Anti-hyperalgesic effects of photobiomodulation therapy (904 nm) on streptozotocin-induced diabetic neuropathy imply MAPK pathway and calcium dynamics…
♫ Friday, October 7th, 2022Feldman, E. L., Nave, K., Jensen, T. S. & Bennett, D. L. H. New horizons in diabetic neuropathy: Mechanisms, bioenergetics, and pain. Neuron 93, 12961313 (2017).
CAS PubMed PubMed Central Google Scholar
Callaghan, B. C., Cheng, H. T., Stables, C. L., Smith, A. L. & Feldman, E. L. Diabetic neuropathy: Clinical manifestations and current treatments. Lancet Neurol. 11, 521534 (2012).
PubMed PubMed Central Google Scholar
Jensen, T. S. & Finnerup, N. B. Allodynia and hyperalgesia in neuropathic pain: Clinical manifestations and mechanisms. Lancet Neurol. 13, 924935 (2014).
PubMed Google Scholar
Truini, A., Garcia-Larrea, L. & Cruccu, G. Reappraising neuropathic pain in humansHow symptoms help disclose mechanisms. Nat. Rev. Neurol. 9, 572582 (2013).
CAS PubMed Google Scholar
Gandhi, R. A. & Selvarajah, D. Understanding and treating painful diabetic neuropathy: Time for a paradigm shift. Diabet. Med. 32, 771777 (2015).
CAS PubMed Google Scholar
Harris, K., Boland, C., Meade, L. & Battise, D. Adjunctive therapy for glucose control in patients with type 1 diabetes. Diabetes Metab. Syndr. Obes. 11, 159173 (2018).
CAS PubMed PubMed Central Google Scholar
Yagihashi, S., Mizukami, H. & Sugimoto, K. Mechanism of diabetic neuropathy: Where are we now and where to go?. J. Diabetes Investig. 2, 1832 (2011).
CAS PubMed Google Scholar
Lee, A. Y. & Chung, S. S. Contributions of polyol pathway to oxidative stress in diabetic cataract. FASEB J. 13, 2330 (1999).
CAS PubMed Google Scholar
Brownlee, M. Biochemistry and molecular cell biology of diabetic complications. Nature 414, 813820 (2001).
ADS CAS PubMed Google Scholar
Yan, L.-J. Pathogenesis of chronic hyperglycemia: From reductive stress to oxidative stress. J. Diabetes Res. 2014, 137919 (2014).
PubMed PubMed Central Google Scholar
Schreiber, A. K., Nones, C. F. M., Reis, R. C., Chichorro, J. G. & Cunha, J. M. Diabetic neuropathic pain: Physiopathology and treatment. World J. Diabetes. 6, 432444 (2015).
PubMed PubMed Central Google Scholar
Thornalley, P. J. Glycation in diabetic neuropathy: Characteristics, consequences, causes, and therapeutic options. Int. Rev. Neurobiol. 50, 3757 (2002).
CAS PubMed Google Scholar
Juranek, J., Ray, R., Banach, M. & Rai, V. Receptor for advanced glycation end-products in neurodegenerative diseases a bad reputation. Rev. Neurosci. 26, 691698 (2015).
PubMed Google Scholar
Greene, D. A., Stevens, M. J., Obrosova, I. & Feldman, E. L. Glucose-induced oxidative stress and programmed cell death in diabetic neuropathy. Eur. J. Pharmacol. 375, 217223 (1999).
CAS PubMed Google Scholar
Pop-Busui, R., Sima, A. & Stevens, M. Diabetic neuropathy and oxidative stress. Diabetes Metab. Res. Rev. 22, 257273 (2006).
CAS PubMed Google Scholar
Ishii, D. N. & Lupien, S. B. Insulin-like growth factors protect against diabetic neuropathy: Effects on sensory nerve regeneration in rats. J. Neurosci. Res. 40, 138144 (1995).
CAS PubMed Google Scholar
Fernyhough, P. & Calcutt, N. A. Abnormal calcium homeostasis in peripheral neuropathies. Cell Calcium 47, 130139 (2010).
