with augmented Wnt signaling (67) (). Understanding the biological processes that drive and direct self-assembly will aid in fully taking advantage of this approach. The ability to induce autonomous self-assembly of the modular components of organs, such as intestinal crypts, kidney nephrons, and lung alveoli, could be especially powerful for the construction of organs with complex structures.

To contribute functionally and structurally to the body, implanted grafts need to be properly integrated with the body. For cell-based implants, integration with host vasculature is of primary importance for graft success () (68). Most cells in the body are located within 100 m from the nearest capillary, the distance within which nutrient exchange and oxygen diffusion from the bloodstream can effectively occur (68). To vascularize engineered tissues, the body's own angiogenic response may be exploited via the presentation of angiogenic growth factors (69). A variety of growth factors have been implicated in angiogenesis, including vascular endothelial growth factor (VEGF), angiopoietin (Ang), platelet-derived growth factor (PDGF), and basic fibroblast growth factor (bFGF) (70, 71). However, application of growth factors may not be effectual without proper delivery modality, due to their short half-life in vivo and the potential toxicity and systemic effects of bolus delivery (45). Sustained release of VEGF, bFGF, Ang, and PDGF leads to robust angiogenic responses and can rescue ischemic limbs from necrosis (45, 72, 73). Providing a sequence of angiogenic factors that first initiate and then promote maturation of newly formed vessels can yield more functional networks (74) (), and mimicking development via delivery of both promoters and inhibitors of angiogenesis from distinct spatial locations can create tightly defined angiogenic zones (75).

Strategies for vascularizing and innervating tissue-engineered graft. (A) Tissue-engineered graft may be vascularized before implantation: for example, by self-assembly of seeded endothelial cells or by host blood vessels in a process mediated by growth factor release. Compared with bolus injection of VEGF and PDGF (B), sustained release of the same growth factors from a polymeric scaffold (C) led to a higher density of vessels and formation of larger and thicker vessels. Reproduced from ref. 74, with permission from Nature Biotechnology. (D) Scaffold vascularized by being implanted in the omentum before implantation at the injury site. Reproduced with permission from ref. 83. (E) Biodegradable microfluidic device surgically connected to vasculature. Reproduced with permission from ref. 85. Compared with blank scaffold (F), scaffolds delivering VEGF (G) increase innervation of injured skeletal muscle. Reproduced from ref. 97, with permission from Molecular Therapy.

Another approach to promote graft vascularization at the target site is to prevascularize the graft or target site before implantation. Endothelial cells and their progenitors can self-organize into vascular networks when transplanted on an appropriate scaffold (7679). Combining endothelial cells with tissue-specific cells on a scaffold before transplantation can yield tissues that are both better vascularized and possess tissue-specific function (80). It is also possible to create a vascular pedicle for an engineered tissue that facilitates subsequent transplantation; this approach has been demonstrated in the context of both bone and cardiac patches by first placing a scaffold around a large host vessel or on richly vascularized tissue, and then moving the engineered tissue to its final anatomic location once it becomes vascularized at the original site (8183) (). This strategy was successfully used to vascularize an entire mandible replacement, which was later engrafted in a human patient (84). Microfluidic and micropatterning techniques are currently being explored to engineer vascular networks that can be anastomosed to the femoral artery (85, 86) (). The site for cell delivery may also be prevascularized to enhance cell survival and function, as in a recent report demonstrating that placement of a catheter device allowed the site to become vascularized due to the host foreign body response to the material; this device significantly improved the efficacy of pancreatic cells subsequently injected into the device (87).

Innervation by the host will also be required for proper function and full integration of many tissues (88, 89), and is particularly important in tissues where motor control, as in skeletal tissue, or sensation, as in the epidermis, provides a key function (90, 91). Innervation of engineered tissues may be induced by growth factors, as has been shown in the induction of nerve growth from mouse embryonic dorsal root ganglia to epithelial tissue in an in vitro model (92). Hydrogels patterned with channels that are subsequently loaded with appropriate extracellular matrices and growth factors can guide nerve growth upon implantation, and this approach has been used to support nerve regeneration after injury (93, 94). Angiogenesis and nerve growth are known to share certain signaling pathways (95), and this connection has been exploited via the controlled delivery of VEGF using biomaterials to promote axon regrowth in regenerating skeletal muscle (96, 97) ().

Administration of cells can induce therapeutic responses by indirect means, such as secretion of growth factors and interaction with host cells, without significant incorporation of the cells into the host or having the transplanted cells form a bulk tissue (98). For example, infusion of human umbilical cord blood cells can aid in stroke recovery due to enhanced angiogenesis (99), which in turn may have induced neuroblast migration to the site of injury. Similarly, transplanted macrophages can promote liver repair by activating hepatic progenitor cells (100). Transplanted cells can also normalize the injured or diseased environment, by altering the ECM, and improve tissue regeneration via this mechanism. For example, some types of epidermolysis bullosa (EB), a rare genetic skin blistering disorder, are associated with a failure of type VII collagen deposition in the basement membrane. Allogeneic injected fibroblasts were found to deposit type VII collagen deposition, thereby temporarily correcting disease morphology (101). A prototypical example of transplanted cells inducing a regenerative effect is the administration of mesenchymal stem cells (MSCs), which are being widely explored both preclinically and clinically to improve cardiac regeneration after infarction, and to treat graft-versus-host disease, multiple sclerosis, and brain trauma (2, 102) (). Positive effects of MSC therapy are observed, despite the MSCs being concentrated with some methods of application in the lungs and poor MSC engraftment in the diseased tissue (103). This finding suggests that a systemic paracrine modality is sufficient to produce a therapeutic response in some situations. In other situations, cellcell contact may be required. For example, MSCs can inhibit T-cell proliferation and dampen inflammation, and this effect is believed to at least partially depend on direct contact of the transplanted MSCs with host immune cells (104). Cells are often infused, typically intravenously, in current clinical trials, but cells administered in this manner often experience rapid clearance, which may explain their limited efficacy (105). Immunocloaking strategies, such as with hydrogel encapsulation of both cell suspensions and small cell clusters and hydrogel cloaking of whole organs, can lead to increased cell residency time and delayed allograft rejection (106, 107) (). Coating infused cells with targeting antibodies and peptides, sometimes in conjunction with lipidation strategies, known as cell painting, has been shown to improve residency time at target tissue site (108). Infused cells can also be modified genetically to express a targeting ligand to control their biodistribution (109).

