header logo image


Page 21234..10..»

Archive for the ‘Nano medicine’ Category

Organic thin-film sensors for light-source analysis and anti-counterfeiting applications – Nanowerk

Monday, September 12th, 2022

Sep 05, 2022(Nanowerk News) In a recent publication in the scientific journal Advanced Materials ("Accurate Wavelength Tracking by Exciton Spin Mixing"), a team of physicists and chemists from TU Dresden presents an organic thin-film sensor that describes a completely new way of identifying the wavelength of light and achieves a spectral resolution below one nanometer.As integrated components, the thin-film sensors could eliminate the need for external spectrometers in the future. A patent application has already been filed for the novel technology.The active film for the novel sensor concept is only as thick as a human hair, here processed on thin glass substrates, and exhibits a wavelength-dependent luminescence. (Image: Anton Kirch)Spectroscopy comprises a group of experimental methods that decompose radiation according to a specific property, e.g. wavelength or mass. It is considered one of the most important analytical methods in research and industry.Spectrometers can determine colors (wavelengths) of light sources and are used as sensors in various applications, such as medicine, engineering, food industry and many more. Commercially available instruments are usually relatively large and very expensive. They are mostly based on the principle of the prism or grating: light is refracted and the wavelength is assigned according to the angle of refraction.At the Institute for Applied Physics (IAP) and the Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) of the TU Dresden, such sensor components based on organic semiconductors have been researched for years. With the spin-offs Senorics and PRUUVE, two technologies have already been developed towards market maturity.Now, researchers at the IAP and IAPP, in cooperation with the Institute of Physical Chemistry, have developed a thin-film sensor that describes a completely new way of identifying the wavelength of light and, due to its small size and cost, has clear advantages over commercially available spectrometers.The principle of operation of the novel sensors is as follows: Light of unknown wavelength excites luminescent materials in a hair-thin film. The film consists of a mixture of long-glowing (phosphorescent) and short-glowing (fluorescent) entities, which absorb the light under investigation in different ways. The intensity of the afterglow, can be used to infer the wavelength of the unknown input light."We exploit the fundamental physics of excited states in luminescent materials," explains Anton Kirch, doctoral student at the IAP. "Light of different wavelengths excites in such a system, when properly composed, certain proportions of long-lived triplet and short-lived singlet spin states. And we reverse that dependence. By identifying the spin fractions using a photodetector, we can identify light wavelengths.""The great strength of our research alliance here in Dresden is our partners," says Prof. Sebastian Reineke, who coordinated the project. "Together with the groups of Prof. Alexander Eychmller from Physical Chemistry and Karl Leo, professor of Optoelectronics, we can carry out all the fabrication and analysis steps ourselves, starting with material synthesis and film processing and ending with the fabrication of the organic detector."Dr. Johannes Benduhn is group leader for Organic Sensors and Solar Cells at the IAP: "I was honestly very impressed that a simple photoactive film combined with a photodetector can form such a high-resolution device."Using this strategy, the scientists have achieved sub-nanometer spectral resolution and have successfully tracked minor wavelength changes of light sources. In addition to characterizing light sources, the novel sensors can also be used in counterfeit protection: "The small and inexpensive sensors could be used, for example, to quickly and reliably check banknotes or documents for certain security features and thus determine their authenticity, without any need for expensive laboratory technology," explains Anton Kirch.

Read more:
Organic thin-film sensors for light-source analysis and anti-counterfeiting applications - Nanowerk

Read More...

Whole Exome Sequencing Market Projected to Reach CAGR of 19.0% Forecast by 2029, Global Trends, Size, Share, Growth, Future Scope and Key Player…

Monday, September 12th, 2022

CHICAGO, Sept. 07, 2022 (GLOBE NEWSWIRE) -- A Qualitative Research Study accomplished by Data Bridge Market research's database of 350 pages, titled as "Global Whole Exome Sequencing Market" with 100+ market data Tables, Pie Charts, Graphs & Figures spread through Pages and easy to understand detailed analysis. This Whole Exome Sequencing report contains a comprehensive data of market definition, classifications, applications, engagements, market drivers and market restraints of this industry all of which is derived from Porte's Five Forces analysis. Market definition covered in this Whole Exome Sequencing report gives the scope of particular product with respect to the driving factors and restraints in the market. The sources of data and information mentioned in the Whole Exome Sequencing report are very reliable and include websites, annual reports of the companies, journals, and mergers which are checked and validated by the market experts.

Global whole exome sequencing market is expected to gain market growth in the forecast period of 2022 to 2029. Data Bridge Market Research analyses that the market is growing with a CAGR of 19.0% in the forecast period of 2022 to 2029. The increase in healthcare expenditure and funding are the major drivers which propelled the demand of the market in the forecast period.

Get Sample Report in PDF Version along with Graphs and Figures @ https://www.databridgemarketresearch.com/request-a-sample/?dbmr=global-whole-exome-sequencing-market

MarketSynopsis:-

Whole exome is a genomic technique for sequencing the entire protein-coding region of genes in a genome. Whole exome sequencing is available to patients who are searching for a unifying diagnosis for multiple medical conditions. A laboratory process that is used to determine the nucleotide sequence primarily of the exonic (or protein-coding) regions of an individuals genome and related sequences, representing approximately 1% of the complete DNA sequence, also called WES. Whole-exome sequencing is a widely used whole exome sequencing method that involves sequencing the protein-coding regions of the genome. The human exome represents less than 2% of the genome, but contains ~85% of known disease-related variants, making this method a cost-effective alternative to whole-genome sequencing.

Exome sequencing using exome enrichment can efficiently detect coding variants across a wide range of applications, including population genetics, genetic disease and cancer studies. The growth of the global whole exome sequencing market is attributed to the reduction in time and cost for sequencing. With the development of new technologies and cancer cure treatment, the whole exome sequencing market in clinical oncology has huge potential in the coming years.

The major companies which are dealing in the whole exome sequencing market are

Access Full 350 Pages PDF Research Report @ https://www.databridgemarketresearch.com/checkout/buy/enterprise/global-whole-exome-sequencing-market

Recent Development

Opportunity

The demand for whole exome sequencing is increasing in the market owing to the increased incidence of geneticdisease along with increased geriatric population across the region. Thus, the top market players have implemented the strategy of collaboration with other market players aimed at improving business operations and profitability.

Global Whole Exome Sequencing Market Segmentation

Global Whole Exome Sequencing Market is segmented on the basis of component, product and service, application, end user and distribution channel. The growth among segments helps you analyze niche pockets of growth and strategies to approach the market and determine your core application areas and the difference in your target markets.

Component

Product and Services

Application

End User

Distribution Channel

Browse In-depth Report Along with Facts and Figures @ https://www.databridgemarketresearch.com/reports/global-whole-exome-sequencing-market

Regional Analysis/insights

The whole exome sequencing market is analyzed and market size information is provided by component, product and service, application, end user and distribution channel.

The countries covered in the whole exome sequencing market report are U.S., Canada, Mexico, Germany, France, Italy, U.K., Spain, Netherlands, Russia, Switzerland, Turkey, Belgium, Rest of Europe, Japan, China, India, South Korea, Australia, Singapore, Malaysia, Thailand, Indonesia, Philippines, Vietnam, Rest of Asia-Pacific, Brazil, Argentina, Rest of South America, Saudi Arabia, South Africa, UAE, Israel, Egypt and Rest of Middle East & Africa.

North America is dominating due to the presence of key market players along the largest consumer market with high GDP. U.S. is expected to grow due to rise in technological advancement.

Key Industry Drivers:-

Drivers

As genomics-focused pharmacology continues to play a greater role in the treatment of various chronic diseases especially cancer,next-generation sequencing(NGS) is evolving as a powerful tool for providing a deeper and more precise insight at molecular underpinnings of individual tumours and specific receptors.

NGS offers advantages in accuracy, sensitivity and speed compared to traditional methods that have the potential to make a significant impact on the field of oncology. Because NGS can assess multiple genes in a single assay, the need to order multiple tests to identify the causative mutation is eliminated.

As genomics-focused pharmacology continues to play a greater role in the treatment of various chronic diseases especially cancer, next-generation sequencing (NGS) is evolving as a powerful tool for providing a deeper and more precise insight at molecular underpinnings of individual tumours and specific receptors.

NGS offers advantages in accuracy, sensitivity and speed compared to traditional methods that have the potential to make a significant impact on the field of oncology. Because NGS can assess multiple genes in a single assay, the need to order multiple tests to identify the causative mutation is eliminated.

Points Covered in Table of Content of Global Whole Exome Sequencing Market:

Chapter 1: Report Overview

Chapter 2: Global Market Growth Trends

Chapter 3: Value Chain of Whole Exome Sequencing Market

Chapter 4: Players Profiles

Chapter 5: Global Whole Exome Sequencing Market Analysis by Regions

Chapter 6: North America Whole Exome Sequencing Market Analysis by Countries

Chapter 7: Europe Whole Exome Sequencing Market Analysis by Countries

Chapter 8: Asia-Pacific Whole Exome Sequencing Market Analysis by Countries

Chapter 9: Middle East and Africa Whole Exome Sequencing Market Analysis by Countries

Chapter 10: South America Whole Exome Sequencing Market Analysis by Countries

Chapter 11: Global Whole Exome Sequencing Market Segment by Types

Chapter 12: Global Whole Exome Sequencing Market Segment by Applications

Check Complete Table of Contents @ https://www.databridgemarketresearch.com/toc/?dbmr=global-whole-exome-sequencing-market

Key Coverage in the Whole Exome Sequencing Market Report

Detailed analysis of Global Whole Exome Sequencing Market by a thorough assessment of the technology, product type, application, and other key segments of the report

Qualitative and quantitative analysis of the market along with CAGR calculation for the forecast period

Investigative study of the market dynamics including drivers, opportunities, restraints, and limitations that can influence the market growth

Comprehensive analysis of the regions of the Whole Exome Sequencing industry and their futuristic growth outlook

Competitive landscape benchmarking with key coverage of company profiles, product portfolio, and business expansion strategies

Browse Trending Reports:

About Data Bridge Market Research:

An absolute way to forecast what future holds is to comprehend the trend today!

Data Bridge Market Research set forth itself as an unconventional and neoteric Market research and consulting firm with unparalleled level of resilience and integrated approaches. We are determined to unearth the best market opportunities and foster efficient information for your business to thrive in the market. Data Bridge endeavours to provide appropriate solutions to the complex business challenges and initiates an effortless decision-making process. Data Bridge is an aftermath of sheer wisdom and experience which was formulated and framed in the year 2015 in Pune.

Data Bridge Market Research has over 500 analysts working in different industries. We have catered more than 40% of the fortune 500 companies globally and have a network of more than 5000+ clientele around the globe. Data Bridge adepts in creating satisfied clients who reckon upon our services and rely on our hard work with certitude. We are content with our glorious 99.9 % client satisfying rate.

Contact Us: -

Data Bridge Market Research

US: +1 888 387 2818

UK: +44 208 089 1725

Hong Kong: +852 8192 7475

Email:- corporatesales@databridgemarketresearch.com

Visit link:
Whole Exome Sequencing Market Projected to Reach CAGR of 19.0% Forecast by 2029, Global Trends, Size, Share, Growth, Future Scope and Key Player...

Read More...

Another ‘Dr. Copper’ – MINING.COM – MINING.com

Monday, September 12th, 2022

Clifford has a background in materials engineering, worked for Teck as an undergrad student on a co-op doing corrosion studies on base metals, and became an expert on functional coatings for biomaterials.

Copper alloy surfaces are naturally antimicrobial with self-sanitizing properties, and research showed these surfaces eliminate up to 99.9% of harmful bacteria and viruses but there was a lag time in killing gram positive bacteria and that was the challenge to overcome.

My idea was for copper it has one limitation that it kills gram positive more slowly, if we could change the surface chemistry, the topography or roughness, we can kill bacteria more quickly, Clifford told MINING.com.

One way we can do this, is copper is antimicrobial because its actually corroding very slowly, so its not copper in a zero state oxidation thats antimicrobial, its positively charged copper ions that kill bacteria.

The Coptek covid killing copper coating that has been deployed at most of the Applied Science buildings on the UBC campus and at the British Columbia Institute of Technology was funded by Tecks Copper & Health program. The formula came from the surface engineering Dr. Clifford and her research team Dr. Edouard Asselin, Dr. Elizabeth Bryce, and Dr. Marthe Charles developed a collaboration between the Department of Materials Engineering and the Faculty of Medicine at the University of British Columbia.

The study was published inJuly in Advanced Materials Interfaces.

What the team did to mitigate the lag time in killing bacteria with pure copper while its corrodes or oxidizes, was couple two dissimilar metals, in this case zinc, which due to the different reduction potential corrodes first.

That gets things going its spontaneous, the zinc will just start corroding and then the copper will corrode. It got everything going and we got a lot better results. Another thing we did was add nano-scale roughness, Clifford said.

That idea came from knowing that certain insects and reptiles skins have nanoscale roughness, which are naturally anti-bacterial.

For our coating we took copper and zinc and added this nanoscale roughness, and now all of a sudden its overcoming the issue of killing gram positive bacteria slowly and now its killing 99.7% within an hour, so half the time, Clifford said.

The coating could significantly reduce the incidence of contracting bacterial infections from high-touch surfaces in healthcare facilities and other public spaces.

The next phase is to do a trial in hospitals where the germ killing copper could have the most impact. Clifford said the strategy is to combat antibiotic resistance which can lead to superbugs afflicting patients who are already sick.

Part of that is decreasing the overall amount of pathogens and antibiotic resistant bugs that are already in public spaces, so this coating has that.

The team is still studying how the coating works on other viruses in the hopes of making a bigger impact.

Almost all the principles that were used to make this medical innovation were just pure metallurgical engineering applied to a medical application, Clifford pointed out.People who think that metallurgical mining engineering has a very niche application the tools that you learn you can also apply to other applications such as medicine.

Clifford didnt realize the idea she had walking home from the subway that winter day would be developed to the point where it would be deployed on university campuses and next in hospitals.

As an academic you can make educated guesses, she said.

I thought it would work, and it did.

Read more:
Another 'Dr. Copper' - MINING.COM - MINING.com

Read More...

Artemisinin Combination Therapy Market Insights and Emerging Trends by 2027 – BioSpace

Friday, August 19th, 2022

Wilmington, Delaware, United States, Transparency Market Research Inc. The conventional low-priced mainstay drugs for the treatment of malaria, sulphadoxine-pyrimethamine (SP) and chloroquine (CQ), are witnessing a decline in sales, as they are becoming comparatively ineffective. During the last two decades in Asia, the issue has become a major concern. This has resulted in the adoption of artemisinin (derived from the Chinese herb Artemisia annua) in Africa as a standard treatment.

Read Report Overview - https://www.transparencymarketresearch.com/artemisinin-combination-therapy-market.html

It helped in setting a milestone for the artemisinin combination therapy market. The herb has been used to treat fevers and malaria for more than 2000 years. The World Health Organization (WHO) has adopted artemisinin-based combination therapy (ACTs) as the first-line treatment for plasmodium falciparum malaria.

As a combination therapy, it has demonstrated superiority to other drugs because of its ability to wipe out parasites and its life cycle stages faster. Its use with cancer transferrin to cure cancer is also adding value to the artemisinin combination therapy market.

Request Brochure of Report - https://www.transparencymarketresearch.com/sample/sample.php?flag=B&rep_id=68096

Triple ACTs (TACTs) combine with artemisinin and two other existing partner drugs to work effectively as stop-gap therapy for the treatment of multidrug-resistant malaria. It will be used till the arrival of new antimalarial drugs. TACTs are secure, competent, well-accepted, and economical. This artemisinin combination therapy is likely to gain wider acceptance among the target consumers. The barriers in the deployment should be identified and stakeholders should make efforts to overcome them, which will new growth avenues in artemisinin combination therapy market.