CAS PubMed Google Scholar
Koya, D. et al. Characterization of protein kinase C beta isoform activation on the gene expression of transforming growth factor-beta, extracellular matrix components, and prostanoids in the glomeruli of diabetic rats. J. Clin. Investig. 100, 115126 (1997).
CAS PubMed PubMed Central Google Scholar
Akude, E. et al. Diminished superoxide generation is associated with respiratory chain dysfunction and changes in the mitochondrial proteome of sensory neurons from diabetic rats. Diabetes 60, 288297 (2011).
CAS PubMed Google Scholar
Chowdhury, S. K. R. et al. Mitochondrial respiratory chain dysfunction in dorsal root ganglia of streptozotocin-induced diabetic rats and its correction by insulin treatment. Diabetes 59, 10821091 (2010).
CAS PubMed PubMed Central Google Scholar
Younger, D. S., Rosoklija, G., Hays, A. P., Trojaborg, W. & Latov, N. Diabetic peripheral neuropathy: A clinicopathologic and immunohistochemical analysis of sural nerve biopsies. Muscle Nerve. 19, 722727 (1996).
CAS PubMed Google Scholar
Tomlinson, D. R. & Gardiner, N. J. Diabetic neuropathies: Components of etiology. J. Peripher. Nerv. Syst. 13, 112121 (2008).
CAS PubMed Google Scholar
Satoh, J., Yagihashi, S. & Toyota, T. The possible role of tumor necrosis factor- in diabetic polyneuropathy. Exp. Diabesity Res. 4, 6571 (2003).
PubMed PubMed Central Google Scholar
Yamagishi, S.-I. et al. Correction of protein kinase C activity and macrophage migration in peripheral nerve by pioglitazone, peroxisome proliferator activated-gamma-ligand, in insulin-deficient diabetic rats. J. Neurochem. 104, 491499 (2008).
CAS PubMed Google Scholar
Du, Y. et al. Effects of p38 MAPK inhibition on early stages of diabetic retinopathy and sensory nerve function. Investig. Ophthalmol. Vis. Sci. 51, 21582164 (2010).
Google Scholar
Seger, R. & Krebs, E. G. The MAPK signaling cascade. FASEB J. 9, 726735 (1995).
CAS PubMed Google Scholar
Lewis, T. S., Shapiro, P. S. & Ahn, N. G. Signal transduction through MAP kinase cascades. Adv. Cancer Res. 74, 49139 (1993).
Google Scholar
Widmann, C., Gibson, S., Jarpe, M. B. & Johnson, G. L. Mitogen-activated protein kinase: Conservation of a three-kinase module from yeast to human. Physiol. Rev. 79, 143180 (1999).
CAS PubMed Google Scholar
Obata, K. & Noguchi, K. MAPK activation in nociceptive neurons and pain hypersensitivity. Life Sci. 74, 26432653 (2004).
CAS PubMed Google Scholar
Johnson, G. L. & Lapadat, R. Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science 298, 19111912 (2002).
ADS CAS PubMed Google Scholar
Krishna, M. & Narang, H. The complexity of mitogen-activated protein kinases (MAPKs) made simple. Cell Mol. Life Sci. 65, 35253544 (2008).
CAS PubMed Google Scholar
Yang, S.-H., Sharrocks, A. D. & Whitmarsh, A. J. Transcriptional regulation by the MAP kinase signaling cascades. Gene 320, 321 (2003).
CAS PubMed Google Scholar
Bonny, C., Borsello, T. & Zine, A. Targeting the JNK pathway as a therapeutic protective strategy for nervous system diseases. Rev. Neurosci. 67, 5767 (2005).
Google Scholar
Tsuda, M., Ueno, H., Kataoka, A., Tozaki-Saitoh, H. & Inoue, K. Activation of dorsal horn microglia contributes to diabetes-induced tactile allodynia via extracellular signal-regulated protein kinase signaling. Glia 56, 378386 (2008).