Illustrations of regenerative medicine therapies that modulate host environment. (A) Injected cells, such as MSCs, can release cytokines and interact with host cells to induce a regenerative response. (B) Polyethylene glycol hydrogel (green) conformally coating pancreatic islets (blue) can support islets after injection. (Scale bar: 200 m.) Reproduced with permission from ref. 107.

Although the goal of regenerative medicine has long been to avoid rejection of the new tissue by the host immune system, it is becoming increasingly clear that the immune system also plays a major role in regulating regeneration, both impairing and contributing to the healing process and engraftment (110, 111). At the extreme end of immune reactions is immune rejection, which is a serious obstacle to the integration of grafts created with allogeneic cells. Immune engineering approaches have shown promise in inducing allograft tolerance: for example, by engineering the responses of immune cells such as dendritic cells and regulatory T cells (112, 113). Changing the properties of implanted scaffolds can also reduce the inflammation that accompanies implantation of a foreign object. For example, decreasing scaffold hydrophobicity and the availability of adhesion ligands can reduce inflammatory responses, and scaffolds with aligned fibrous topography experience less fibrous encapsulation upon implantation (114). Adaptive immune cells may actively inhibit even endogenous regeneration, as shown when depletion of CD8 T cells improved bone fracture healing in a preclinical model (115). Engineering the local immune response may thus allow active promotion of regeneration. For example, the release of cytokines to polarize macrophages to M2 phenotypes, which are considered to be antiinflammatory and proregeneration, was found to increase Schwann cell infiltration and axonal growth in a nerve gap model (116).

Most regenerative medicine strategies rely on an ample cell source, but identifying and obtaining sufficient numbers of therapeutic cells is often a challenge. Stem, progenitor, and differentiated cells derived from both adult and embryonic tissues are widely being explored in regenerative medicine although adult tissue-derived cells are the dominant cell type used clinically to date due to both their ready availability and perceived safety (8). All FDA-approved regenerative medicine therapies to date and the vast majority of strategies explored in the clinic use adult tissue-derived cells. There is great interest in obtaining greater numbers of stem cells from adult tissues and in identifying stem cell populations suitable for therapeutic use in tissues historically thought not to harbor stem cells (117). Basic studies aiming to understand the processes that control stem cell renewal are being leveraged for both purposes, with the prototypical example being studies with hematopoietic stem cells (HSCs) (3). For example, exposure of HSCs in vitro to cytokines that are present in the HSC niche leads to significant HSC expansion, but this increase in number is accompanied by a loss of repopulation potential (118, 119). Coculture of HSCs with cells implicated in the HSC niche and in microenvironments engineered to mimic native bone marrow may improve maintenance of HSC stemness during expansion, enhancing stem cell numbers for transplantation. For example, direct contact of HSCs with MSCs grown in a 3D environment induces greater CD34+ expansion than with MSCs grown on 2D substrate (120). Another example is that culture of skeletal muscle stem cells on substrates with mechanical properties similar to normal muscle leads to greater stem cell expansion (121) and can even rescue impaired proliferative ability in stem cells from aged animals (122).

Embryonic stem (ES) cells and induced pluripotent stem (iPS) cells represent potentially infinite sources of cells for regeneration and are moving toward clinical use (123, 124). ES cells are derived from blastocyst-stage embryos and have been shown to be pluripotent, giving rise to tissues from all three germ layers (125). Several phase I clinical trials using ES cells have been completed, without reports of safety concerns (Geron, Advanced Cell Technology, Viacyte). iPS cells are formed from differentiated somatic cells exposed to a suitable set of transcription factors that induce pluripotency (126). iPS cells are an attractive cell source because they can be generated from a patient's own cells, thus potentially circumventing the ethical issues of ES and rejection of the transplanted cells (127, 128). Although iPS cells are typically created by first dedifferentiating adult cells to an ES-like state, strategies that induce reprogramming without entering a pluripotent stage have attracted attention due to their quicker action and anticipation of a reduced risk for tumor formation (129). Direct reprogramming in vivo by retroviral injection has been reported to result in greater efficiency of conversion, compared with ex vivo manipulation, and allows in vitro culture and transplantation to be bypassed (130). Strategies developed for controlled release of morphogens that direct regeneration could potentially be adapted for controlling delivery of new genetic information to target cells in vivo, to improve direct reprogramming. Cells resulting from both direct reprogramming and iPS cell differentiation methods have been explored for generating cells relevant to a variety of tissues, including cardiomyocytes, vascular and hematopoietic cells, hepatocytes, pancreatic cells, and neural cells (131). Because ES and iPS cells can form tumors, a tight level of control over the fate of each cell is crucial for their safe application. High-throughput screens of iPS cells can determine the optimal dosages of developmental factors to achieve lineage specification and minimize persistence of pluripotent cells (132). High-throughput screens have also been useful for discovering synthetic materials for iPS culture, which would allow culture in defined, xenogen-free conditions (133). In addition, the same principles used to engineer cellular grafts from differentiated cells are being leveraged to create appropriate microenvironments for reprogramming. For example, culture on polyacrylamide gel substrates with elastic moduli similar to the heart was found to enable longer term survival of iPS-derived cardiomyocytes, compared with other moduli (134). In another study, culture of iPS cell-derived cardiac tissue in hydrogels with aligned fibers, and in the presence of electrical stimulation, enhanced expression of genes associated with cardiac maturation (135).