Artemisinin Combination Therapy Market Introduction

Artemisinin is a plant derivative isolated from Artemisia annua, or sweet wormwood, which is known to effectively and swiftly reduce the number of plasmodium parasites in the blood of malaria patients. The WHO recommends artemisinin combination therapies (ACTs) as the first line of treatment for uncomplicated plasmodium falciparum malaria and as the second line of treatment for chloroquine-resistant P. vivax malaria.

This therapy combines an artemisinin derivative along with a partner drug, wherein artemisinin aids in reducing the number of parasites and the partner drug eliminates the remaining parasites. Efficacy of the treatment is determined by the drug combined with artemisinin, such as artesunate-mefloquine, dihydroartemisininpiperaquine, and artemether-lumefantrine.

Falciparum malaria was one of the most common lethal infections which was treated with chloroquine and sulfadoxine-pyrimethamine. However, these drugs are not effective as treatment primarily in the tropical regions owing to the resistance developed against these drugs. According to the Medicines Malaria Venture (MMV), over 445,000 deaths were reported in 2016 due to malaria. The globally rising malaria endemic and the changing climatic conditions would contribute to the trend aiding in the artemisinin combination therapy market growth.

Request for Custom Research - https://www.transparencymarketresearch.com/sample/sample.php?flag=CR&rep_id=68096

Artemisinin Combination Therapy Market- Competitive Landscape

The strategies adopted by the market players to enhance their market position include indication extension, focus on geographic expansion, and research & development. The national funding allocations, as announced by the Global Fund for 2018-2020, report that the funding available for the promotion of malaria programs is around US$1 billion.

Novartis AG

Novartis AG, established in 1895, is engaged in research, development, manufacturing and marketing of healthcare products across a range of areas, including neuroscience, ophthalmology, immunology, hepatology, respiratory, cardiology, dermatology, and cardio metabolic.

Sanofi

Sanofi, a leading pharmaceutical company is engaged in the manufacturing of prescription pharmaceuticals and vaccines. It is engaged in the development of cardiovascular, metabolic disorder, central nervous system (CNS), oncology, and thrombosis drugs and medicines.

Ipca Laboratories Ltd.

Ipca Laboratories is an Indian pharmaceutical company engaged in the manufacturing of over 350 formulations and 80 APIs for a range of therapeutic indications. According to the company, it is the market leader in India for anti-malarials with a market share of over 34% in 2018.

Artemisinin Combination Therapy Market - Dynamics

Growing malaria endemic

Malaria is a major health concern in endemic countries such as Sudan, wherein over 75% of the population is at the risk of acquiring the disease. Moreover, the widespread presence of chloroquine-resistant strains of P. falciparum in the malaria endemic countries makes artemisinin combination therapy the preferred choice of treatment. This is projected to fuel the growth of the artemisinin combination therapy market.

Make an Enquiry Before Buying - https://www.transparencymarketresearch.com/sample/sample.php?flag=EB&rep_id=68096

Increase in the procurement of ACT treatment courses

Increase in access to ACTs in the malaria-endemic countries contributes to the rising success in reducing the global malaria burden. According to the WHO, over 2.7 billion ACT treatment courses were procured by global countries between 2010 and 2017. Moreover, over 62% of these procurements were made by the public sector. Strong pipeline for the development of new anti-malarial drugs and launch of newer artemisinin combinations for the treatment of malaria boost to the growth of the global artemisinin combination therapy market.

Challenges related to the availability of raw materials

Challenges pertaining to the availability of intermediate products and raw materials in the production of artemisinin-based combination therapies from agricultural sources are expected to restrain the global artemisinin combination therapy market. Furthermore, volatility in the artemisinin market leading to concerns over supply tightening could create significant risks to patients and market participants.

More Trending Reports by Transparency Market Research

Bioinformatics Market: The global bioinformatics market is expected to reach the value of US$ 44.9 Bn by the end of 2028 and to expand at a CAGR of 5.9% from 2021 to 2028.

Taurine Market: The global taurine market is expected to reach the value of US$ 0.3 Bn by the end of 2031. It is estimated to expand at a CAGR of 5.3% from 2021 to 2031.

Telehealth Market: The global telehealth market is expected to reach the value of US$ 15 Bn by the end of 2028. It is estimated to expand at a CAGR of 7% from 2021 to 2028.

Medical Device Technologies Market: The global medical device technologies market is expected to reach the value of US$ 662.7 Bn by the end of 2028.

Forensic Technologies Market: The global forensic technologies market is expected to reach the value of US$ 87.4 Bn by the end of 2028.

Microbiology Culture Market: The U.S. microbiology culture market is expected to reach the value of US$ 5.4 Bn by the end of 2031.

Nanomedicine Market: The global nanomedicine market is expected to reach the value of US$ 512.5 Bn by the end of 2028 and to expand at a CAGR of 12.6% from 2021 to 2028.

Smart Medical Devices Market: The global smart medical devices market is expected to reach the value of US$ 70.1 Bn by the end of 2028.

About Us

Transparency Market Research, a global market research company registered at Wilmington, Delaware, United States, provides custom research and consulting services. Our exclusive blend of quantitative forecasting and trends analysis provides forward-looking insights for thousands of decision makers. Our experienced team of Analysts, Researchers, and Consultants use proprietary data sources and various tools & techniques to gather and analyze information.

Our data repository is continuously updated and revised by a team of research experts, so that it always reflects the latest trends and information. With a broad research and analysis capability, Transparency Market Research employs rigorous primary and secondary research techniques in developing distinctive data sets and research material for business reports.

For More Research Insights on Leading Industries, Visit Our YouTube Channel and hit subscribe for Future Update - https://www.youtube.com/channel/UC8e-z-g23-TdDMuODiL8BKQ

Contact

Rohit BhiseyTransparency Market Research Inc.CORPORATE HEADQUARTER DOWNTOWN,1000 N. West Street,Suite 1200, Wilmington, Delaware 19801 USATel: +1-518-618-1030USA Canada Toll Free: 866-552-3453Website: https://www.transparencymarketresearch.comBlog: https://tmrblog.comEmail: sales@transparencymarketresearch.com

Continue reading here:
Artemisinin Combination Therapy Market Insights and Emerging Trends by 2027 - BioSpace

Read More...

NASEM Recommends That EPA Conduct Ecological Risk Assessment of UV Filters Found in Sunscreen, Including Titanium Oxide and Zinc Oxide – JD Supra

Friday, August 19th, 2022

The National Academies of Sciences, Engineering, and Medicine (NASEM) released on August 9, 2022, a report entitled Review of Fate, Exposure, and Effects of Sunscreens in Aquatic Environments and Implications for Sunscreen Usage and Human Health. NASEM was tasked by Congress and funded by the U.S. Environmental Protection Agency (EPA) to undertake a consensus study of the potential risk of ultraviolet (UV) filters on already threatened aquatic environments and the potential consequence to human health should sunscreen usage or composition be modified. NASEMs report reviews the state of science on the sources and inputs, fate, exposure, and effects of UV filters in aquatic environments, and the availability and applicability of data for conducting ecological risk assessments (ERA). It also reviews the epidemiological and clinical literature on the efficacy of sunscreen in preventing UV damage to human skin, the state of knowledge on potential human behavior changes, and the resulting health impacts related to skin cancer prevention from changes in sunscreen usage (e.g., reducing sunscreen use or switching to sunscreens with different active ingredients).

NASEM notes that the scope of the study is limited to the United States. According to the report, there are currently 16 UV filters allowed by the U.S. Food and Drug Administration (FDA) for use in any sunscreen sold in the United States, plus an additional proprietary UV filter, ecamsule, approved for use in limited products. While UV filters are used in a broad range of products, NASEMs scope was to focus on their use in sunscreens. The 16 UV filters include two inorganic UV filters, titanium dioxide and zinc oxide. The summary of the attributes of UV filters relevant for assessment of environmental risk includes the following information for titanium oxide and zinc oxide:

[View source.]

Original post:
NASEM Recommends That EPA Conduct Ecological Risk Assessment of UV Filters Found in Sunscreen, Including Titanium Oxide and Zinc Oxide - JD Supra

Read More...

Fast and noninvasive electronic nose for sniffing out COVID-19 based on exhaled breath-print recognition | npj Digital Medicine – Nature.com

Friday, August 19th, 2022

For the GeNose C19 sensor array, the sensitivity of each sensor during exposure to varying VOC concentrations depends on the used active material. Moreover, the sensor behaviors might be slightly altered when they were tested to the breath samples from different patients, although they were from the same group (either positive or negative COVID-19). This occurrence could be understood because the content and complexity of the exhaled VOCs are diverse, as discovered in another breath analysis study using GCIMS24. Several VOC biomarkers could be identified as the discriminants for distinguishing between positive and negative COVID-19 patients (e.g., ethanal, acetone, acetone/2-butanone cluster, 2-butanone, methanol monomer and dimer, octanal, feature 144, isoprene, heptanal, propanol, and propanal)24. Nonetheless, the compounds observed from two different hospitals (i.e., Edinburgh, the United Kingdom (UK), and Dortmund, Germany) in their study were dissimilar for the same case of COVID-19 patients, which then added more complexity in analyzing the obtained breath data. These limitations were due to uncertainties in the instrument setup, operating conditions, and background contamination levels.

Thus far, a detailed study in those matters has not been performed. Meanwhile, another clinical GCIMS study conducted by researchers in Beijing, China, suggested several other potential breath-borne VOC biomarkers for COVID-19 (i.e., acetone (C3H6O), ethyl butanoate, butyraldehyde, and isopropanol)72. They found that the decrease and increase in acetone (C3H6O) and ethyl butanoate levels, respectively, due to the changes in metabolites resulting from SARS-CoV-2 infections, are distinctive for COVID-19 patients72,73. Moreover, the average measured isopropanol and butyraldehyde for the COVID-19 patients were lower than those for the healthy control and lung cancer and non-COVID-19 respiratory infection patients. The metabolomics of exhaled breaths in critically ill COVID-19 patients were also investigated from a research consortium in France using a proton transfer reaction quadrupole time-of-flight mass spectrometer74. They observed four prominent VOCs (i.e., methylpent-2-enal, 2,4-octadiene, 1-chloroheptane, and nonanal) that could discriminate between COVID-19 and non-COVID-19 acute respiratory distress syndrome patients74. Overall, the reported MS studies in several different countries (i.e., UK, Germany, France, and China) indicate that the distinctive VOC biomarkers for COVID-19 may vary across the world and should be further investigated based on the community, race, and cases with large cohorts75.

In contrast to the MS method that attempts to quantitatively find and identify the exact VOC biomarkers from exhaled breaths, our technique used in GeNose C19 focuses more on the AI-based pattern analysis of integrated sensor responses to complex VOCs, qualitatively resulting from the combined extra-pulmonary metabolic and gastrointestinal manifestations of COVID-1976. Thus, the breath data analysis and decision-making procedure can be performed in a simple way and short time, respectively, with a high detection accuracy. To enable this, besides having a high sensitivity, chemoresistive sensors should ideally be designed to possess a high selectivity to a specific analyte in a gas mixture and zero cross-sensitivity to other compounds in the operating background. Such sensors were normally constructed in hybrid organic/inorganic structures with 3D nano-architectures (e.g., nanofibers, nanowires, and nanofins), enhancing the active surface-area-to-volume ratios77,78. Here, the surfaces of semiconductor nanostructures were often functionalized with certain self-assembled monolayers or polymers to specifically detect the target gas molecules32,34,79. Nevertheless, these organic materials suffer from low robustness. They are all well-known to degrade within a short duration of use (i.e., their chemical compositions will alter downgrading the sensor performance). As a result, pure inorganic materials (metal oxide semiconductors) are still preferably manufactured by sensor companies and widely used in gas sensing applications, including in the GeNose 19 system. Here, a single sensor alone is not sufficient for performing a specific breath pattern recognition because exhaled VOCs might have similar characteristics. This selectivity drawback could be alleviated by employing an array of 10 sensors with different sensitivities and integrating the machine learning-based breath pattern recognition algorithms.

Furthermore, to demonstrate the proof of concept ability of GeNose C19 for detecting VOCs in human breaths, we performed additional sensing assessments for acetone vapors in a modified test setup (see Supplementary Fig. 2). However, COVID-19 itself cannot be detected by simply sensing or measuring the acetone alone. This testing was mainly dedicated to demonstrate that the GeNose C19 sensor array can detect one of the VOCs normally contained in human breaths and exhibits different sensitivity levels when exposed to various gas concentration levels, which also mimics the real case of exhaled breaths from different persons or patients. The gas sensing configuration for the acetone testing, which utilizes a microsyringe for vapor injection, has already been used in our former experiments for other VOC sensor types (e.g., nanofiber-functionalized QCMs for sensing trimethylamine and butanol gases)35,80,81. Acetone was chosen as a VOC model in this additional study because it is not only produced in the rebreathed breath (0.8 to 2.0 ppm)82, along with other VOCs (alcohol) and CO, but is also one of the significant breath-borne COVID-19 biomarkers based on the study by Chen et al.72. Moreover, in clinical practices, breath-containing acetone has been extensively examined to diagnose other diseases (i.e., lung cancer, diabetes mellitus, starvation, and ketogenic diet)83.

As shown in Supplementary Fig. 2b, c, the S3 and S7 sensors (or their extracted features of F3 and F7) demonstrated the poorest responses toward acetone vapors. Conversely, the S2, S8, and S9 sensors exhibited higher sensitivities than the others. The sensor output signals given by the GeNose C19 data acquisition system agree well with those measured by a calibrated digital voltmeter. Increasing the acetone vapor concentrations from 0.04 to 0.1L with 0.02 intervals resulted in higher responses of the three sensors (S2, S8, and S9), whereas the S3 and S7 sensors were irresponsive (see Supplementary Fig. 2d). In particular, each vapor concentration was measured 10 times to acquire quantitative results. Lastly, as depicted in Supplementary Fig. 2e, LDA discriminated the output voltages produced by the sensors during their exposures to four different acetone concentrations (i.e., 0.040.1L).

In terms of ambient conditions, temperature and humidity might influence the performances of metal oxide semiconductor sensors84. Thus, to investigate their effect, we also performed cross-sensitivity assessments in respect to the two parameters for all the employed GeNose C19 sensors (see Supplementary Figs. 3 and 4). This testing is important because depending on the sensitivities of the sensors toward temperature and humidity, the obtained sensor results during the breath analysis can be disturbed, leading to a difficult interpretation of the data. Moreover, if the sensors are too reactive to the two ambient parameters, the measured data can then be unreliable to analyze the effect of VOCs in the human breath because changes in the signals were mainly affected by the temperature and humidity, not the target gases. Such a cross-sensitivity is a common reliability test for gas sensors. For GeNose C19, the environmental effect can be minimalized and controlled by performing two main procedures. First, environmental checking needs to be conducted while placing GeNose C19 in the measurement room/area. Here, the selection of the machine placement (analysis on air circulation, humidity, and temperature) plays a key role in maintaining good-quality results. GeNose C19 could sense the environmental humidity and temperature levels by utilizing humidity and temperature sensors integrated inside the system. The measurement was displayed in the program interface. Hence, the user or operator could notice the condition. In a real situation during breath sampling, the machine could only be operated if the humidity and temperature inside the chamber were in the ranges of 3050% and 2642C, as defined by the AI-based program in the system. Such a setting is adjustable to meet future demand and placement environments. Second, after checking the environmental condition, the baseline normalization protocol during the sample analysis can be done (see Methods on the GeNose preconditioning). During the AI interpretation of the VOC patterns, several protocols were employed, including signal baseline normalization. By performing baseline normalization, all the sensors that behaved and started from different baselines in different environments can always be calibrated to the standard normalization. Hence, the adaptability of the machine can be improved in new foreign environments.