PubMed Google Scholar
Wodarski, R., Clark, A. K., Grist, J., Marchand, F. & Malcangio, M. Gabapentin reverses microglial activation in the spinal cord of streptozotocin-induced diabetic rats. Eur. J. Pain 13, 807811 (2009).
CAS PubMed Google Scholar
Manning, A. M. & Davis, R. J. Targeting JNK for therapeutic benefit: From junk to gold?. Nat. Rev. Drug Discov. 2, 554565 (2003).
CAS PubMed Google Scholar
Agell, N., Bachs, O., Rocamora, N. & Villalonga, P. Modulation of the Ras/Raf/MEK/ERK pathway by Ca(2+), and calmodulin. Cell Signal. 4, 649654 (2002).
Google Scholar
White, C. D. & Sacks, D. B. Regulation of MAP kinase signaling by calcium. Methods Mol. Biol. 661, 151165 (2010).
CAS PubMed Google Scholar
Rosen, L. B., Ginty, D. D., Weber, M. J. & Greenberg, M. E. Membrane depolarization and calcium influx stimulate MEK and MAP kinase via activation of Ras. Neuron 12, 12071221 (1994).
CAS PubMed Google Scholar
Purves, T. et al. A role for mitogen-activated protein kinases in the etiology of diabetic neuropathy. FASEB J. 15, 25082514 (2001).
CAS PubMed Google Scholar
Price, S. A., Agthong, S., Middlemas, A. B. & Tomlinson, D. R. Mitogen-activated protein kinase p38 mediates reduced nerve conduction velocity in experimental diabetic neuropathy: Interactions with aldose reductase. Diabetes 53, 18511856 (2004).
CAS PubMed Google Scholar
Tsuda, M., Mizokoshi, A., Shigemoto-Mogami, Y., Koizumi, S. & Inoue, K. Activation of p38 mitogen-activated protein kinase in spinal hyperactive microglia contributes to pain hypersensitivity following peripheral nerve injury. Glia 45, 8995 (2004).
PubMed Google Scholar
Daulhac, L. et al. Diabetes-induced mechanical hyperalgesia involves spinal mitogen-activated protein kinase activation in neurons and microglia via N-methyl-d-aspartate-dependent mechanisms. Mol. Pharmacol. 70, 12461254 (2006).
CAS PubMed Google Scholar
Piao, Z. G. et al. Activation of glia and microglial p38 MAPK in medullary dorsal horn contributes to tactile hypersensitivity following trigeminal sensory nerve injury. Pain 121, 219231 (2006).
CAS PubMed Google Scholar
Xu, J.-T. et al. p38 activation in uninjured primary afferent neurons and in spinal microglia contributes to the development of neuropathic pain induced by selective motor fiber injury. Exp. Neurol. 204, 355365 (2007).
CAS PubMed Google Scholar
Cheng, H.-L. & Feldman, E. L. Bidirectional regulation of p38 kinase and c-Jun N-terminal protein kinase by insulin-like growth factor-I. J. Biol. Chem. 273, 1456014565 (1998).
CAS PubMed Google Scholar
Cheng, C. & Zochodne, D. W. Sensory neurons with activated caspase-3 survive long-term experimental diabetes. Diabetes 52, 23632371 (2003).
CAS PubMed Google Scholar
Vincent, A. M., McLean, L. L., Backus, C. & Feldman, E. L. Short-term hyperglycemia produces oxidative damage and apoptosis in neurons. FASEB J. 19, 638640 (2005).
CAS PubMed Google Scholar
Senning, E. N. & Gordon, S. E. Activity and Ca2+ regulate the mobility of TRPV1 channels in the plasma membrane of sensory neurons. Elife 4, e03819 (2015).
PubMed PubMed Central Google Scholar
Way, K. J., Katai, N. & King, G. L. Protein kinase C and the development of diabetic vascular complications. Diabet. Med. 18, 945959 (2001).
CAS PubMed Google Scholar
See the original post:
Anti-hyperalgesic effects of photobiomodulation therapy (904 nm) on streptozotocin-induced diabetic neuropathy imply MAPK pathway and calcium dynamics...