To date, regenerative medicine has led to new, FDA-approved therapies being used to treat a number of pathologies. Considerable research has enabled the fabrication of sophisticated grafts that exploit properties of scaffolding materials and cell manipulation technologies for controlling cell behavior and repairing tissue. These scaffolds can be molded to fit the patient's anatomy and be fabricated with substantial control over spatial positioning of cells. Strategies are being developed to improve graft integration with the host vasculature and nervous system, particularly through controlled release of growth factors and vascular cell seeding, and the body's healing response can be elicited and augmented in a variety of ways, including immune system modulation. New cell sources for transplantation that address the limited cell supply that hampered many past efforts are also being developed.

A number of issues will be important for the advancement of regenerative medicine as a field. First, stem cells, whether isolated from adult tissue or induced, will often require tight control over their behavior to increase their safety profile and efficacy after transplantation. The creation of microenvironments, often modeled on various stem cell niches that provide specific cues, including morphogens and physical properties, or have the capacity to genetically manipulate target cells, will likely be key to promoting optimal regenerative responses from therapeutic cells. Second, the creation of large engineered replacement tissues will require technologies that enable fully vascularized grafts to be anastomosed with host vessels at the time of transplant, allowing for graft survival. Thirdly, creating a proregeneration environment within the patient may dramatically improve outcomes of regenerative medicine strategies in general. An improved understanding of the immune system's role in regeneration may aid this goal, as would technologies that promote a desirable immune response. A better understanding of how age, disease state, and the microbiome of the patient affect regeneration will likely also be important for advancing the field in many situations (136138). Finally, 3D human tissue culture models of disease may allow testing of regenerative medicine approaches in human biology, as contrasted to the animal models currently used in preclinical studies. Increased accuracy of disease models may improve the efficacy of regenerative medicine strategies and enhance the translation to the clinic of promising approaches (139).

Visit link:
Regenerative medicine: Current therapies and future directions

Read More...

What Is Regenerative Medicine? | Goals and Applications | ISCRM

Sunday, April 23rd, 2023

For many centuries, we have looked to medicine to heal us when we are sick or injured. Major breakthroughs, like vaccines and antibiotics, have improved quality of life, and, in some cases, led to the effective eradication of infectious diseases.

While modern medicine has certainly changed the human experience for the better, we remain at the mercy of disease. There are no vaccines for malaria or HIV, for example. And chronic diseases, like heart disease, Alzheimers, diabetes, and osteoporosis, although treatable, are relentless causes of suffering. There are no silver bullet for these conditions. Often the best we can do is manage the symptoms.

One key to changing that may be regenerative medicine, a field of research with its sights set on the root causes of diseases, including many being studied now at the Institute for Stem Cell and Regenerative Medicine (ISCRM).

As a discipline, regenerative medicine combines principles of biology and engineering to develop therapies for diseases characterized by cell depletion, lost tissue, or damaged organs. The broad aim of regenerative medicine is to engineer, regenerate, or replace tissue using natural growth and repair mechanisms, such as stem cells. Organoids, 3D organ printing, and tissue engineering are examples of biopowered technologies used in regenerative medicine.

Many common chronic diseases begin with harmful cell depletion. For example, Alzheimers disease is associated with a loss of brain cells, heart disease is often marked by a loss of healthy heart muscle, and type 1 diabetes occurs when cells in the pancreas fail to produce insulin. In the case of cancer, the problem is that cells grow too quickly. (Click here to read more about diseases being researched at ISCRM.)

For scientists, regenerative medicine is a way to fix the root causes of disease by harnessing the bodys natural capacity to repair itself in other words, to regenerate lost cells and tissue and restore normal functioning. At the Institute for Stem Cell and Regenerative Medicine, researchers are studying how to jump start the growth of cells in the brain, heart, pancreas, liver, kidney, eyes, ears, and muscles.

Ultimately, the goal of regenerative medicine is to improve the daily wellbeing of patients with debilitating chronic diseases by developing a new generation of therapies that go beyond treating symptoms.

Stem cells are powerful tools of discovery used by researchers hoping to understand how regenerative medicine could be used to treat patients. Right now, ISCRM researchers are using stem cells to study how heart diseases develop, testing stem cell-based therapies that could regenerate damaged or lost heart tissue, and even launching heart tissue into space to study the effects of microgravity on cardiovascular health. Many ISCRM scientists use stem cells to create 3D organ models, known as organoids, that allow them to study diseases and test regenerative treatments without involving animals or human subjects.

Heart RegenerationResearchers in multiple ISCRM labs are pursuing novel approaches that can potentially cure rather than manage heart disease. In 2018, a study led by ISCRM Director Dr. Charles Murry demonstrated that stem cell-derived cardiomyocytes have the potential to regenerate heart tissue in large non-human primates, a major step toward human clinical trials. In another investigation, ISCRM faculty members Jen Davis, PhD and Farid Moussavi-Harami, MD are developing new tools to help cardiologists design personalized treatments for certain heart diseases.