In the case of acetone testing, the sensors yielded similar responses from three repeated measurements, indicating their reliable sensing results. The sensor resistance decreased (i.e., a higher output voltage was obtained) when the temperature was ramped up from 40C to 46C, and the humidity was kept stable at (30%1%) RH (see Supplementary Fig. 3). Different from silicon micromechanical resonant sensors that have frequency shift interferences caused by the temperature-induced Youngs modulus change (material softening)37,85, the resistance decrease in the employed metal oxide semiconductor sensors (e.g., n-type SnO2 with a bandgap of 3.6eV) at high temperatures was caused by the increasing number of electrons that have sufficient energy crossing to the conduction band and thus contributing to the conductivity86. Because this is a natural characteristic of semiconductor materials, we could overcome this effect in GeNose C19 by controlling the temperature inside the test chamber at relatively stable values (i.e., (42C2C)) during the sensing phase of the exhaled breath.

Similar to the trend shown in the cross-temperature test, the sensor resistance also dropped to a lower value, resulting in a higher output voltage when the relative humidity was raised from 30% to 35% and the temperature was set constant at (40C1C) (see Supplementary Fig. 4). The electrical characteristics of metal oxide semiconductors changed due to the water adsorption on their surface while being exposed to humid air. Two different mechanisms of chemisorption and physisorption processes took place to create the first layer (i.e., chemisorbed layer) and its subsequent films of water molecules (i.e., physisorbed water layers), respectively87. If the first chemisorbed layer has been formed, then the successive layers of water molecules will be physically adsorbed on the first hydroxyl layer. Because of the high electrostatic fields in the chemisorbed layer, the dissociation of physisorbed water can easily occur, producing hydronium ion (H3O+) groups. Here, the conduction mechanism relies on the coverage of adsorbed water on the metal oxide semiconductor. First, in the event only hydroxyl ions exist on the metal oxide surface, the charge carriers of protons (H+) resulting from hydroxyl dissociation will hop between adjacent hydroxyl groups. Second, after the water molecules have been adsorbed but not fully covered the oxide surfaces, the charge transfer will be dominated by H3O+ diffusion on hydroxyl groups, despite the occurring proton transfer between adjacent water molecules in clusters. Finally, once the continuous film of the first physisorbed water has been formed (i.e., full coverage of metal oxide by the physisorbed water layer), proton hopping between neighboring water molecules in the continuous film will be responsible for the charge transport88. More detailed explanations of the sensing mechanism and adsorption of water molecules on metal oxide semiconductor surfaces are described elsewhere84,87,88. Again, in the conducted cross-sensitivity measurements (Supplementary Fig. 4), the signal changes of the GeNose C19 sensors affected by humidity are relatively lower (i.e., <100mV) compared to those exposed to exhaled breaths (i.e., ~1V, as shown in Fig. 3a, b). Thus, temperature and humidity will insignificantly influence the system performance during breath measurements, when GeNose C19 has been well preconditioned.

To confirm the performance of our GeNose C19, RT-qPCR was used as the reference standard on the basis of the health service standard protocol underlined by the Indonesian Ministry of Health. Based on the analysis of the RT-qPCR protocol using Bayes theorem, RT-PCR tests cannot be solely relied upon as the gold standard for SARS-CoV-2 diagnosis at scale. Instead, a clinical assessment supported by a range of expert diagnostic tests should be used. Here, although our study mentioned that RT-qPCR was used as the reference standard, clinical data from each patient were also collected and analyzed.

According to a recently published systematic review study, the need for repeated testing in patients with suspicion of SARS-Cov-2 infection was reinforced because up to 54% of COVID-19 patients might have an initial false-negative RT-qPCR89. Meanwhile, in the case of false-positive rates of RT-qPCR, much lower values (i.e., 016.7% with an interquartile range of 0.84.0%)90,91 were exhibited in several studies, which were affected by the quality assurance testing in laboratories. Public Health England also reported that RT-qPCR assays showed a specificity of over 95%, so up to 5% of cases were false positives91. Moreover, the overall false-positive rate of high throughput, automated, sample-to-answer nucleic acid amplification testing on different commercial assays was only 0.04% (3/7,242, 95% CI, 0.01% to 0.12%)92. False-positive SARS-CoV-2 RT-qPCR results could originate from different sources (e.g., contamination during sampling, extraction, PCR amplification, production of lab reagents, cross-reaction with other viruses, sample mix-ups, software problems, data entry errors, and result miscommunication)93. In our case, all the bought and used reagents were checked and calibrated daily to avoid false positives (i.e., no false positive of RT-qPCR result was found in this study). Meanwhile, the false-negative of the RT-qPCR result was found in three patients in their first examination, but positive results were revealed on the second examination the next day. Again, the detailed test procedure can be found in the Methods.

Currently, diagnostic methods used to screen COVID-19 are antigen test, rapid molecular test, and chest CT scan. Antigen tests have an average sensitivity of 56.2% (95% CI: 29.579.8%) and average specificity of 99.5% (95% CI: 98.199.9%)94. The average sensitivity and specificity for the rapid molecular tests are 95.2% (95% CI: 86.798.3%) and 98.9% (95% CI: 97.399.5%), respectively94. Meanwhile, chest CT scan possesses an average sensitivity and specificity of 87.9% (95% CI: 84.690.6%) and 80.0% (95% CI: 74.984.3%), respectively95. Nonetheless, these diagnostic methods have their drawbacks. The average sensitivity of antigen tests is not high, as shown by the study above, and it declines when the viral load decreases, which often happens to COVID-19 patients. Moreover, the sample collection is invasive (by a nasopharyngeal or oropharyngeal swab). Rapid molecular testing also employs an invasive sample collection method (by a nasopharyngeal or oropharyngeal swab), and the turnaround time of point-of-care rapid molecular tests still takes at least 20 min96. Moreover, chest CT scan exposes patients to radiation and is not specific.

Compared to these diagnostic methods, GeNose C19 has the potential to be a screening test. A breath test with the portable GeNose C19 is noninvasive and easy to use because it only requires patients to breathe into a sampling bag with minimal preparation, has a fast analysis time, and does not have radiation concerns. Similar to other biological samplings in several laboratory examinations (e.g., blood glucose sampling and chemical blood analysis), GeNose C19 also requires preparation of subjects before breath sampling, such as fasting (i.e., refraining from eating, smoking, or drinking anything other than water at minimum 1h before sampling). However, the duration of the analysis starting from the breath sampling to the test result decision only takes ~3min. The sensitivity and specificity results of GeNose C19 from the profiling tests show that combining GeNose C19 with an optimum machine learning algorithm can accurately distinguish between positive and negative COVID-19 patients. Hence, it opens an opportunity for using this developed breathalyzer as a rapid, noninvasive COVID-19 screening device based on exhaled breath-print identification.

Several factors may influence breath-prints, i.e., pathological and disease-related conditions (smoking, comorbidities, and medication), physiological factors (age, sex, food, and beverages), and sampling-related issues (bias with VOCs in the environment)97. A previous study revealed that older age altered breath-prints in patients with lung cancer98. There were concerns that several other respiratory diseases may present similar VOC patterns to those from the COVID-19. Several studies reported that several comorbid and confounding factors (e.g., chronic obstructive pulmonary disease, asthma, tuberculosis, and lung cancer) might affect the composition of VOCs99,100. Thus, patients with other respiratory diseases can have different patterns of VOCs that result in different sensor signals, suggesting that the electronic nose may still determine the COVID-19 infection to a certain degree by continuing to train its AI database in reading VOCs from confirmed positive COVID-19 patients. Our studies showed no significant difference in the detected sensor signal patterns of patients with comorbidities compared to those without comorbidities. Nonetheless, due to the few comorbid cases obtained in our subjects, which could be considered the limitation in our current study, the influence of existing comorbidities on the VOC pattern cannot be concluded and will be further evaluated in the next research.

Food and beverages (e.g., poultry meat and plant oil) can influence breath-prints, whereas smoking may increase the levels of benzene, 2-butanone, and pentane and simultaneously decrease the level of butyl acetate in exhaled breaths101,102,103. In our study, none of the patients was smoker. The comorbidities were also comparable between the case and control groups. There was no significant difference in the consumption of food and beverages between the two groups. The measurements were conducted in the same environment for all the participants. Thus, there was no bias with other interfering VOCs.

However, the possible presence of physiological variations resulting from physiological and biochemical changes in the body due to alterations in the respiratory rhythm affected by the manipulated breathing technique should also be considered61. Therefore, in our work, breath sampling was performed in such a defined protocol to collect only the third exhaled end-tidal breath. Accordingly, the natural breathing pattern and rhythm can be preserved, resulting in minimal changes in VOCs. We avoided excessive effort or repeated sampling in each breath collection as previous studies reported that it might alter the quality of collected VOCs104. The disturbance from other factors to breath test results is minimal. However, such confounding factors are most likely present in the real implementation and can affect at least breath-prints to a certain degree. Further study is now being conducted to reveal the effects of various confounders.

Our study using GeNose C19 did not evaluate the distinctive concentration of each VOC found in breath samples of patients with positive or negative COVID-19. However, to investigate the types of VOCs produced in exhaled breaths of the positive and negative COVID-19 patients, we conducted another characterization based on GCMS for several exhaled breaths of patients (see Supplementary Table 3). In the extracted results, there was no significant difference in the composition of VOCs between patients with positive and negative COVID-19, suggesting that the difference in the breath-print pattern may be contributed by the variation in the concentration or proportion of several VOCs rather than the presence of one or two signature VOCs. For example, acetone was reported to be one of the VOCs with the highest concentration emitted by healthy humans104. However, in COVID-19-positive patients, acetone was reported to be in a lower proportion, compared to the healthcare worker or healthy control group72. Meanwhile, another VOC (i.e., ethyl butanoate) has been reported as one of the signature VOCs in COVID-19 patients, whose concentration is slightly higher compared to the healthy control72.

Anosmia (i.e., the olfactory system cannot accurately detect or correctly identify odors) is one of the most frequently identified COVID-19 symptoms45,105. CO has been linked with this issue because it is an olfactory transduction byproduct related to the reduction of cyclic nucleotide-gated channel activity that causes a loss of olfactory receptor neurons45,106. In our GCMS results (Supplementary Table 3), six sensors in GeNose C19 (i.e., S1, S3, S4, S5, S6, and S8) could detect CO. Aside from CO, the GCIMS studies in Dortmund, Germany, and Edinburgh, UK indicated that aldehydes (ethanol and octanal), ketones (acetone and butanone), and methanol are biomarkers for COVID-19 discrimination24. This result is however different from the finding from another research group in Garches, France, using the proton transfer reaction quadrupole time-of-flight MS, where four types of VOCs (i.e., 2,4-octadiene, methylpent-2-enal, 1-chloroheptane, and nonanal) could discriminate between COVID-19 and non-COVID-19 acute respiratory distress syndrome74. Studies conducted in two cities in the USA (Detroit, Michigan and Janesville, Wisconsin) by Liangou et al. reported another set of eight compounds (i.e., nitrogen oxide, acetaldehyde, butene, methanethiol, heptanal, ethanol, methanol-water cluster, and propionic acid) as key biomarkers for the COVID-19 identification in human breath. Moreover, in Leicester, UK, seven exhaled breath features (i.e., benzaldehyde, 1-propanol, 3,6-methylundecane, camphene, beta-cubebene, iodobenzene, and an unidentified compound) measured by the desorption coupled GCMS were employed to separate RT-qPCR-positive COVID-19 patients from healthy ones107. In our measurement, camphene was detected only in the negative COVID-19 breath sample by S10.

Furthermore, Chen et al. reported two sequential GCMS studies in Beijing, China, that resulted in totally different breath-borne biomarkers for COVID-19 screening, despite using the same measurement approach72,108. Their first measurement reported in 2020 indicated that COVID-19 and non-COVID-19 patients could be differentiated by solely monitoring three types of VOCs (i.e., ethyl butanoate, butyraldehyde, and isopropanol)72. Nonetheless, in their second report in 2021, acetone was detected as the biomarker among many VOC species because its levels were substantially lower for COVID-19-positive patients than those of other conditions73. In our GeNose C19 sensor array, acetone can be detected in S8109. Recently, ammonia has also been proposed as another biomarker for COVID-19, whose relation to complications stemming from the liver and kidneys was affected by the SARS-CoV-2 infection110.

In all the already described examples of MS studies worldwide, the identification and determination of specific COVID-19 biomarkers in breath clearly remain challenging. Here, different discriminant compounds can be yielded depending on several parameters (e.g., measurement technique, filtering approach, location, and breath sample type). Nonetheless, we can still extract some information from our GCMS results (Supplementary Table 3). A hydrocarbon of ethylene was sensed by S10 in the positive COVID-19 breath sample. Meanwhile, for the negative COVID-19 breath samples, other hydrocarbons (i.e., butyl aldoxime, decane, and benzene) were detected by S10. Furthermore, S2 and S9 could measure a few specific esters (i.e., benzoic acid, 3-hydroxymandelic acid, and acetic acid) in the negative COVID-19 samples. Generally, the appearances of the three sensors (S2, S9, and S10) were dominant as compared to those of the others. For instance, S2 and S9 were highly sensitive toward aldehydes and esters, whereas S10 was likely to be reactive toward hydrocarbons.

Regardless of the successful compound extraction and its association with GeNose C19 sensor array, our GCMS characterization was only performed in a low number of samples. Therefore, a further investigation with a larger number of breath samples still requires to be carried out in the near future to correlate the measurement results of GeNose C19 and GCMS methods in a more thorough way, especially in Indonesia. This method also includes more investigations on the possible influence from other respiratory-related viruses (e.g., influenza, respiratory syncytial virus, and rhinovirus). The presence of viruses other than SARS-CoV2 will affect the VOC profile in breaths to a certain degree. However, in our current setup, it will be mostly recognized by the AI algorithm in GeNose C19 as non-reactive, which means that it contains VOC-based breath-prints not typical to a SARS-CoV2 infection. Influenza and rhinovirus infections manifest a high amount of heptane, nitric oxide, and isoprene111. Consistently, our preliminary study on breath samples from a few patients confirmed to have rhinovirus based on RT-qPCR and showed a high response on S8, suggesting a high amount of isoprene or isopropanol. However, further comparison analysis with more numbers of validated breath samples data will be definitely necessary to obtain a solid conclusion on this matter.

In terms of the enhanced sensing technology, once the VOC biomarkers can be clearly determined, a molecular imprinting method could be applied to generate highly selective sensors that target these specific VOC markers. Hence, the sensitivity and specificity of GeNose C19 and its overall accuracy can be further improved. Another critical step for the system development is to conduct a diagnostic test with a large cohort to strongly elucidate its potential as a diagnostic tool in the near future.

Other limitations of our study are that a direct correlation between the level of the virus gained from the swab and the amount of VOC concentration could not be drawn. These conditions are partly caused by the fact that VOCs were not directly produced by the virus, but rather by host cells infected by the virus as a part of their metabolic response to the infection. GeNose C19 could only predict the presence of the virus based on the resulting VOCs in the breath produced by respiratory tract epithelial cells and immune cells that were infected by the SARS-CoV2 virus. Nevertheless, a study on the correlation between the positivity rate of breath results and level of the cycle threshold value (Ct value) gained from RT-qPCR examination has been of interest for the next research. Here, more insights into the performance of GeNose C19 will be gained in terms of sensitivity, specificity, and accuracy levels correlated with the level of Ct value of RT-qPCR. The Ct value itself is currently accepted as an alternative parameter to determine the level of the viral load in each individual on the basis of the minimum cycle threshold necessary to duplicate the viral component to be read. Nonetheless, GeNose C19 combined with RT-qPCR using the Ct value has a limitation for estimating the exact number of the viral load. It was also a question of whether a person with a positive PCR test result for SARS-CoV-2 is automatically infectious or infectious only if the Ct value is below a certain limit (e.g., Ct value of <35)112,113. In another study, knowing the typical viral load of SARS-CoV-2 in bodily fluids and host tissues, the total number and mass of SARS-CoV-2 virions in an infected person could be estimated114. Each infected person carries the total number and mass of SARS-CoV-2 virions of 1091011 virions and 1100g, respectively, during the peak infection114.