DiabetesISCRM researchers are studying the mechanisms that regulate the development and function of beta cells in the pancreas that produce insulin a key to future treatments for any type of diabetes. Vincenzo Cirulli MD, PhD, is screening for biological factors that could promote the growth of beta cells necessary for insulin production. Dr. Cirullis ISCRM colleague Laura Crisa MD, PhD is using a disease-in-a-dish model to study how islet cells falter and whether they can be regenerated, and eventually transplanted, into patients.

Vision DisordersResearchers at the Institute for Stem Cell and Regenerative Medicine (ISCRM) are using stem cell-derived retinal organoids to study how diseases of the retina form and how they can be treated. Organoids closely approximate human tissue without many of the ethical questions and supply limitations that complicate the use of fetal tissue. Read more about recent efforts to validate stem cell-derived organoids as disease models here.

In an approach could someday be used to help repair the retinas in patients who have lost vision due to macular degeneration, glaucoma and diabetes, the Reh Lab has successfully induced non-neuronal cells to become retinal neurons. In an October 2021 study published in the journal Cell Reports, Reh and his team using proteins (known as transcription factors) that regulate the activity of genes to induce glial cells in the retina to produce neurons. The effort demonstrates that gene therapy could someday be used in clinics to help repair damaged retinas and restore vision.

Link:
What Is Regenerative Medicine? | Goals and Applications | ISCRM

Read More...

Important Patient and Consumer Information About Regenerative Medicine …

Sunday, April 23rd, 2023

June 3, 2021

The US Food and Drug Administration (FDA) regulates regenerative medicine products. There continues to be broad marketing of unapproved products considered regenerative medicine therapies that are intended for the treatment or cure of a wide range of diseases or medical conditions. These products require FDA licensure/approval to be marketed to consumers. Before approval, these products require FDA oversight in a clinical trial. These unapproved products whether recovered from your own body or another persons body, include stem cells, stromal vascular fraction (fat-derived cells), umbilical cord blood and/or cord blood stem cells1, amniotic fluid, Whartons jelly, ortho-biologics, and exosomes. FDA has received reports of blindness, tumor formation, infections, and more, detailed below, due to the use of these unapproved products.

If you are being offered any of these products outside of a clinical trial for which FDA has oversight, please contact FDA at ocod@fda.hhs.gov. Additionally, contact FDA if you are considering treatment with any of these products and have questions, or if you have been treated with these products and wish to report any adverse effects or file a complaint. We take these reports seriously and want to hear from you.

If you were hurt or had a bad side effect following treatment with a regenerative medicine product, or a similar product, we also encourage you to report it to the FDAs MedWatch Adverse Event Reporting program. Additional information for patients on reporting adverse events for these products can be found here.

Please know that if you are being charged for these products or offered these products outside of a clinical trial, you are likely being deceived and offered a product illegally. Likewise, FDA is aware that patients and consumers are being referred to clinicaltrials.gov, or are told that a product is registered with FDA, as a way to suggest that the products being offered are in compliance with FDA laws and regulations. This is often false. The inclusion of a product in the clinicaltrials.gov database or the fact that a firm has registered with FDA and listed its product does not mean the product is legally marketed. If you are considering receiving one of these products, please contact FDA at ocod@fda.hhs.gov.

This web posting reemphasizes the warning to consumers in FDAs July 2020 Consumer Alert:

FDA has repeatedly notified manufacturers, clinics, and health care practitioners of the need for Investigational New Drug applications (INDs) to legally administer these products and to ensure safety measures are in place prior to administration.

These regenerative medicine products have risks but are often illegally marketed by clinics as being safe and effective for the treatment of a wide range of diseases or conditions, even though they havent been adequately studied under an IND to demonstrate the claims of safety and effectiveness. Safety concerns with any product that is illegally marketed as a regenerative medicine therapy include the following:

Helpful Links

FDA Voices

Warnings and Safety Notifications

FDA Warning Letters

FDA/CBER Untitled Letters

FDA letter to clinics and health care providers offering stem cell or related products to treat a variety of diseases or conditions

Questions and Answers Regarding the End of the Compliance and Enforcement Policy for Certain Human Cells, Tissues, or Cellular or Tissue-based Products (HCT/Ps)

1Currently, the only stem cell products that are FDA-approved for use in the United States consist of blood-forming stem cells (also known as hematopoietic progenitor cells) that are derived from umbilical cord blood. These products are approved for use in patients with disorders that affect the production of blood (i.e., the hematopoietic system) but they are not approved for other uses.

07/09/2021

Continued here:
Important Patient and Consumer Information About Regenerative Medicine ...

Read More...

Regenerative medicine can be a boon for those with Drug-Resistant Tuberculosis – Hindustan Times

Sunday, April 23rd, 2023

Regenerative medicine can be a boon for those with Drug-Resistant Tuberculosis  Hindustan Times

Read more:
Regenerative medicine can be a boon for those with Drug-Resistant Tuberculosis - Hindustan Times

Read More...

About Regenerative Medicine – Center for Regenerative … – Mayo Clinic

Friday, April 7th, 2023

Andre Terzic, M.D., Ph.D.

Center for Regenerative Biotherapeutics, Mayo Clinic

Andre Terzic, M.D., Ph.D.: Regenerative medicine is an exciting component of modern health care. It harnesses breakthroughs in technologies to address major unmet needs of the population, both nationally but also globally. With the successes of traditional medicine, we'll live longer. And aging has been viewed as a major triumph of humanity. At the same time, unfortunately, with aging, we are facing with a growing pandemic of so-called chronic diseases diseases that live with us throughout our lifespan, heart disease, cancer, diabetes and so on.

So regenerative medicine comes with this new ability to understand how our body can heal and to harness its innate ability, that self-ability to heal, to actually provide new solutions to these patients in need. So the Center for Regenerative Biotherapeutics at Mayo Clinic has been built to address the unmet needs of patients. It builds on our new knowledge, bringing new ways to promote the self-repair ability of our body.

There have been magic moments during these few decades that we have built the regenerative medicine field. One such moment was when we saw, for the first time, how out of a stem cell, we can create new beating heart tissue. It was a revolution for us.

We would like to bring now this knowledge that may have started in one field to build it across fields as the new science allows, essentially, for learning between fields. We need true, radical innovation to move the current knowledge into new solutions. That is where regenerative medicine has a unique role. It changes the way we treat patients.

Visit link:
About Regenerative Medicine - Center for Regenerative ... - Mayo Clinic

Read More...

Regenerative Medicine | National Institutes of Health (NIH)

Friday, April 7th, 2023

Instead of trying to compensate for failing organs, what if we could readily replace diseased or injured body parts with brand-new versions made in the lab? Researchers working in the field of regenerative medicine have already made amazing progress, creating artificial organs and miniature labs-on-a-chip. The return on investment for this area of research is expected to be dramatic: better understanding of how diseases develop and spread, accurate screens for testing new drugs, and cell-based therapies for diabetes, arthritis, Parkinsons disease, and many other conditions that affect millions of Americans. NIH researchers have already created miniature hearts that beat rhythmically in a culture dish and contain all the different cell types that make up a human heart. Scientists have also developed a lung-on-a-chip. When intermittent suction is applied, the cells in this thumb-sized device flex and stretch rhythmically just as they do in our lungs when we breathe. For individuals with kidney failure, the potential of using their own skin cells to build a new kidney might now be within reach given years of hard work and the necessary research investment.

Each year, NIH research funding can be expected to generate more than 100 new inventions..

Previous: The Future of Biomedicine Next: The CRISPR Revolution

This page last reviewed on February 28, 2023

Continued here:
Regenerative Medicine | National Institutes of Health (NIH)

Read More...

Porcine Vaccine Market is estimated to be US$ 4.41 billion by 2030 with a CAGR of 7.50%during the forecast – EIN News

Friday, April 7th, 2023

Porcine Vaccine Market is estimated to be US$ 4.41 billion by 2030 with a CAGR of 7.50%during the forecast  EIN News

Read more here:
Porcine Vaccine Market is estimated to be US$ 4.41 billion by 2030 with a CAGR of 7.50%during the forecast - EIN News

Read More...

Advancing Safe and Effective Regenerative Medicine Products

Tuesday, March 21st, 2023

By: Peter Marks, M.D., Ph.D., Director, Center for Biologics Evaluation and Research

The U.S. Food and Drug Administration plays a vital role in facilitating the development and availability of innovative medical products. Products such as cellular-derived therapies, including stem cell-based products, offer the potential to treat or even cure diseases or conditions for which few effective treatment options exist.

The FDAs November 2017 regenerative medicine policy framework was developed to help facilitate and support innovation in the area of regenerative medicine therapies. As part of this framework, we encourage sponsors to take advantage of ongoing expedited programs that might be available to them, including Regenerative Medicine Advanced Therapy, breakthrough therapy, and fast track designations, to support product development and licensure.

The framework also outlines the agencys intent to exercise enforcement discretion with respect to the FDAs investigational new drug (IND) and premarket approval requirements for certain regenerative medicine products until November 2020, which was later extended through May 2021. This compliance and enforcement discretion policy gives manufacturers time to determine if certain requirements apply to their products, and if an application is needed, to prepare and submit the appropriate application to the FDA.

We are now reaffirming the timing of the end of the compliance and enforcement discretion policy for certain human cell, tissue, and cellular and tissue-based products (HCT/Ps), including regenerative medicine therapies. The period during which the FDA intends to exercise enforcement discretion with respect to the IND and premarket approval requirements for certain HCT/Ps ends on May 31, 2021, and will not be extended further.

Since November 2017, the FDA has worked with product developers to help them determine if they need to submit an IND or marketing application and, if so, how they should submit their application to the FDA. The FDA developed programs that provide opportunities for engagement between HCT/P manufacturers and the agency, including the Tissue Reference Group (TRG) Rapid Inquiry Program (TRIP). TRIP helped manufacturers of HCT/Ps, including stakeholders that market HCT/Ps to physicians or patients, obtain a rapid, preliminary, informal, non-binding assessment from the FDA regarding how specific HCT/Ps are regulated. TRIP was a temporary program of the TRG. The TRIP began in June 2019 and was extended twice. It recently ended on March 31, 2021.

Despite all of the FDAs efforts to engage industry, there continues to be broad marketing of these unapproved products for the treatment or cure of a wide range of diseases or medical conditions. Many of these unapproved products appear to be HCT/Ps that are regulated as drugs, devices and/or biological products subject to premarket approval requirements. The wide extent of the marketing of such unapproved products is evidenced by their inappropriate advertisement in various media and by the number of consumer complaints about them submitted to the FDA.