Again, this study was meant to demonstrate a proof of concept that breath sampling and detection can be used to predict COVID-19 infection. Essentially, the calculated performance values in our study show the reliability of the DNN algorithm in predicting the training and testing data of breath samples, suggesting the great potential of the GeNose technology, fortified by the DNN algorithm to be used as a COVID-19 screening tool. Here, we performed the study using a so-called open-label design, where we already knew the COVID-19 status of the subjects before conducting sampling and classifying the sampled data into case and control groups. Using this method, we read, found, and compared the breath sample pattern profiles in each respected group and employed them as training data to build our first AI database, in which all data were validated by the test results of RT-qPCR supported with clinical data. A combined measurement of GeNose C19 with GCMS will be conducted in the near future to answer questions related to distinctive VOCs for COVID-19.

Lastly, another critical step for the system development is to confirm the usability and performance in the clinical setting, where a study on the clinical diagnosis of COVID-19 with a larger number of exhaled breath samples is currently performed to prove the potential of GeNose C19 as a rapid COVID-19 screening tool using a cross-sectional design and double-blind randomized sampling. Here, breath samples and nasopharyngeal swab specimens are taken in the situation where the operator or sampler does not know the true condition of patients. A double-blind fashion means that neither the sampler nor subjects know their true condition during the sampling process. The breath samples were analyzed by GeNose C19 without knowing the result of RT-qPCR, and swab samples were examined by RT-qPCR without prior knowledge of the GeNose C19 result. Both results were then compared to each other to draw a conclusion. In this approach, RT-qPCR will still be used as the reference standard.

Read more from the original source:
Fast and noninvasive electronic nose for sniffing out COVID-19 based on exhaled breath-print recognition | npj Digital Medicine - Nature.com

Read More...

Applications in Chronic Wound Healing | IJN – Dove Medical Press

Monday, July 25th, 2022

Introduction

The skin is the largest organ in the body, accounting for 15% of the total body weight. It is the first line of defense against physical, chemical, and biological factors.1,2 In some cases, the anatomical structure and biological function of the skin are impaired due to internal (local blood obstruction, inflammation, or underlying diseases) or external factors (mechanical injury, chemical corrosion, electric injury, or thermal injury).1,3

After damage, skin can self-heal, and this process involves four phases: hemostasis, inflammation, proliferation, and remodeling (Figure 1).4,5 In the first few minutes after skin damage, the platelets accumulate around the wound and get activated, forming a scab to preventing bleeding.6 After 23 days, the inflammatory phase starts around the wound, and the immune cells remove the dead and devitalized tissues and prevent microbial infections.4 The proliferation phase occurs after the inflammation phase, and it is characterized by the activation of keratinocytes, fibroblasts, endothelial cells, and macrophages, which contribute to wound closure, matrix formation and angiogenesis.7 In the 12 or more months after the primary repair is completed, the regenerated skin tissue is remodeled. During this phase, the processes activated after injury slow down, and the healed wound reaches it maximum mechanical strength.4,5

Figure 1 Phases of wound healing, including the hemostasis, inflammatory, proliferation, and remodeling phase.

Notes: Reprinted from: Tavakoli S, Klar AS. Advanced Hydrogels as Wound Dressings. Biomolecules. 2020;10(8):1169. doi:10.3390/biom10081169.5 2020 by the authors. Licensee MDPI, Basel, Switzerland. Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

However, in some cases, the skins self-healing property is inadequate, leading to the formation of chronic wounds. Chronic wounds are defined as wounds that remain unhealed even after 12 weeks.8 The main factors delaying wound repair include diabetes, infections, and long-term inflammation. Diabetic mellitus damages the microenvironment of skin tissue, which is involved in wound regeneration. It causes increases in reactive oxygen species (ROS) levels and poor collagen deposition.911 The hyperglycemia weakens the functions of fibroblasts, keratinocytes, endothelial cells, and stem cells or progenitor cells involved in wound healing.12 Microbial infections deplete the energy and cells required for tissue regeneration, and the bacteria can form biofilms that display antibiotic resistance, immune evasion, and wound adherence.13,14 In unhealed skin, excess inflammation also contributes to wound chronicity owing to its cytotoxic effects and the induced tissue damage, both of which delay wound healing.1517 Traditionally, the chronic wounds are treated with wound dressing made of gauze, skin grafting, or even flap transplantation. Moreover, targeted antibiotics are administered in case of infection. However, Surgery for chronic wounds can be challenging due to limited donor sites, donor damage, scar formation, and even severe functional and psycho-social disorders.1820 Moreover, antibiotic overuse can lead to drug resistance, creating new problems for infectious chronic wounds.21,22 Moreover, chronic wounds become refractory due to infections, diabetes, ischemia, over-degradation of collagen, and other factors, leading to the failure of traditional treatment methods. Thus, novel methods for treating chronic wounds need to be explored.

Skin wounds are the most common type of tissue injury, and they can be caused by trauma, surgery, burns, chronic diseases, or cancers.4,23 Under adverse conditions, wounds often turn chronic. The acceleration of wound repair and improvement of the healing process are the primary objectives of chronic wound treatment. Nanobiotechnology, which involves the use of nano-sized particles in biological systems, represents the convergence of several scientific fields, including chemistry, biology, physics, optics, mechanics, and nanoscale Science and technology. Nanobiotechnology can provide tools and technologies for examining and modulating biological systems.24,25 By applying nanotechnology in the field of bioMedicine, several novel biomaterials, biosensors, and bio-therapies have been designed and studied. It is believed that the combination of nanotechnology and biology can aid in wound management, monitoring, and repair.26,27 Initially, the application of nanobiotechnology in chronic wound treatment was focused on the provision of scaffolds for cell migration and the replacement of traditional gauze dressing.2830 However, with the development of nanotechnology and our understanding of wound healing mechanisms, various nanobiotechnology-based wound-treatments systems including drug and gene delivery platforms, antimicrobial systems, and cell-carrying systems have been developed and found to have prospective applications.3136 Nevertheless, despite these advances, wound dressings remain largely primitive and lack functions that allow wound monitoring and dynamic wound responses. Therefore, smart hydrogels or bandage systems developed using nano-sized biomaterials, which can respond to stimuli or monitor the status of chronic wounds, have been examined.37,38

This review article provides a summary of nanobiotechnology-based scaffold, delivery, antimicrobial, cell-carrying, collagen modulating, stimuli-responsive, and wound monitoring systems for chronic wound healing. Further, the prospects of nanobiotechnology to achieve better treatment outcomes for chronic wounds are discussed.

Physiologically, the wound healing process is affected by several factors, including gene expression; cell functions such as migration, proliferation, and differentiation; the skin microenvironment; infection; ischemiahypoxia; inflammation; and collagen formation and arrangement.1,3,17,3942 These factors are used as references for the design of nanobiotechnology systems that promote chronic wound repair (Figure 2) and need to be carefully considered before designing such systems.

Figure 2 Nanoplatform for chronic wound healing.

To repair tissue defects in the wound area, a platform for cell adhesion, migration, and proliferation ie, a scaffold for cells needs to be established. Such a scaffold can also serve as a platform for multi-functional modification. Given their good biocompatibility, angiogenic capacity, and biomimetic behavior to natural human skin, nano-scaffold systems are widely used in tissue engineering.4346

Tradition treatment methods for chronic wounds that show delayed Union involve local or systemic drug administration. However, the performance of these drugs is suboptimal owing to limitations such as low solubility and low bioactivity. Nanobiotechnology has thus been leveraged for the development of drug, gene, and exosome delivery systems that can help in overcoming these limitations.34,47,48

Infections, which impede tissue repair, should receive careful attention in chronic wound treatment. Silver nano-particles, a product of nanobiotechnology, have been used clinically in the treatment of microbial infection for decades. Moreover, several more recent studies have explored new nanoplatform-based anti-infection therapies, including potential anti-infection nanoparticles (NPs).4952

Cell therapy, especially stem cell therapy, is currently a focus in regenerative medicine and diabetic wound repair. In some basic medical and preclinical studies, chronic wound treatment with stem cells has shown excellent outcomes.5355 However, despite its great potential, the clinical translation of stem cell therapy for chronic wound healing is hindered by the lack of appropriate methods for cell encapsulation and transplantation. Thus, the development of nanobiotechnology-based cell-carrying systems can provide improved therapeutic effects.56,57

With the development of precision medicine, therapeutic systems that monitor wounds and respond to individual stimuli are expected to become popular. One such system is based on ferrihydrite NPs, which can respond to blue light and are effective for antimicrobial and wound healing treatments.58 More stimuli-responsive materials and monitoring systems for chronic wound healing can be generated through nanobiotechnology.

The term scaffold system generally refers to materials that can integrate with living tissues and cells and can be implanted into different tissues where they supplement natural tissue function based on specific conditions. In order to enable seed cells to proliferate and differentiate, a scaffold composed of biological materials that acts as an artificial extracellular matrix (ECM) is required. Scaffolds are critical for tissue engineering systems, including those for bone, cartilage, blood vessels, nerves, skin, and artificial organs (eg, liver, spleen, kidney, and bladder).

Nano-scaffold systems aimed at chronic wound healing need to possess certain important features.

1. Safety and good biocompatibility: Scaffolds should be safe. Furthermore, their chemical components and degradation products should cause minimal immune or inflammatory responses in the body during a predetermined period.59

2. Appropriate size, dimensions, and mechanical strength: The chemical features of the scaffold should provide suitable microenvironments and maintain the biological activity of loaded cells or tissues for a long time.

3. Appropriate pore size and distribution: Scaffolds should have a highly and well-connected porous structure with an ideal pore size to allow cells, drugs, and bioactive molecules to get evenly distributed throughout the scaffold.60

4. Excellent biological behaviors: Scaffolds and the substances present in the scaffold should promote the proliferation and migration of fibroblasts, keratinocytes, and endothelial cells, thus promoting wound healing.61,62

5. Appropriate wound healing environment: The scaffold system should be able to absorb the wound exudate and prevent wound dehydration, reducing surface necrosis on the wound.63,64

Scaffold systems can be classified as follows based on the source and function of the materials.

When designing scaffold systems for chronic wound, an appropriate matrix source needs to be selected. Table 1 lists a few sources of nanocomposites used in wound dressing. Natural nanomaterials and their derivates have good biocompatibility and can be degraded by enzymes or water. However, their characters and quality differ from batch to batch and cannot be standardized. In contrast, synthetic biomaterials, such as polyethylene glycol (PEG) nano-scaffolds, show more stable structural properties and can be chemically modified. However, the biosafety of synthetic materials needs to be strictly examined.

Table 1 Sources of Nanocomposites

According to their functions, tissue engineering materials can be used for bones, nerves, blood vessels, skin, and other tissues (eg, tendon, ligament, cornea, liver, and kidneys).

Tissue engineering scaffolds for the skin can be of several types. These include natural polymers (chitosan, hyaluronic acid, and collagen), nanocomposite scaffolds (eg, nanobioactive glass and metal NPs), and conducting polymers (eg, polyaniline, polypyrrole, and polythiophene).7375 Taghiabadi et al synthesized an intact amniotic membrane-based scaffold for cultivating adipose-derived stromal cells (ASCs). By ASCs on an acellular human amniotic membrane (HAM), they created a neoteric skin substitute.76 Zhang et al designed a conductive and antibacterial hydrogel based on polypyrrole and functionalized Znchitosan molecules for the management of infected chronic wounds. They demonstrated the promising potential of the hydrogel in promoting the healing of the infected chronic wound after electrical stimulation. Currently, other tissue engineering scaffolds such as calcium phosphates and composite materials (eg, hydroxyapatite, -tricalcium phosphate, and whitlockite) for bone tissue engineering and amniotic membranes for corneal tissue engineering are under research.69,77

Skin tissue engineering scaffolds can be categorized as porous, fibrous, microsphere, hydrogel, composite, and acellular materials.73 Typically, natural biomaterials and their derivatives are biodegradable, absorbable, and harmless to the body, but their strength and processing performance are poor and their degradation speed cannot be controlled. Hence, in order to improve the mechanical and biological properties of scaffolds (eg, adhesion, strength, processing performance, and degradation speed) and accelerate wound healing, composite scaffolds have been developed by combining the characteristics and advantages of different materials. Depending on their constituents, these composite scaffolds can achieve specific functions. Currently, most novel scaffolds being developed use composite materials to obtain multifunctional characteristics.

Delivery systems are used to deliver drugs, cells, genes, and other neoteric bioactive molecules to the body or target area via transplantation or injection.78 Traditionally, delivery systems are broadly divided into two categories, drug delivery and cell delivery. With continuous Innovation in scientific research, new approaches, including gene delivery and the delivery of bioactive molecules such as growth factors, proteins, and peptides, are being developed.

Recently, there has been a significant increase in new biotechnology-based treatments, among which cell and gene therapies are quite sophisticated. Exosomes have shown superior therapeutic potential against various conditions, and delivery methods are being devised to maximize their therapeutic effectiveness. Moreover, exosomes are also emerging as a delivery system for other substances (eg, small molecules and miRNAs).79 NPs are essential for the delivery of these refined substances. In addition to serving as delivery vehicles, NPs can also act as diagnostic and therapeutic agents for some diseases.80 Research on nanoparticle-based drug delivery has mainly been focused on targeted drug delivery, and especially tumor-targeted drug delivery.81

A drug delivery system serves as a vehicle for therapeutic molecules. It allows drug delivery in the body, improves drug efficacy, and allows safe and controlled drug release.

The conventional routes for drug delivery80 are gastrointestinal drug delivery (eg, oral and rectal), parenteral administration (eg, subcutaneous, intramuscular, and intravenous injection) and topical administration (eg, percutaneous injection and wound dressings). Novel drug delivery systems for wound healing can be classified into the following categories: NPs, microcarriers, and tissue-engineered scaffolds.82 Skin tissue engineering scaffolds have been introduced earlier in this review, and NPs and microcarriers will be introduced in detail here (Table 2).

Table 2 Drug Delivery Systems Developed Using Nanotechnology

Drug-loaded nano-scaffolds that promote wound healing after topical administration have been developed. However, due to their poor solubility, short half-life, and other drawbacks, some drugs do not accumulate at an optimal concentration at the wound site for a long duration.83 Nano-scaffolds with varying porous structures can be used to load drugs or bioactive molecules, and the porous structure can provide a breathable environment for the wound.84 NPs carrying poorly soluble drugs are widely used to prepare controlled drug delivery systems. Nano-scaffolds typically show slow degradation, allowing long-term drug release and thereby maintaining an ideal concentration of the drug in the plasma.85 Shamloo et al developed polyvinyl alcohol (PVA)/chitosan/gelatin hydrogels to overcome the short half-life of basic fibroblast growth factor (bFGF). The biocompatibility of the hydrogel supported the continuous delivery of bFGF and significantly accelerated wound healing.86

During the treatment of chronic wounds, the drug is usually applied directly on affected region. Nanotechnology-based drug delivery systems could enable controlled drug release. Meanwhile, the degradability and stability of the drug could also be modified using nanosystems. Hence, these drug delivery systems could improve treatment compliance among patients with chronic wounds by reducing the application frequency and the cost of treatment.