These regenerative medicine products are not without risk and are often marketed by clinics as being safe and effective for the treatment of a wide range of diseases or conditions, even though they havent been adequately studied in clinical trials. Weve said previously and want to reiterate here there is no room for manufacturers, clinics, or health care practitioners to place patients at risk through products that violate the law, including by not having an IND in effect or an approved biologics license. We will continue to take action regarding unlawfully marketed products. Our oversight of cellular and related products has included taking compliance actions, including numerous warning and untitled letters, and pursuing enforcement action for serious violations of the law.

Since December 2019, the agency has issued more than 350 letters to manufacturers, clinics, and health care providers, noting that it has come to our attention that they may be offering unapproved regenerative medicine products and reiterating the FDAs compliance and enforcement policy.

We encourage the public and patients who are considering treatment with regenerative medicine products to work with their health care providers to learn about the treatment being offered. Ask questions and understand the potential risks of treatment with unapproved products. It is critical to only seek treatment using legally marketed products, or, for unapproved products, to enroll in clinical trials under FDA oversight. The public can visit the FDAs website to find out if a particular regenerative medicine product is approved.

The FDA remains committed to helping advance the development of safe and effective regenerative medicine products, including stem cell-based products, to benefit individuals in need. We look forward to working with those who share this goal.

Visit link:
Advancing Safe and Effective Regenerative Medicine Products

Read More...

Active Wound Care Market Rising demand for Skin Substitutes to boost the industry (2023-2033) | CAGR of 5.5% – EIN News

Tuesday, March 21st, 2023

Active Wound Care Market Rising demand for Skin Substitutes to boost the industry (2023-2033) | CAGR of 5.5%  EIN News

Go here to read the rest:
Active Wound Care Market Rising demand for Skin Substitutes to boost the industry (2023-2033) | CAGR of 5.5% - EIN News

Read More...

Veterinary Orthopedic Implants Market is estimated to be 421.3 Million by 2029 with a CAGR of 5.3% – By PMI – EIN News

Tuesday, March 21st, 2023

Veterinary Orthopedic Implants Market is estimated to be 421.3 Million by 2029 with a CAGR of 5.3% - By PMI  EIN News

The rest is here:
Veterinary Orthopedic Implants Market is estimated to be 421.3 Million by 2029 with a CAGR of 5.3% - By PMI - EIN News

Read More...

ASKA Pharmaceutical : February 7 2023 EME and ASKA Announce Collaboration Agreement on Creating Novel PharmaLogical VHH to address an unmet medical…

Wednesday, February 8th, 2023

ASKA Pharmaceutical : February 7 2023 EME and ASKA Announce Collaboration Agreement on Creating Novel PharmaLogical VHH to address an unmet medical need in Obstetrics and Gynecology  Marketscreener.com

See original here:
ASKA Pharmaceutical : February 7 2023 EME and ASKA Announce Collaboration Agreement on Creating Novel PharmaLogical VHH to address an unmet medical...

Read More...

A Look At Some Of The Companies Innovating In the Cutting-Edge Regenerative Medicine Field – Yahoo Finance

Saturday, October 15th, 2022

By David Willey, Benzinga

Melville, NY --News Direct-- BioRestorative Therapies, Inc.

Biotechnology companies have broken many medical barriers in the past 40 years, harnessing the technological revolution to bring innovative solutions to medical problems.

One flourishing field in biotech is regenerative medicine, a market worth $16.9 billion in 2021. Regenerative medicine harnesses the bodys amazing ability to heal itself, using cutting-edge technology to apply this regenerative power to prompt the body to recover from diseases previously uncured.a

An estimated one-third of Americans would benefit from regenerative therapeutic cures. There are wide applications for such regenerative therapy, with categories including stem cell research, gene therapy and tissue engineering. Some difficulties for regenerative medicine companies include arduous Food and Drug Administration (FDA) trial processes and the need for vertical integration of their product development to cut expenses.

Biotech companies involved in regenerative medicine include Mesoblast Ltd. (NASDAQ: MESO), Brainstorm Cell Therapeutics Inc. (NASDAQ: BCLI), Lineage Cell Therapeutics (NYSE: LCTX) and BioRestorative Therapies Inc. (NASDAQ: BRTX).

Here is a look at some companies looking to be leaders in the regenerative therapy field:

Mesoblast Ltd. develops novel treatments for back pain and various cardiovascular conditions. This Australia-based company focuses primarily on cell therapy solutions, with a mesenchymal lineage stem cell (MSC) technology platform. This develops MSCs, highly multipotent cells taken from healthy bone marrow, and develops treatments for tissue damage, heart disease and more.

Lineage Cell Therapeutics is a company pioneering cell-based therapies to treat serious diseases, including ocular disorders and cancer. It uses its proprietary cell-therapy platform to develop and manufacture self-renewing stem cells into differentiated cells, which can be transplanted to treat problems including cancer or degenerative diseases.

Story continues

Brainstorm Therapeutics focuses on cell therapies for neurodegenerative diseases. Its autologous cellular therapeutics platform NurOwn treats the disease by differentiating the patients healthy MSCs. Brainstorms work may eventually provide treatments for such neurodegenerative diseases as Alzheimers.

BioRestorative Therapies, which primarily develops products using highly therapeutic adult stem cells, focuses on disc/spine disease and metabolic disorders. BioRestoratives brtxDisc program is developing a treatment for the millions of Americans suffering from either chronic or acute back pain. Its product BRTX-100, which uses autologous stem cells to treat degenerative spinal discs, is in a Phase Two FDA trial.

BioRestorative is also tackling obesity, which currently affects over 40% of Americans. It is developing the product ThermoStem, which harnesses the bodys natural production of healthy brown fat cells to target patient obesity and other metabolic issues associated with obesity.

BioRestorative believes that its treatments will also help condition the body for better future regeneration and responses to medical treatment. A significant advantage for the company is the vertical integration of development and production it has through its clinical-grade cell therapy manufacturing facility. This facility, completed in April, gives BioRestorative control and oversight in the cell manufacturing process, apart from the flexibility to make its own decisions and to correct quality issues in real-time. Owning the facility mitigates the expense normally associated with these activities, which is a great benefit when conducting FDA trials.

Learn more about BioRestorative by visiting its website.

BioRestorative Therapies was founded by scientists and researchers committed to developing stem cell therapies to address unmet needs in patients with highly prevalent conditions.Our advances in stem cell biology and delivery protocols harbor great promise in conditioning our bodies own regenerative potential to treat major diseases more effectively than current interventions.Today, BioRestorative is actively developing programs that aim to dramatically increase quality of care for both (i) chronic back pain caused by disc degeneration, as well as (ii) metabolic disorders including obesity and diabetes.

This post contains sponsored advertising content. This content is for informational purposes only and is not intended to be investing advice.

Investor Relations

ir@biorestorative.com

Home

View source version on newsdirect.com: https://newsdirect.com/news/a-look-at-some-of-the-companies-innovating-in-the-cutting-edge-regenerative-medicine-field-188108312

Follow this link:
A Look At Some Of The Companies Innovating In the Cutting-Edge Regenerative Medicine Field - Yahoo Finance

Read More...

The Switch to Regenerative Medicine – Dermatology Times

Saturday, October 15th, 2022

As the 3rd presenter during the morning session of the American Society for Dermatologic Surgery Meeting, Emerging Concepts, Saranya Wyles, MD, PhD, assistant professor of dermatology, pharmacology, and regenerative medicine in the department of dermatology at the Mayo Clinic in Rochester, Minnesota, explored the hallmarks of skin aging, the root cause of aging and why it occurs, and regenerative medicine. Wyles first began with an explanation of how health care is evolving. In 21st-century health care, there has been a shift in how medical professionals think about medicine. Traditionally,the first approach was to fight diseases, such as cancer, inflammatory conditions, or autoimmune disorders. Now, the thought process is changing to a root cause approach with a curative option and how to rebuild health. Considering how to overcome the sequence of the different medications and treatments given to patients is rooted in regenerative medicine principles.

For skin aging, there is a molecular clock that bodies follow. Within the clock are periods of genomic instability, telomere attrition, and epigenetic alterations, and Wyles lab focuses on cellular senescence.

We've heard a lot atthis conference about bio stimulators, aesthetics, and how we can stimulate our internal mechanisms of regeneration. Now, the opposite force of regeneration isthe inhibitory aging hallmarks which include cellular senescence. So, what is cell senescence? This isa state that the cell goes into, similar to apoptosis or proliferation, where the cell goesinto a cell cycle arrest so instead of dividing apoptosis, leading to cell death,the cell stays in this zombie state, said Wyles.

Senescence occurs when bodies require a mutation for cancers. When the body recognizes there is something wrong, it launches itself into the senescent state, which can be beneficial. Alternatively, chronic senescence seen with inflammageing, like different intrinsic markers, extrinsic markers, and UV damage, is a sign of late senescence. Senescence cells can be melanocytes, fibroblasts, and cells that contribute to the regeneration of the skin.

I think were in a very exciting time ofinnovation and advancements in medicine, which is the meeting of longevity science of aging and regenerative medicine, said Wyles.

Regenerative medicine is a new field of medicine that uses native and bioengineered cells, devices, and engineering platforms with the goal of healing tissues and organs byrestoring form and function through innate mechanisms of healing.Stem cell therapy and stem cell application are commonly referenced with regenerative medicine. Typically, first-in-class treatments include cells, autologous or allogeneic, different types of cells that areassociated with high-cost due to the manufacturing.

With regenerative medicine, there's a new class of manufacturing. Regenerative medicine is not like traditional drugs where every product is consistent. These are cells, so the idea of manufacturing, and minimally manipulating, all comes into play. Now, there's a new shift towards next-generation care. This is cell-free technology. So, this is the idea of exosomes, because these are now products from cells that can be directly applied, they can be shelf-stable, accessible, and more cost-effective, said Wyles.

Exosomes are the ways that the cells communicate with each other. Cells have intercellularcommunications and depending on the source of the exosomes, there can be different signals. Wyles focused specifically on a platelet product, which is a pooled platelet product that can be purified and used for different mechanisms including wound healing, fat grafting, degenerative joint disease, and more.In a cosmetic studyconducted by Mayo Clinic, a topical platelet exosome product was applied to the face in the morning and the evening. Application included a 3-step regimen, a gentle cleanser, a platelet exosomeproduct, and then a sunscreen.

After 6 weeks, there was a significant improvement in redness and a 92% improvement in the hemoglobin process. Vasculature also improved across age groups. The study enrolled 56patients, and the average age was 54. Patients in their 40s, 50s, and 60s saw consistent improvement in redness and skin aging.

Lastly, Wyles stressed that as dermatologists think through the science-driven practices of these innovative strategies for skin aging, wound healing, and other regenerative approaches, they must think about responsible conducts of research. Currently, there are no FDA indications for exosomes being injected.

Reference:

Here is the original post:
The Switch to Regenerative Medicine - Dermatology Times

Read More...