It is widely acknowledged that metal ion-based biomaterials exhibit promising antimicrobial activity when applied to wounds, making them very suitable for the management of diabetic wounds, which are prone to infection. Given their reducing properties, under oxidative stress, cuprous ions provide a promising therapeutic option for diabetic wounds. Copper ions have also been reported to promote angiogenesis.115117 Equipped with infrared absorption and efficient heat generation abilities, semiconductor cuprous sulfide (Cu2S) NPs are widely employed as photothermal agents. Wang et al utilized the photothermal effect of Cu2S and the angiogenic effect of Cu ions to prepare electrospun fibers containing Cu2S NPs, achieving a combination of advantages based on the components and successfully promoting diabetic wound healing. Moreover, their biomaterial could also effectively inhibit the growth of skin tumors both in vivo and in vitro.70 This system demonstrated the effectiveness of bifunctional tissue engineering biomaterials, providing a novel method for drug delivery for the treatment of biological conditions.

Classic gene therapy generally involves the expression of exogenous genes or the silencing of target genes via viral or non-viral delivery.118,119 In general, gene delivery via viral transfection may be carcinogenic.119 Most gene therapies for diabetic wounds are based on siRNAs. Gene therapy has become a promising strategy for the treatment of various diseases, and its effects are mediated via the regulation of RNA and protein expression.120 Many unmodified gene therapy agents, such as proteins, peptides, and nucleic acids, are rapidly degraded or eliminated from systemic circulation before they can accumulate at effective concentrations at the target site. Owing to poor pharmacokinetics, repeated administration is warranted. This, in addition to the narrow range of safe doses, often leads to adverse effects during treatment.121

Several studies on wound management and especially chronic diabetic wound management have focused on gene- or RNA-based (eg, mRNA, microRNA, circRNA, and lncRNA) therapies.122 Subcutaneous local injections can be used to directly deliver RNAs or proteins to the wound site.123 However, due to the short half-life of the therapeutic agent, repeated administration is required, often leading to pain and poor treatment compliance. Drug delivery systems not only solve these problems but also protect gene-related small molecules from degradation and eliminated from the body. The greatest challenge in gene therapy is ensuring the successful transduction or transfection of target genes into host cells by crossing extracellular and intracellular barriers. Therefore, the engineering of gene delivery vehicles is complex.118 Moreover, the materials used to encapsulate gene-related small molecules are required to have low toxicity and promote a high transfection efficiency.124 Currently, the NPs that deliver siRNAs to promote wound management are composed of lipids, polymers (eg, chitosan, PEG), hyperbranched cationic polysaccharides (HCP), and silicon.125130

Shaabani et al developed layer-by-layer self-assembled siRNA-loaded gold NPs with two different outer layers Chitosan ([emailprotected]) and Poly L-arginine ([emailprotected]).126 They compared the two types of NPs, which had a similar core structure. They found that the two polymers had different escape mechanisms: the buffering capacity of chitosan resulted in endosome disruption,131 while PLA bound to the endosome lipid bilayer and promoted escaped through pore formation. Their results indicated that an outer layer of PLA allows the endosomal escape of siRNA, thus improving transfection efficiency and delivering target molecules to promote diabetic wound healing. Given that naked siRNAs are easily eliminated from the body, Li et al and Lan et al designed four HCP derivative-based vehicles128,129 for the delivery of siRNA against MMP9. This treatment led to the knockdown of MMP9, which prevents the healing of diabetic wounds, and thus promoted diabetic wound healing. Currently, nanocomposite-based gene delivery applications are focused on siRNA. However, efforts to deliver other products such as miRNA, lncRNA, or even DNA will be required in the future.

Exosomes are endosome-derived vesicles (30 to 150 nm in size) secreted by a variety of cells, including adipose stem cells (ADSCs), bone marrow stem cells (BMSCs), and mesenchymal stem cells (MSCs).132,133 Different types of cells secrete exosomes with different specific markers, which account for their specific functions. Despite their different origins, exosomes have a similar appearance and size and often have a common composition. Once they are isolated from an extracellular medium or from biological fluids, the source of exosomes cannot be ascertained of.134 Exosomes can be employed as small molecules for wound treatment. The combination of exosomes with porous NPs can increase therapeutic effects while maintaining the advantages of a scaffold. Importantly, exosomes can also be used as nanocarriers for drug delivery and targeted therapy, and these are called engineered exosomes.133,135

Exosomes can effectively promote diabetic wound healing.136,137 Shiekh et al embedded ADSC-derived exosomes (ADSC-exo) into antioxidant polyurethane scaffolds to achieve sustained exosome release. Their nanosystem leveraged the advantages of the scaffold, including antioxidant and antibacterial effects, to accelerate diabetic wounds healing both in vivo and in vitro.71 To prolong the half-life and lower the clearance rate of exosomes, Lei et al designed an ultraviolet-shielding nano-dressing based on polysaccharides that allowed exosome delivery and had self-healing, anti-infection and thermo-sensitive properties.61 These findings indicate that exosomes can be stabilized and well-delivered to target cells by combining them with porous NPs or nanocarriers and can be applied for treating chronic wounds.

It is widely accepted that infection is an important factor to monitor during the wound healing process as it can lead to progression of the chronic wound or even sepsis.138140 Conventional prevention and treatment approaches for wound infection involve local or systemic antibiotic administration, which can lead to failed anti-infection treatment or even antibiotic resistance.141,142 Several nano-formulations that have antimicrobial ability have been developed and used in anti-infectious wound therapy, playing a critical role in infection management. Table 3 lists some antimicrobial nanobiotechnology-based systems used in wound healing.

Table 3 Nanomaterials Used in Anti-Microbial Wound Dressing

Metals have been used as inorganic antimicrobial agents for thousands of years and were even used as anti-infection agents in ancient Persia.162 Metal NPs, such as AgNPs, AuNPs, and CuNPs, have attracted great attention due to their anti-infection properties and low toxicity.163 Given that metal NPs do not cause antimicrobial resistance and release metal ions or produce ROS which can kill microorganisms they appear to be suitable alternatives to antibiotics as.164,165

AgNPs, which are the more well-known metal NPs, have been used widely in clinical practice and basic medical research. Wound treatment products containing AgNPs have been commercially available for decades.166 AgNPs can continuously generate Ag+, which reacts with proteins and nucleic acids, causing molecular defects and killing bacteria and viruses.167170 Several studies have shown that AgNPs have good potential as antiseptics. Luna-Hernndez et al found that a combination of functional chitosan and silver nanocomposites showed antibacterial effects against S. aureus and P. aeruginosa in burn wounds.152 Moreover, in mice treated with the composite dressing, silver accumulation was found to be far lower than that in mice treated with the clinically used AcasinTM nanosilver dressing. Zlatko et al demonstrated that the AgNPs hydrogel serves as a versatile platform, with features such as antibacterial efficacy, exudate absorbance, low cost, biocompatibility, hemocompatibility, and improved healing for chronic wounds.171 Huang et al constructed an organic framework-based microneedle patch containing AgNPs. The product showed transdermal delivery and could prevent S. aureus, E. coli, and P. aeruginosa infections in diabetic wounds.172 In addition, several commercialized products containing AgNPs have been developed for clinical treatment. These include Acticoat, Allevyn Ag, Aquacel Ag Surgical, Atrauman Ag, Biatain Silicone Ag, Flaminal, Mepilex Transfer Ag, SILVERCEL, and Urgo Clean Ag.

Nano-sized gold is also useful as an anti-infection agent. It has been confirmed that AuNPs bind to bacterial DNA and show bactericidal and bacteriostatic properties.173,174 Some studies show that Au nanocomposites can kill MRSA and P. aeruginosa through photothermal effects and could promote wound closure.150,175

Compared with gold and silver, copper is less expensive and more easily available. CuNPs are considered the best candidates for developing future technologies for the management of infectious and communicable diseases.49 Cai et al developed a CuNP-embedded hydrogel that accelerated wound healing and showed effective antibacterial capacity against both gram-positive and gram-negative bacteria as well as great photothermal properties.176

Inorganic non-metal nano-materials have been also considered potential antimicrobial agents owing to their intrinsic anti-infection effects.177 Based on the unique structural and physio-chemical properties of carbon nanomaterials, a research team prepared a carbon nanofiber platform that inhibits the growth of E. coli and MRSA.178 In this study, CuNPs and ZnNPs were asymmetrically distributed in carbon NFs grown on an activated carbon fiber substrate using chemical vapor deposition (CVD). The carbon NFs platform inhibited the growth of gram-positive and gram-negative bacterial strains with superior efficiency than simple metal NPs. Another study showed that carbon nanotubes can be used to prepare wound-repairing bandages with infection-preventing properties.179

The natural organic biomaterial chitosan and its derivatives are popular in biomedicine. Chitosan possesses good biocompatibility, antimicrobial properties, and low immunogenicity.180 Using nanobiotechnology, Ganji et al fabricated a nanofiber with chitosan-encapsulated nanoparticles loaded with curcumin for wound dressing. The electrospun chitosan-based nanofiber inhibited the growth of E. coli and MRSA by 98.9% and 99.3% in infected wounds in mice.50 Another type of chitosan nanofiber also showed potential in wound care owing to its antibacterial and re-epithelialization-promoting effects.181 Antibiotic-loaded chitosan nanofibers have also been used for local drug delivery and wound treatment.182 Other metalorganic framework nanorods have also shown bacterial inhibition in infectious wounds.183 Dias et al developed a series of soluble potato starch nanofibers sized 70264 nm. They incorporated carvacrol during the synthesis of the potato starch nanofibers, and the obtained nanocomposites showed great anti-pathogenic activity against S. aureus, E. coli, L. monocytogenes, and S. typhimurium, highlighting their potential as agents for wound dressing.184

With respect to organic nano-materials, anti-infection approaches focus on natural antibacterial compounds such as chitosan and its derivatives. Further, owing to the bactericidal effects of metals, metal-organic frameworks are also used. Given that metal NPs are associated with the potential risks of metal deposition, organic nano-antimicrobial materials, especially natural macromolecules with antibacterial properties, may become useful for wound dressing.

Biofilm, which are made up of surface-attached groups of microbes, are considered to be the primary cause of chronic wounds owing to their role in antibiotic resistance.141,185187 Most biofilms are formed on the surface of wounds. However, some special biofilms can get implanted into the deep layers of skin tissue, making traditional diagnose and treatment challenging.188 The clinical treatment of biofilms in wounds involves wound cleansing with polyvinylpyrrolidone or hydrogen peroxide, debridement, refashioning of wound edges, dressing, and the topical or general administration of antibiotics.189 With further insights into the mechanisms of biofilm formation and developments in nanobiotechnology, nanomaterials effective for biofilm therapy have been developed.

Nanomaterials based on metals or metal oxides are widely used against wound biofilms, including silver, copper, gold, titanium, zinc oxide, magnesium oxide, copper oxide, and iron oxide.190,191 Owing to the small size of these particles, metal or metal oxide NPs can move across bacterial membranes and rupture them. They can destroy enzyme activity and the respiratory chain in bacteria. It has been demonstrated that Ag NPs and silver oxide NPs are the most effective against microbial biofilms.192,193 Abdalla et al functionalized nano-silver with lactoferrin and incorporated them in a gelatin hydrogel, generating a dual-antimicrobial action dressing for infectious wounds and maximizing the anti-biofilm property of silver.194

Chitosan, bacterial cellulose (BC) and other natural antimicrobials have been modified using nanotechnology to treat wound biofilms. Owing to the positive charge on the polymeric chain of chitosan, chitosan NPs easily adhere to the negatively charged microbial membrane, triggering changes in permeability and preventing biofilm formation.195 Zemjkoski et al obtained chitosan NPs through gamma irradiation and encapsuled them into BC to form BC-nChiD hydrogels with excellent anti-biofilm potential. These hydrogels could provide a 90% reduction in viable biofilms and a 65% reduction in biofilm height.196 Mahtab reduced the amount of bacteria in a planktonic condition by treating bacterial biofilms with photodynamic therapy using curcumin encapsulated into silica NPs. After exposure to blue light, ROS was produced owing to the photodynamic properties of silica NPs. The ROS damaged biofilms, and the curcumin released prevented bacterial growth.197

The size of nanoparticles can be controlled, and they have a large specific area, can penetrate bacterial membranes, and show bactericidal properties. Hence, nanotechnology has great potential in destroying biofilms and treating infectious chronic wounds. In addition to providing nanoparticles with anti-infection properties, nanotechnology could also be used to provide a platform for antibiotics, enhance their solubility, prolong their half-life, and reduce the required treatment dose.

Due to its superiority with respect to tissue engineering, cell-based therapy is extensively used for chronic wound treatment.198201 Stem cells derived from bone marrow, the umbilical cord, and adipose and cutaneous tissue can differentiate into various tissue types and modulate cell migration, collagen deposition, re-epithelialization, and tissue remodeling.198,202205 Nanofibers prepared using electrostatic spinning are widely used for scaffolding. Mao et al prepared polycaprolactone nanofibrous scaffolds and combined collagen with bioactive glass NPs (CPB nanofibrous scaffold). The CPB nanofibrous scaffold exerted positive effects as a cell-carrying system containing epithelial progenitor cells (EPCs). The EPC-carrying CPB bioactive complex promoted wound healing by enhancing cell proliferation, granulation tissue formation, re-epithelialization, and cell adhesion (Figure 3).206 Khojasteh et al found that curcumin-carrying chitosan/poly(vinyl alcohol) nanofibers can carry pad-derived mesenchymal stem cells and show excellent curcumin release and improve cell adhesion and proliferation, indicating that they could be useful in wound dressings.207 Kaplan et al produced an injectable silk nanofiber hydrogel embedded with BMSCs. The nanofiber hydrogel maintained the stemness of the BMSCs, successfully carrying them to the target site and promoting wound healing through increased angiogenesis and collagen deposition.57

Figure 3 Schematic of a CPB/EPC construct that promotes wound healing. CPB enhances cell proliferation, collagen deposition, and EPC differentiation via the Hif-1/VEGF/SDF-1 pathway. This results in the rapid vascularization and healing of full-thickness wounds.

Notes: Reprinted from: Wang C, Wang Q, Gao W et al. Highly efficient local delivery of endothelial progenitor cells significantly potentiates angiogenesis and full-thickness wound healing. Acta Biomaterialia. 2018;69:156169. doi:10.1016/j.actbio.2018.01.019.206 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. With permission from Elsevier. Available from: https://www.sciencedirect.com/science/article/abs/pii/S1742706118300308#f0060.

Usually, cell therapy in wound care is performed using micrometer-scale carriers as cell sizes fall in the range of microns. With the development of nanotechnology, an increasing number of nanofibers and NPs are being developed for cell therapy aimed at treating chronic wound given the excellent pro-differentiation, stemness-holding, and immunoregulation properties of the nanocomposites.

As an important component of the extracellular matrix, collagen mediates communication between cells, provides a scaffold for cell migration and adhesion, and plays a role in chronic wound healing.4 Some nanobiotechnology-based platforms have been used for collagen modulation. Sun et al loaded N-acetyl cysteine onto graphene oxide (GO) NPs to enable scarless wound healing (Figure 4).208 In their study, GO NPs decreased collagen metabolism and improved the balance between collagen formation and degradation, thus allowing the wound to heal without scarring. In another study by the same group, a polyamide nanofiber-based multi-layered scaffold was found to promote wound healing by encouraging the uniform arrangement of collagen.209 Krian et al synthesized a 3-D biomatrix with nanotized praseodymium that promotes collagen function via the stabilization of native collagen. Their rare-earth metal nanoparticles thus showed potential applications in wound care.210

Figure 4 Wound healing effect of a scaffold based on GO NPs.