The Alliance for Regenerative Medicine Announces Election of 2023 Officers, Executive Committee, and Board of Directors – GlobeNewswire

Saturday, October 15th, 2022

Carlsbad, CA, Oct. 11, 2022 (GLOBE NEWSWIRE) -- The Alliance for Regenerative Medicine (ARM), the leading international advocacy organization dedicated to realizing the promise of regenerative medicines and advanced therapies, today announced the election of its 2023 Officers, Executive Committee, and Board of Directors.

The announcement comes as ARM kicks off its 2022 Cell & Gene Meeting on the Mesa, a gathering of 1,800 leaders in the cell and gene therapy sector.

The Executive Committee and Board of Directors oversee the formation and execution of ARMs strategic priorities and focus areas. These distinguished leaders are instrumental to ARMs leadership of the sector.

We are delighted to welcome our 2023 Officers, Executive Committee members and Board of Directors, said ARMs Chief Executive Officer Timothy D. Hunt. The pipeline of transformative cell and gene therapies will continue to accelerate in 2023, creating more urgency to ensure that patients have access to life-changing medicines. ARMs Board of Directors and our more than 450 member organizations globally are vital to this mission.

ARM 2023 Officers:

Devyn Smith, Ph.D. Chief Executive Officer, Arbor Biotechnologies (Chair)

Dave Lennon, Ph.D. Chief Executive Officer, Satellite Bio (Vice Chair)

Alison Moore, Ph.D. Chief Technology Officer, Allogene Therapeutics (Secretary)

Chris Vann Senior Vice President, Chief Operations Officer, Autolus (Treasurer)

ARM 2023 Executive Committee:

Devyn Smith, Ph.D. Chief Executive Officer, Arbor Biotechnologies (Chair)

Dave Lennon, Ph.D. Chief Executive Officer, Satellite Bio (Vice Chair)

Alison Moore, Ph.D. Chief Technology Officer, Allogene Therapeutics (Secretary)

Chris Vann Senior Vice President, Chief Operations Officer, Autolus (Treasurer)

Bob Smith, MBA Senior Vice President, Global Gene Therapy Business, Pfizer

Miguel Forte, M.D., Ph.D. Chief Executive Officer, Bone Therapeutics

Laura Sepp-Lorenzino, Ph.D. Executive Vice President and Chief Science Officer, Intellia Therapeutics

Arthur Tzianabos, Ph.D. Chair of the Board, Homology Medicines

ARM 2023 Board of Directors

* New to the Board for 2023

* Faraz Ali, MBA Chief Executive Officer, Tenaya Therapeutics

Robert Ang, MBBS, MBA Chief Executive Officer, Vor Biopharma

* Catherine Bollard, M.B.Ch.B., M.D. Director of the Center for Cancer and Immunology Research, Childrens National Hospital and The George Washington University

Amy Butler, Ph.D. President, Biosciences, Thermo Fisher

Bradley Campbell, MBA President and Chief Executive Officer, Amicus Tx

Miguel Forte, M.D., Ph.D. Chief Executive Officer, Bone Therapeutics

* Christine Fox President, Novartis Gene Therapies

Bobby Gaspar, M.D., PhD. Chief Executive Officer, Orchard Therapeutics

Jerry Keybl, Ph.D. Senior Director, Cell & Gene Therapy, MilliporeSigma

Brett Kopelan Executive Director, Debra of America

* Ann Lee, Ph.D. Chief Technical Officer, Prime Medicine

Dave Lennon, Ph.D. Chief Executive Officer, Satellite Bio

Tim Lu, M.D., Ph.D. Chief Executive Officer and Co-Founder, Senti Biosciences

John Maslowski, M.S. Chief Commercial Officer, Forge Biologics

Chris Mason, M.D., Ph.D. Founder & Director, Ori Biotech

Debra Miller Founder & Chief Executive Officer, CureDuchenne

Alison Moore, Ph.D. Chief Technology Officer, Allogene

Adora Ndu, PharmD, J.D. Chief Regulatory Officer, BridgeBio

Susan Nichols President & Chief Executive Officer, Propel BioSciences

Emile Nuwaysir, Ph.D. Chief Executive Officer, Ensoma

Karah Parschauer, J.D. Chief Legal Officer, Ultragenyx

* Jacob Petersen Corporate Vice President and Head of Stem Cell Research & Development, Novo Nordisk

Louise Rodino-Klapac, Ph.D. Executive Vice President, Head of Research & Development, Chief Scientific Officer, Sarepta Therapeutics

Jeff Ross, Ph.D. Chief Executive Officer, Miromatrix Medical

* Alberto Santagostino Senior Vice President, Head of Cell & Gene Technologies, Lonza

Laura Sepp-Lorenzino, Ph.D. Executive Vice President & Chief Scientific Officer, Intellia Therapeutics

R.A. Session, MBA, MSF President, Founder & Chief Executive Officer, Taysha Tx

Curran Simpson, M.S. Chief Operations and Chief Technical Officer, REGENXBIO

Bob Smith, MBA Senior Vice President, Global Gene Therapy, Pfizer

Devyn Smith, Ph.D. Chief Executive Officer, Arbor Biotechnologies

Arthur Tzianabos, Ph.D. Chair of the Board, Homology Medicines

Christopher Vann Senior Vice President & Chief Operating Officer, Autolus Therapeutics

Kristin Yarema, Ph.D. Chief Commercial Officer, Atara Bio

Continued here:
The Alliance for Regenerative Medicine Announces Election of 2023 Officers, Executive Committee, and Board of Directors - GlobeNewswire

Read More...

Page 3«..2345..1020..»


2024 © StemCell Therapy is proudly powered by WordPress
Entries (RSS) Comments (RSS) | Violinesth by Patrick