Notes: Adapted from: Li J, Zhou C, Luo C et al. N-acetyl cysteine-loaded graphene oxide-collagen hybrid membrane for scarless wound healing. Theranostics. 2019;9(20):58395853. doi:10.7150/thno.34480.208 The author(s). Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/). See http://ivyspring.com/terms for full terms and conditions.

In chronic wound treatment, deposited collagen acts as a natural scaffold for cells, and therefore, modulating collagens is synonymous with re-establishing tissue structure in the wound area. As a result, collagen-modulating nano-systems have mainly been used for accelerating tissue repair. However, the studies by Suns group are inspirational and demonstrate that this approach should also be utilized for developing chronic wound treatments that decrease scarring.

Despite the availability of dozens of commercial wound-care products, bionic systems have not yet been adopted for wound healing. There is an urgent need for smart wound-healing systems that can respond to the stimuli (temperature, pH, glucose, enzyme, etc.) at the site of the chronic wound area.211,212 Through developments in nanobiotechnology, NPs with stimuli-response characteristics have received great attention. Gong et al synthesized a nanozyme consisting of poly(acrylic acid)-coated Fe3O4 NPs (pFe3O4) and then combined them with GO to produce pFe3O4@GO NCs. The pFe3O4@GO NCs could react with glucose and function as a self-supplying H2O2 nanogenerator at the wound site, allowing the chemodynamic treatment of wound infections.157 Some researchers developed photoactive electrospun nanofibers using cellulose acetate, polyethylene oxide, methylene blue, and three-layered cellulose acetate/polyethylene oxide/silk fibroin/ciprofloxacin. The nanofibers could produce ROS after light irradiation at 635 nm, accelerating the healing of infectious wounds by inhibiting S. aureus, K. pneumoniae, and P. aeruginosa biofilms.213 Zhang et al developed a hybrid hydrogel with MnO2 nanosheets. The injectable MnO2 nanosheet hydrogel could perform thermogenesis under 808-nm laser irradiation, eliminating ROS and inflammation and promoting wound repair.214 Overall, nano-structures functionalized using stimuli-response properties could simulate the biological, chemical, and physical characteristics of natural skin, enabling tissue regeneration in refractory wounds.

Given the elucidation of mechanisms and physiological changes associated with wound healing, sensors that allow real-time monitoring of wound repair have been developed.215217 A complex smart wound-monitoring wound dressing has also been invented.218 This dressing contains a nanofiber membrane made of chitosan/collagen, and promotes proliferation and regeneration by upregulating extracellular matrix secretion and promoting integrin/FAK signaling. Olivo et al added AgNPs to a fiber-based membrane monitor to increase the active surface area in the sensor, improving the detection sensitivity for biomarkers in the wound area.219 In order to avoid secondary wound damage caused by dressing changes, Jiang et al created bacterial cellulose-based membranes with aminobenzeneboronic acid-modified gold nanoclusters (A-GNCs), which could be used for treating wounds infected with multidrug-resistant bacteria.220 A-GNCs emit bright orange fluorescence under UV light, and the intensity of this fluorescence decreases with the release of A-GNCs. This allows healthcare professionals to determine when the dressing needs to be replaced. In the past few years, dressings that can monitor the status of chronic wounds in real-time have been tested. However, this field is relatively new, and current research on nanotech-based systems for monitoring chronic wounds is scarce.

Along with advances in nanobiotechnology research, several new nanosystems have advanced from the laboratory investigation stage to the clinical trial stage. Table 4 lists some clinical trials that have tested nano-therapies for wound healing. As early as 2014, Lopes et al investigated the cost-effectiveness of using nanocrystalline silver for treating burns. Their study showed that AgNPs provided faster wound healing than traditional silver sulfadiazine, requiring fewer dressing changes and reducing the human resource burden.221 Meanwhile, some clinical trials tested the use of nano-products for treating chronic wounds (Table 4). Although metal NPs were typically used for antimicrobial therapy, one clinical trial studied the efficacy and safety of autologous nano-fat combined with platelet-rich fibrin for treating refractory diabetic foot wounds. However, overall, there were few clinical trials examining the applications of nanoplatforms in chronic wound care, likely owing to inadequate previous research on biocompatibility. Moreover, few doctors participated in research on nanotechnology-based chronic-wound treatment, and hence, several clinical requirements were ignored or misunderstood.

Table 4 List of Clinical Trials for Nanobiotechnology-Based Wound Treatment

As nanobiotechnology has developed, nano-sized biomaterials have been widely applied for treating chronic wounds. This review article highlights that the application of nanotechnology in chronic wound treatment has, so far, largely focused on scaffold construction, anti-infection treatment, and substance delivery.34,45,47,130,147

In scaffold systems, nanobiotechnology provides both materials and techniques for managing chronic wounds. Electrospinning, a nanotechnique, allows the production of biomimetic structures that mimic the natural skin and help in healing refractory wounds.50 Furthermore, some nano-scaffolds promote cell adhesion and migration by mimicking the construction of natural tissues, thus promoting chronic wound healing. Nevertheless, there is further scope to improve the quality of natural nano-biomaterials and the biocompatibility of synthetic nano-biomaterials to increase their application.

Dozens of metal NPs, and especially AgNPs, have been used in antimicrobial therapy for chronic wounds.163 However, metal deposition can cause DNA and cell damage. Hence, nanomaterials that prevent infection without causing toxicity are required. Further effort should be made to decrease the accumulation of heavy metals. Alternatively, nanocomposites without metal elements should be adopted more often in the future.

To overcome the ever-changing environment of the skin during chronic wound healing, several wound-monitoring and stimuli-responsive biomaterials have been developed.58,157,218 By leveraging specific characteristics, such as the photothermal effect, chemo-dynamic effect, fluorescence, and thermo-sensitivity, more nano-biomaterials that can be used in stimuli-responsive and dynamic monitoring systems for wound care should be developed. Most studies on wound healing have focused on migration-promoting effects, antimicrobial activity, and substance delivery. However, few nanotech-based multifunctional smart systems, such as smart dressings that show specific responses to stimuli, have been developed. Researchers in this field should work towards developing smart systems based on the mechanisms of disunion in chronic wounds, which could effectively demonstrate the potential of nanobiotechnology in promoting chronic wound repair.

Despite the decades-long history of nanotechnology research, few products and therapies based on nanobiotechnology have become available commercially or entered the clinical trial phase. One reason for this is that most basic nanotech research on chronic wound healing is performed in rodent models, such as C57BL/6 mice or SpragueDawley rats, even though the skin structure and chronic wound healing processes differ between rodents and humans.222 The wound healing effects observed in primates, such as humans, may not be as good as those in rats and mice. Meanwhile, the cost of nano-materials and processing platforms required for large-scale preparation also hinder the clinical translation of nanotechnologies.

During the past few years, numerous nano-materials and techniques have been used to repair chronic wounds. This review summarizes some nanobiotechnology-based systems and nanoplatform designs that can be used for treating chronic wounds. It highlights that a smart dressing for chronic wounds that allows real-time monitoring and has stimuli-responsive abilities is one possible direction for the future of nano-wound-repairing systems. We hope this review motivates the development of more sophisticated wound management systems based on nanobiotechnology in the future.

The authors acknowledge the support from the National Natural Science Foundation of China (81974289, 81772094), the Key Research and Development Program of Hubei Province (grant number 2020BCB031), the Guangdong Basic and Applied Basic Research Foundation (2019B1515120043), the international cooperation research project of Shenzhen, the international cooperation research project of Shenzhen (GJHZ20190822091601691), and the Key Project of Basic Research of Shenzhen (JCYJ20200109113603854).

The authors report no conflicts of interest in relation to this work.

1. Diegelmann RF, Evans MC. Wound healing: an overview of acute, fibrotic and delayed healing. Front Biosci-Landmrk. 2004;9:283289. doi:10.2741/1184

2. Vig K, Chaudhari A, Tripathi S, et al. Advances in skin regeneration using tissue engineering. Int J Mol Sci. 2017;18(4):789.

3. Stojadinovic A, Carlson JW, Schultz GS, Davis TA, Elster EA. Topical advances in wound care. Gynecol Oncol. 2008;111(2):S70S80.

4. Gurtner GC, Werner S, Barrandon Y, Longaker MT. Wound repair and regeneration. Nature. 2008;453(7193):314321.

5. Tavakoli S, Klar AS. Advanced hydrogels as wound dressings. Biomolecules. 2020;10(8):1169.

6. Versteeg HH, Heemskerk JW, Levi M, Reitsma PH. New fundamentals in hemostasis. Physiol Rev. 2013;93(1):327358.

7. Wilkinson HN, Hardman MJ. Wound healing: cellular mechanisms and pathological outcomes. Open Biol. 2020;10(9):200223.

8. Olsson M, Jarbrink K, Divakar U, et al. The humanistic and economic burden of chronic wounds: a systematic review. Wound Repair Regen. 2019;27(1):114125.

9. Stadelmann WK, Digenis AG, Tobin GR. Physiology and healing dynamics of chronic cutaneous wounds. Am J Surg. 1998;176(2ASuppl):26S38S.

10. Lerman OZ, Galiano RD, Armour M, Levine JP, Gurtner GC. Cellular dysfunction in the diabetic fibroblast: impairment in migration, vascular endothelial growth factor production, and response to hypoxia. Am J Pathol. 2003;162(1):303312. doi:10.1016/S0002-9440(10)63821-7

11. Duscher D, Januszyk M, Maan ZN, et al. Comparison of the hydroxylase inhibitor dimethyloxalylglycine and the iron chelator deferoxamine in diabetic and aged wound healing. Plast Reconstr Surg. 2017;139(3):695e706e. doi:10.1097/PRS.0000000000003072

12. Rodrigues M, Wong VW, Rennert RC, Davis CR, Longaker MT, Gurtner GC. Progenitor cell dysfunctions underlie some diabetic complications. Am J Pathol. 2015;185(10):26072618. doi:10.1016/j.ajpath.2015.05.003

13. Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: a common cause of persistent infections. Science. 1999;284(5418):13181322. doi:10.1126/science.284.5418.1318

14. Versey Z, da Cruz Nizer WS, Russell E, et al. Biofilm-innate immune interface: contribution to chronic wound formation. Front Immunol. 2021;12:648554.

15. Wang X, Coradin T, Helary C. Modulating inflammation in a cutaneous chronic wound model by IL-10 released from collagen-silica nanocomposites via gene delivery. Biomater Sci. 2018;6(2):398406.

16. Xu Z, Liang B, Tian J, Wu J. Anti-inflammation biomaterial platforms for chronic wound healing. Biomater Sci. 2021;9(12):43884409.

17. Zhao R, Liang H, Clarke E, Jackson C, Xue M. Inflammation in chronic wounds. Int J Mol Sci. 2016;17(12):2085.

18. Boateng JS, Matthews KH, Stevens HNE, Eccleston GM. Wound healing dressings and drug delivery systems: a review. J Pharm Sci-Us. 2008;97(8):28922923.

19. Schiestl C, Stiefel D, Meuli M. Giant naevus, giant excision, eleg(i)ant closure? Reconstructive surgery with Integra Artificial Skin to treat giant congenital melanocytic naevi in children. J Plast Reconstr Aesthet Surg. 2010;63(4):610615.

20. Schiestl C, Neuhaus K, Biedermann T, Bottcher-Haberzeth S, Reichmann E, Meuli M. Novel treatment for massive lower extremity avulsion injuries in children: slow, but effective with good cosmesis. Eur J Pediatr Surg. 2011;21(2):106110.

21. Eming SA, Wynn TA, Martin P. Inflammation and metabolism in tissue repair and regeneration. Science. 2017;356(6342):10261030.

22. Mookherjee N, Anderson MA, Haagsman HP, Davidson DJ. Antimicrobial host defence peptides: functions and clinical potential. Nat Rev Drug Discov. 2020;19(5):311332.

23. Eming SA, Martin P, Tomic-Canic M. Wound repair and regeneration: mechanisms, signaling, and translation. Sci Transl Med. 2014;6(265):265sr6.

24. Paradise J, Wolf SM, Kuzma J, RamacHandran G, Kokkoli E. Introduction: the challenge of developing oversight approaches to nanobiotechnology. J Law Med Ethics. 2009;37(4):543545.

25. Roco MC. Nanotechnology: convergence with modern biology and medicine. Curr Opin Biotechnol. 2003;14(3):337346.

26. Wang B, Kostarelos K, Nelson BJ, Zhang L. Trends in micro-/nanorobotics: materials development, actuation, localization, and system integration for biomedical applications. Adv Mater. 2021;33(4):2002047.

Go here to read the rest:
Applications in Chronic Wound Healing | IJN - Dove Medical Press

Read More...

Fundamental Knowledge on Nanobots – Bio-IT World

Monday, July 25th, 2022

Nanorobots are electromechanical devices comprised of components that are within the nanometer size range. Within medicine, nanorobotic applications have been successfully used for a variety of microbiological, hematological, surgical and dental applications, to name a few.

The nanobots market global size accounted for USD 5.3 billion in 2021 and is expected to reach around USD 21.45 billion by 2030, expected to register growth at a CAGR of 16.8% from 2022 to 2030.

What is Biomedical Nanorobots?

As compared to industrial robots that were originally developed to automate routine and dangerous tasks, biomedical robots are highly specialized and miniature devices that must be capable of performing precise tasks within the human body. Recent advancements in nanotechnology and materials science have therefore promoted the development of both micro- and nanorobots for a wide range of biomedical applications.

Whereas the traditional power sources for industrial robots that require large power supplies and/or battery storage capabilities, both micro- and nanorobots will typically depend on chemically powered motors for their energy needs. To this end, these motors acquire energy by converting locally supplied fuels, such as oxygen or glucose within the body, to propel themselves towards different cellular structures. Nanorobots can also rely on externally powered motors based on either magnetic or ultrasound technology to drive their motion.

One of the most challenges that biomedical researchers have faced during the miniaturization of robotic systems has been the optimization of nanolocomotion. Recent developments in this field have demonstrated the ability of both micro- and nanorobots to efficiently propel themselves through complex biological media or narrow blood vessels. Furthermore, once these microscopic robots have penetrated through these areas, researchers have successfully developed ways in which these devices can collect and remove tissue biopsy samples, obtain detailed images, release active agents at predetermined locations and perform localized diagnoses.

Key market players

Report Scope of theNanobots Market

USD 21.45 Billion

Segments covered in the report

By Type

By Application

By Type of Manufacturing

By End User

Regional Segment

Nanomedicine segment is expected to dominate the application segment of the nanobots market

Based on application, the nanobots market is segmented into nanomedicine, biomedical and other applications. The Nanomedicine segment is expected to dominate the global nanobots market by holding more than 36% of the overall market. Nanobots are widely used in nanomedicine due to the increasing healthcare applications of nanobots. The large market share of this segment is attributed to the large level of commercialization in the healthcare sector for drug delivery, in vivo imaging, active implants, in vitro diagnostic, biomaterial, and drug therapy.

Additionally, increasing innovations in the field of cancer treatment related to the specific target are also contributing to the growth of nanobots market. The biomedical applications segment accounted for the second-largest market share of the overall nanobots marketplace.

Thanks for reading you can also get individual chapter-wise sections or region-wise report versions such as North America, Europe, or the Asia Pacific.

Download a FREE PDF Brochure https://www.precedenceresearch.com/sample/1914

Read more here:
Fundamental Knowledge on Nanobots - Bio-IT World

Read More...

How different cancer cells respond to drug-delivering nanoparticles – MIT News

Monday, July 25th, 2022

Using nanoparticles to deliver cancer drugs offers a way to hit tumors with large doses of drugs while avoiding the harmful side effects that often come with chemotherapy. However, so far, only a handful of nanoparticle-based cancer drugs have been FDA-approved.

A new study from MIT and Broad Institute of MIT and Harvard researchers may help to overcome some of the obstacles to the development of nanoparticle-based drugs. The teams analysis of the interactions between 35 different types of nanoparticles and nearly 500 types of cancer cells revealed thousands of biological traits that influence whether those cells take up different types of nanoparticles.

The findings could help researchers better tailor their drug-delivery particles to specific types of cancer, or design new particles that take advantage of the biological features of particular types of cancer cells.

We are excited by our findings because it is really just the beginning we can use this approach to map out what types of nanoparticles are best to target certain cell types, from cancer to immune cells and other kinds of healthy and diseased organ cells. We are learning how surface chemistry and other material properties play a role in targeting, says Paula Hammond, an MIT Institute Professor, head of the Department of Chemical Engineering, and a member of MITs Koch Institute for Integrative Cancer Research.

Hammond is the senior author of the new study, which appears today in Science. The papers lead authors are Natalie Boehnke, an MIT postdoc who will soon join the faculty at the University of Minnesota, and Joelle Straehla, the Charles W. and Jennifer C. Johnson Clinical Investigator at the Koch Institute, an instructor at Harvard Medical School, and a pediatric oncologist at Dana-Farber Cancer Institute.

Cell-particle interactions

Hammonds lab has previously developed many types of nanoparticles that can be used to deliver drugs to cells. Studies in her lab and others have shown that different types of cancer cells often respond differently to the same nanoparticles. Boehnke, who was studying ovarian cancer when she joined Hammonds lab, and Straehla, who was studying brain cancer, also noticed this phenomenon in their studies.

The researchers hypothesized that biological differences between cells could be driving the variation in their responses. To figure out what those differences might be, they decided to pursue a large-scale study in which they could look at a huge number of different cells interacting with many types of nanoparticles.

Straehla had recently learned about the Broad Institutes PRISM platform, which was designed to allow researchers to rapidly screen thousands of drugs on hundreds of different cancer types at the same time. With instrumental collaboration from Angela Koehler, an MIT associate professor of biological engineering, the team decided to try to adapt that platform to screen cell-nanoparticle interactions instead of cell-drug interactions.

Using this approach, we can start thinking about whether there is something about a cells genotypic signature that predicts how many nanoparticles it will take up, Boehnke says.

For their screen, the researchers used 488 cancer cell lines from 22 different tissues of origin. Each cell type is barcoded with a unique DNA sequence that allows researchers to identify the cells later on. For each cell type, extensive datasets are also available on their gene expression profiles and other biological characteristics.

On the nanoparticle side, the researchers created 35 particles, each of which had a core consisting of either liposomes (particles made from many fatty molecules called lipids), a polymer known as PLGA, or another polymer called polystyrene. The researchers also coated the particles with different types of protective or targeting molecules, including polymers such as polyethylene glycol, antibodies, and polysaccharides. This allowed them to study the influence of both the core composition and the surface chemistry of the particles.

Working with Broad Institute scientists, including Jennifer Roth, director of the PRISM lab, the researchers exposed pools of hundreds of different cells to one of 35 different nanoparticles. Each nanoparticle had a fluorescent tag, so the researchers could use a cell-sorting technique to separate the cells based on how much fluorescence they gave off after an exposure of either four or 24 hours.

Based on these measurements, each cell line was assigned a score representing its affinity for each nanoparticle. The researchers then used machine learning algorithms to analyze those scores along with all of the other biological data available for each cell line.

This analysis yielded thousands of features, or biomarkers, associated with affinity for different types of nanoparticles. Many of these markers were genes that code for the cellular machinery needed to bind particles, bring them into a cell, or process them. Some of these genes were already known to be involved in nanoparticle trafficking, but many others were new.

We found some markers that we expected, and we also found much more that has really been unexplored. We're hoping that other people can use this dataset to help expand their view of how nanoparticles and cells interact, Straehla says.

Particle uptake

The researchers picked out one of the biomarkers they identified, a protein called SLC46A3, for further study. The PRISM screen had shown that high levels of this protein correlated with very low uptake of lipid-based nanoparticles. When the researchers tested these particles in mouse models of melanoma, they found the same correlation. The findings suggest that this biomarker could be used to help doctors identify patients whose tumors are more likely to respond to nanoparticle-based therapies.

Now, the researchers are trying to uncover the mechanism of how SLC46A3 regulates nanoparticle uptake. If they could discover new ways to decrease cellular levels of this protein, that could help make tumors more susceptible to drugs carried by lipid nanoparticles. The researchers are also working on further exploring some of the other biomarkers they found.

This screening approach could also be used to investigate many other types of nanoparticles that the researchers didnt look at in this study.

The sky is the limit in terms of what other undiscovered biomarkers are out there that we just haven't captured because we haven't screened them, Boehnke says. Hopefully its an inspiration for others to start looking at their nanoparticle systems in a similar manner.

The research was funded, in part, by SPARC funding to the Broad Institute, the Marble Center for Cancer Nanomedicine at the Koch Institute, and the Koch Institute Support (core) Grant from the National Cancer Institute.

Here is the original post:
How different cancer cells respond to drug-delivering nanoparticles - MIT News

Read More...

Nanorobots Market to close to USD 19576.43 million with CAGR of 12.23% during the forecast period to 2029 – Digital Journal

Monday, July 25th, 2022

Nanorobots Marketare also utilised in the maintenance and assembly of complex systems. Nanorobotics widespread use in the medical field is also propelling market revenue growth. In individuals with sickness or weakened immunity, nanorobots can act as antiviral or antibody agents. In addition to cancer detection and treatment, the technique is also being employed in gene therapy.

Get a Sample PDF of the report https://www.databridgemarketresearch.com/request-a-sample/?dbmr=global-nanorobots-market

A nano robot is a new technology for designing, programming, and controlling nanoscale robots. Nanorobots are capable of doing specified jobs with components that are on the nanometer size (10-9 meters). Nanorobots are capable of diagnosing certain types of cancer and serve a critical role in human pathogen protection and treatment.Biomedicalinstrumentation, pharmacokinetics, surgical procedures, diabetes monitoring, and other healthcare services can all benefit from nano robots. Data Bridge Market Research analyses that the nanorobots market was valued at USD 7739.19 in 2021 and is further estimated to reach USD 19576.43 million by 2029, and is expected to grow at a CAGR of 12.23% during the forecast period of 2022 to 2029.

Some of the major players operating in the nanorobots market are

To Gain More Insights into the Market Analysis, Browse Summary of the Research [emailprotected] https://www.databridgemarketresearch.com/reports/global-nanorobots-market

NanorobotsMarket Dynamics

Drivers

In the healthcare industry, advances in molecular robot technology are increasingly being used to execute complex tasks and eliminate human error.

Recent research in DNA nanotechnology supports the use of nanorobots inregenerative medicineon a big scale which is further anticipated to contribute to the market growth.

Nanotechnology will be used in the medical field to aid in the detection and treatment of diseases such as diabetes.

Opportunities

In addition, the growing application areas of microscopes and incorporation of microscopy with spectroscopy are further estimated to provide potential opportunities for the growth of the nanorobots market in the coming years.

GlobalNanorobotsMarket Scope and Market Size

The nanorobots market is segmented on the basis of type and application. The growth amongst these segments will help you analyze meager growth segments in the industries and provide the users with a valuable market overview and market insights to help them make strategic decisions for identifying core market applications.

Type

On the basis of type, the nanorobots market is segmented into microbivore nano robots, respirocyte Nano robots, clottocyte Nano robots, cellular repair Nanorobots and others. The others segment is further sub segmented into Nano swimmers and bacteria powered robots.

Application

On the basis application, the nanorobots market is segmented into nano medicine, biomedical, mechanical and other applications.

NanorobotsMarket Regional Analysis/Insights

The nanorobots market is analysed and market size insights and trends are provided by country, type and application as referenced above. The countries covered in the nanorobots market report are U.S., Canada and Mexico in North America, Germany, France, U.K., Netherlands, Switzerland, Belgium, Russia, Italy, Spain, Turkey, Rest of Europe in Europe, China, Japan, India, South Korea, Singapore, Malaysia, Australia, Thailand, Indonesia, Philippines, Rest of Asia-Pacific (APAC) in the Asia-Pacific (APAC), Saudi Arabia, U.A.E, South Africa, Egypt, Israel, Rest of Middle East and Africa (MEA) as a part of Middle East and Africa (MEA), Brazil, Argentina and Rest of South America as part of South America.

North America dominates the nanorobots market due to the rise in the adoption of nano robotics technology. Furthermore, the presence of sophisticated healthcare infrastructure will further boost the growth of the nanorobots market in the region during the forecast period. Asia-Pacific is projected to observe significant amount of growth in the nanorobots market due to the rise in the attention of the manufacturers.

Browse the complete table of contents at- https://www.databridgemarketresearch.com/toc/?dbmr=global-nanorobots-market

Top Healthcare Reports:

North America Laboratory Hoods and Enclosure Market Size, Shares, Trends and Industry Growth Outlook https://www.databridgemarketresearch.com/reports/north-america-laboratory-hoods-and-enclosure-market

North America Biosurgery Market Size, Shares, Trends and Industry Growth Outlook https://www.databridgemarketresearch.com/reports/north-america-biosurgery-market

Europe Biosurgery Market Size, Shares, Trends and Industry Growth Outlook https://www.databridgemarketresearch.com/reports/europe-biosurgery-market

Asia-Pacific Biosurgery Market Size, Shares, Trends and Industry Growth Outlook https://www.databridgemarketresearch.com/reports/asia-pacific-biosurgery-market

Pressure Guidewires Market Size, Shares, Trends and Industry Growth Outlook https://www.databridgemarketresearch.com/reports/global-pressure-guidewires-market

Nephrostomy Guidewires Market Size, Shares, Trends and Industry Growth Outlook https://www.databridgemarketresearch.com/reports/global-nephrostomy-guidewires-market

Cardiac Guidewires Market Size, Shares, Trends and Industry Growth Outlook https://www.databridgemarketresearch.com/reports/global-cardiac-guidewires-market

Introducer Sheaths and Guidewires Market Size, Shares, Trends and Industry Growth Outlook https://www.databridgemarketresearch.com/reports/global-introducer-sheaths-and-guidewires-market

About Data Bridge Market Research:

An absolute way to forecast what future holds is to comprehend the trend today!

Data Bridge Market Research set forth itself as an unconventional and neoteric Market research and consulting firm with unparalleled level of resilience and integrated approaches. We are determined to unearth the best market opportunities and foster efficient information for your business to thrive in the market. Data Bridge endeavours to provide appropriate solutions to the complex business challenges and initiates an effortless decision-making process. Data Bridge is an aftermath of sheer wisdom and experience which was formulated and framed in the year 2015 in Pune.

Data Bridge Market Research has over 500 analysts working in different industries. We have catered more than 40% of the fortune 500 companies globally and have a network of more than 5000+ clientele around the globe. Data Bridge adepts in creating satisfied clients who reckon upon our services and rely on our hard work with certitude. We are content with our glorious 99.9 % client satisfying rate.

Contact Us:-

Data Bridge Market Research

US: +1 888 387 2818

UK: +44 208 089 1725

Hong Kong: +852 8192 7475

Email:-[emailprotected]

Read the rest here:
Nanorobots Market to close to USD 19576.43 million with CAGR of 12.23% during the forecast period to 2029 - Digital Journal

Read More...

Microscopic Robots Made from White Blood Cells Could Treat and Prevent Life-Threatening Illnesses – Good News Network

Monday, July 25th, 2022

An image of the neutrobot at work SWNS

White blood cells have been made into a kind of micro-robot that could treat and prevent life threatening illnesses, according to scientists in China.

The tiny, laser-guided machines are made from white blood cells called neutrophilsand are set, the scientists think, to revolutionize medicine.

Named neutrobots, they can deliver drugs to precise locations in the body after being directed by laser beams. Other devices developed to perform similar tasks contain synthetic materials which in several instances have triggered serious immune responses and biological rejection.

The neutrophil microcrafts can be remotely activated by light and then navigated to the target position along a designated route, said project leader Dr. Xianchuang Zheng, of the Institute of Nanophotonics at Jinan University, China.

In experiments on the tails of zebrafish, the Chinese team used an incredibly impressive and precise laser called a scanning optical tweezers (SOTs) to perform three potential applications with the neutrobots.

SOTs point a highly focused beam to hold and move microscopic and sub-microscopic particles in a manner similar to tweezers, and were used with the help of the neutrobots for cell therapy, targeted nanomedicine, and removal of debris or organic waste that can trigger disease.

SIMILAR: Protein Motors Can Swim Around Wounds to Kill Bacteria And Deliver Lifesaving Drugs

Additionally, the neutrobots could carry payloads directly to a tumor, blood clot, or infection.

By integrating the non-invasive manipulation of optical tweezers and innate immunologic function of neutrophils, the proposed microcraft provides new insight for the construction of native medical microdevices for precision medicine, Dr. Zheng said.The neutrophil microcraft can be activated or recovered in a controlled manner and the migration is fully steerablejust like driving a vehicle.

The zebrafish have high blood circulation to their tails, allowing the neutrophils to be clearly identified through fluorescence labelling.

Its significantly less scary than other nanobot medical applications being developed elsewhere, like these miniscule crabs theorized as agents to dispose of tumors, clear clogged arteries, or stop internal bleeding.

Ordinary neutrophils are often slow and go in the wrong direction, part of why the development of micro-robotics has steered more towards artificial solutions.

Maneuvers of the neutrobots include remote activation by SOTs at a desired time and locationprecisely navigated to achieve a designed route and speed.

Not only do medical microrobots currently in development require injections or the consumption of capsules to get them inside an animal or person, but researchers have found the objects trigger immune reactions in small animals, resulting in their removal before they can perform their jobs.

CHECK OUT: For the First Time, Researchers Use Healthy Stem Cells for Future Type 1 Diabetes Cure

The study in the journal ACS Central Science is the first time they have been guided with lasers in living animals. The light-driven microrobot could be moved up to a velocity of 1.3 microns a secondthree times faster than a neutrophil naturally moves.

In one test, a neutrobot was moved through a blood vessel wall into the surrounding tissue. Another picked up and transported a plastic nanoparticle, showing its potential for carrying medicine. When one was pushed toward red blood cell debris, it engulfed the pieces.

It seems pure science fiction, but could become standard of care.

SHARE This Medical Miracle With Your Friends On Social Media

Read more:
Microscopic Robots Made from White Blood Cells Could Treat and Prevent Life-Threatening Illnesses - Good News Network

Read More...

Nano Therapy Market 2022 Growth Is Expected To See Development Trends and Challenges to 2030 This Is Ardee – This Is Ardee

Monday, July 25th, 2022

New York, United States Report Ocean published the latest research report on the Nano Therapy market. In order to comprehend a market holistically, a variety of factors must be evaluated, including demographics, business cycles, and microeconomic requirements that pertain precisely to the market under study. In addition, the Nano Therapy market study demonstrates a detailed examination of the business state, which represents creative ways for company growth, financial factors such as production value, key regions, and growth rate.

Key Companies Covered in theNano TherapyResearch areNanosphere Inc., Cristal Therapeutics, DIM, NanoMedia Solutions Inc., Luna, Nanobiotix, Sirnaomics Inc., Selecta Biosciences Inc., NanoBioMagnetics.n.nu, Nanospectra Biosciences Inc., Tarveda Therapeutics, Parvus Therapeutics, CytImmune Science Inc., Nanoprobes Inc., NanoBio Corporation, Smith and Nephewand other key market players.

TheNano Therapymarket revenue was $$ Million USD in 2016, grew to $$ Million USD in 2022, and will reach $$ Million USD in 2030, with a CAGR of % during 2022-2030.

The Centers for Medicare and Medicaid Services data estimates that the U.S. national healthcare expenditure surpassed US$ 4.1 trillion in 2020 and is forecast to reach US$ 6.2 trillion by 2028. According to the Commonwealth Fund, the U.S. expended nearly 17% of gross domestic product (GDP) on healthcare in 2018. Switzerland was the second-highest-ranking country, expending 12.2%. In addition, New Zealand and Australia devote only 9.3%.Request To Free Sample of This Strategic Report:-https://reportocean.com/industry-verticals/sample-request?report_id=mai284010

According to the U.S. Bureau of Labor Statistics, employment in healthcare fields is forecast to grow 16% from 2020 to 2030, much quicker than the standard for all occupations, counting about 2.6 million new jobs. This estimated growth is mainly due to an elder population, showing to greater demand for healthcare services. The median annual wage for healthcare practitioners and technical fields (such as registered nurses,0020physicians and surgeons, and dental hygienists) was US$ 75,040 in May 2021, which was greater than the median annual wage for all occupations in the economy of US$ 45,760.

Market Overview

Nano therapy is a branch of nanomedicine that involves using nanoparticles to deliver a drug to a given target location in the body so as to treat the disease through a process known as targeting.

GlobalNano TherapyMarket Development Strategy Pre and Post COVID-19, by Corporate Strategy Analysis, Landscape, Type, Application, and Leading 20 Countries covers and analyzes the potential of the global Nano Therapy industry, providing statistical information about market dynamics, growth factors, major challenges, PEST analysis and market entry strategy Analysis, opportunities and forecasts. The biggest highlight of the report is to provide companies in the industry with a strategic analysis of the impact of COVID-19. At the same time, this report analyzed the market of leading 20 countries and introduce the market potential of these countries.

Most important types of Nano Therapy products covered in this report are:Nanomaterial and Biological DeviceNano Electronic BiosensorMolecular NanotechnologyImplantable Cardioverter-Defibrillators

Most widely used downstream fields of Nano Therapy market covered in this report are:Cardiovascular DiseaseCancer TherapyDiabetes TreatmentRheumatoid ArthritisOthers

Top countries data covered in this report:United StatesCanadaGermanyUKFranceItalySpainRussiaChinaJapanSouth KoreaAustraliaThailandBrazilArgentinaChileSouth AfricaEgyptUAESaudi Arabia

SPECIAL OFFER (Avail an Up-to 30% discount on this report) :-https://reportocean.com/industry-verticals/sample-request?report_id=mai284010

Chapter 1 is the basis of the entire report. In this chapter, we define the market concept and market scope of Nano Therapy, including product classification, application areas, and the entire report covered area.

Chapter 2 is the core idea of the whole report. In this chapter, we provide a detailed introduction to our research methods and data sources.

Chapter 3 focuses on analyzing the current competitive situation in the Nano Therapy market and provides basic information, market data, product introductions, etc. of leading companies in the industry. At the same time, Chapter 3 includes the highlighted analysisStrategies for Company to Deal with the Impact of COVID-19.

Chapter 4 provides breakdown data of different types of products, as well as market forecasts.

Different application fields have different usage and development prospects of products. Therefore, Chapter 5 provides subdivision data of different application fields and market forecasts.

Chapter 6 includes detailed data of major regions of the world, including detailed data of major regions of the world. North America, Asia Pacific, Europe, South America, Middle East and Africa.

Chapters 7-26 focus on the regional market. We have selected the most representative 20 countries from 197 countries in the world and conducted a detailed analysis and overview of the market development of these countries.

Chapter 27 focuses on market qualitative analysis, providing market driving factor analysis, market development constraints, PEST analysis, industry trends under COVID-19, market entry strategy analysis, etc.

Access full Report Description, TOC, Table of Figure, Chart, etc. @:-https://reportocean.com/industry-verticals/sample-request?report_id=mai284010

Key Points:Define, describe and forecast Nano Therapy product market by type, application, end user and region.Provide enterprise external environment analysis and PEST analysis.Provide strategies for company to deal with the impact of COVID-19.Provide market dynamic analysis, including market driving factors, market development constraints.Provide market entry strategy analysis for new players or players who are ready to enter the market, including market segment definition, client analysis, distribution model, product messaging and positioning, and price strategy analysis.Keep up with international market trends and provide analysis of the impact of the COVID-19 epidemic on major regions of the world.Analyze the market opportunities of stakeholders and provide market leaders with details of the competitive landscape.

Table of Content:

For More Information or Query or Customization Before Buying, Visit @:https://reportocean.com/industry-verticals/sample-request?report_id=mai284010

Key Benefits for Industry Participants & Stakeholders

Key Questions Answered in the Market Report

Request Full Report :-https://reportocean.com/industry-verticals/sample-request?report_id=mai284010

About Report Ocean:We are the best market research reports provider in the industry. Report Ocean believes in providing quality reports to clients to meet the top line and bottom line goals which will boost your market share in todays competitive environment. Report Ocean is a one-stop solution for individuals, organizations, and industries that are looking for innovative market research reports.

Get in Touch with Us:Report Ocean:Email:sales@reportocean.comAddress: 500 N Michigan Ave, Suite 600, Chicago, Illinois 60611 UNITED STATESTel:+1 888 212 3539 (US TOLL FREE)Website:https://www.reportocean.com

See the original post:
Nano Therapy Market 2022 Growth Is Expected To See Development Trends and Challenges to 2030 This Is Ardee - This Is Ardee

Read More...

Artificial Intelligence (AI), Cloud Computing, 5G, And Nanotech In Healthcare: How Organizations Are Preparing Best For The Future – Inventiva

Monday, July 25th, 2022

Artificial Intelligence (AI), cloud computing, 5G, and Nanotech in healthcare: How organizations are preparing best for the future

Automation, digitalization, and technological enablement are having a significant impact on several industries. The healthcare industry is not an exception. The healthcare delivery system in India is changing and is about to advance significantly. The pandemic has shown that healthcare organizations can become innovative, flexible, and resilient by utilizing tech-enabled business models that place data at the core.

Additionally, healthcare organizations quickly realize that no matter how technically advanced their services or products are, they will no longer be applicable. To produce not just an enhanced product or service but also a better healthcare experience, it is imperative to connect with users along the healthcare value chain, be they patients or physicians. Fortunately, technological progress has accelerated the process of change required for Indian healthcare to become digitally linked and shown promise for enhancing peoples healthcare experiences.

India has already begun developing a national digital framework to create a digital health ecosystem on a national scale. The market for digital healthcare in India was estimated to be worth INR 116.61 billion in 2018 and is projected to reach INR 485.43 billion by 2024, growing at a CAGR of 27.41 per cent. Adopting electronic health records for the whole population is one of the several steps made in that regard.

Healthcare organizations are quickly embracing innovative technology to change how care is delivered in the nation and benefit the healthcare ecosystem as a solution to address the problems that the countrys healthcare system is now facing. Here are a few new technologies that are changing things:

Artificial Intelligence (AI)

Artificial intelligence (AI), machine learning (ML), and digital representations of the human bodys physiology make it possible to anticipate the chance that chronic diseases will advance based on the decisions being made. By using these simulations, healthcare professionals can better comprehend options and therapies and their consequences on patient health outcomes and influence on related expenditures.

Additionally, AI is helping healthcare professionals manage illnesses holistically, better coordinate care plans, and help patients manage and adhere to their treatment regimens. Further, statistics indicate that administrative expenses account for 30% of healthcare expenditures. The bulk of these duties, such as keeping track of bills that need to be paid and maintaining records, may be automated with AI, considerably cutting expenses.

Cloud Computing

The collaboration between physicians, nurses, and departments has grown crucial as healthcare organizations throughout the nation transition to value-based care. Thanks to cloud computing, accessing patient information has gone from a sluggish and laborious procedure to a quick and easy process.

With cloud computing, data may be stored centrally and made accessible from any location at any time. In addition, cloud infrastructure allows users to adjust health data storage depending on the new patient volume. IoT-enabled devices are being offered to patients by a variety of healthcare providers. By connecting these devices to a healthcare providers cloud system, patient data may be swiftly delivered to the doctor. This makes for a quicker diagnosis and better treatment.

The 5G Network

Every aspect of healthcare has the potential to be improved by a 5G connection, particularly since the healthcare sector is still recovering from the ravages of the epidemic. Large data files and real-time, high-definition video may be transmitted over a fast network to handle telemedicine appointments. Patients may reach medical professionals more quickly and receive treatment more quickly thanks to the use of 5G, especially in remote places.

Nanotech

Utilizing nanotechnology has given the healthcare sector new opportunities. Researchers and scientists use this technology to improve medical imaging, target tumours, and medication delivery systems. Additionally, the technique reduces costs, speeds up DNA sequencing, and provides scaffolding for tissue regeneration or wound healing. Further, artery obstructions are being removed by nanobots or micro-scale robots, as are quick biopsies of worrisome cancerous tumours.

The healthcare sector is anticipated to strengthen in 2022, thanks to groundbreaking discoveries and technologies. Most of the significant modifications are still in the future!

This article will examine the main medical technology developments and changes anticipated for the medical industry shortly.

The focus is often on lowering the cost, increasing access to healthcare services, and identifying and treating problems sooner rather than later. The US healthcare industry is expanding quickly; by 2026, the national healthcare products value is predicted to reach USD 6 trillion. Its never too late to prepare for the many available healthcare possibilities. Make sure to use digital technology to increase revenue, and staff productivity, achieve better financial results, and improve patient care.

Artificial intelligence (AI) technology has advanced quickly in recent years, and this trend will persist in 2022. Among the various sectors that gain from AI, medicine mainly uses it for accurate illness diagnosis and detection, albeit this is not the only use. IBM Watson, for instance, is one of the AI systems already accessible for use in business and healthcare.

Computed Tomography Scan Analysis

The demand for computed diagnostic professionals (radiologists) has significantly grown since the COVID-19 epidemic struck the worlds population.

AI-powered technology could provide a solution. AI systems can quickly evaluate CT images from hundreds of patients, identifying pneumonia patterns brought on by COVID-19 and informing physicians of these. That would make up for the lack of qualified labour in this industry.

Before our eyes, innovative ideas are taking shape. For instance, a deep learning model for imaging COVID-19 was developed to recognize COVID-19 patterns in CT images automatically. The Microsoft-sponsored InnerEye research project is another promising endeavour for processing computed tomography scans. Even though accuracy has significantly increased, radiologists are still hesitant to entrust the digital mind with crucial choices. AI cannot be held responsible for a poor diagnosis or ineffective course of therapy. Instead, the expert who decided to employ AI must pay for their error and take every precaution to limit the adverse effects while maximizing this digital health trend.

Because of this, most cutting-edge clinics employ AI as an additional tool rather than a stand-alone diagnostic or therapeutic method. It is excellent for validating current diagnoses or enhancing research data that has been gathered conventionally.

Machine Learning in Biopharma and Medtech

The pharmaceutical sector will effectively capitalize on technological advancements in healthcare by utilizing AI to discover new medications. A group of British and Japanese scientists filed a patent for the first medicinal molecule created by AI in January 2020. The drug will be used to treat obsessive-compulsive disorder after it passes muster for testing on humans.

AI-enhanced lab research has also led to the discovery of other intriguing formulations since late 2021, including some potential treatments for uncommon and extremely severe ailments. Numerous cutting-edge studies, such as molecular modelling and simulation of chemical reactions in multi-factor settings, leverage AI and machine learning approaches to support chemical experiments and therapeutic medication development.

Since many tests may be carried out electronically, this method enables scientists to reduce the number of expensive onsite experiments using reagents and high-tech lab equipment. It also hastens the discovery of critical scientific innovations.

Automating Hospital Workflows using Robotics

Startups from all over the world will pour hundreds of millions of dollars into creating AI projects in 2022, including various forms of robotic systems, which may enable them to reduce the cost of recruiting trained medical personnel. The intention is to assist medical facilities that already have a severe shortage of nurses and clinicians as a result of the COVID-19 pandemic, which has put the entire healthcare system under unprecedented strain, rather than to replace people with machines, which would lead to unemployment and a decline in social standards. Learn more about creating medical HR software to assist HR professionals in addressing the U.S. medical workforce problem.

Innovative enterprises should keep in mind the medical communitys restrictions on AI-driven software, its capabilities, and its applications as they work to realize these lofty goals. Modern medicine has countless applications for robotic assistance and automated systems, including cleanliness, surgery, remote diagnostics, etc. However, the healthcare systems top goals will always be the well-being of medical personnel and the effective treatment of patients.

In light of this, robotic and AI-driven technologies will be employed to support current procedures rather than replace them, resulting in a potent fusion of the present and the future. Daring projects combined with sound regulation are a prominent trend in the digital health sector. It will enable physicians to utilize cutting-edge technology fully, learn to apply it in satisfying and secure ways, and steer clear of any pitfalls.

Symptom Checker Chatbots

Chatbots are computer programs with artificial intelligence (AI) support (often not true AI but powerful algorithms) that engage in meaningful conversations that resemble those between humans using voice, text, or option-based input.

Every area, including healthcare and medical consultancy, is seeing a rise in their use. These solutions, available around-the-clock online or via mobile devices, can provide preliminary medical diagnoses and health advice based on input and complaints from a patient. Chatbots can also be connected with unique patient portals for hospitals and clinics. When human medical assistants are unavailable, they can assist patients with their health issues and worries, even in acute situations (such as disaster-induced overloads of call centres, peak or non-operation hours, etc.)

These chatbots can aid patients in determining their subsequent actions and motivate them to seek professional medical advice when necessary. Care must be exercised, though, since it may result in inaccurate self-diagnosis and disinformation.

Globalization of AI Requirements in Healthcare

Ten recommendations that can serve as the foundation for the creation of GMLP have been developed by a powerful coalition of the U.S. FDA, Health Canada, and the United Kingdoms Medicines and Healthcare products Regulatory Agency (MHRA) (Good Machine Learning Practice). These guidelines will help programmers and AI engineers create secure medical equipment, software, and systems powered by artificial intelligence and machine learning (AI/ML) components. This shows that governments take the potential and hazards posed by AI exceptionally seriously and would want to regulate the use of AI in healthcare practices as soon as feasible.

Adoption of AI-backed Technologies

The main drawback of the advancement in artificial intelligence technology is that hackers will use it to target medical systems and steal secured healthcare information, rather than only to save human lives or help medical personnel with their everyday responsibilities. One of the growing dangers to the security of medical technology in 2022 and beyond is sophisticated malware with AI capabilities.

Which medical technology solutions are in jeopardy? Almost everything could have weak security or security flaws, such as wireless systems in hospitals, clinics, or health centres, EMR/EHR solutions, IoT, and computer-aided healthcare provider and health insurance company systems. Intricate phishing and social engineering assaults can also target clients and staff members.

Hackers may use this feature to simulate personal identities as part of next-generation super-personalized social engineering and phishing campaigns, which have the potential to be as dangerous and deceptive as ever before due to AIs growing capacity to mimic photorealistic 3D faces or organically sounding voices. This necessitates installing high-end data protection methods that can mitigate any hazards by hacker techniques aided by AI.

Despite all the technological safeguards and healthcare providers knowledge, statistics on data breaches show a sharp rise over the previous ten years, with infractions peaking in 20202021. These data breaches impact thousands of patients around the US. Hopefully, healthcare organizations will focus more on data security and their digital ecosystems in 2022. Healthcare cybersecurity is quickly emerging as a popular technological topic this decade.

How to Prevent Data Breaches in Healthcare?

The security of medical records, which is governed by HIPAA and EDI in the healthcare industry, is a top priority for the US government.

Every healthcare professional should follow a few effective procedures:

Facial Recognition With Masks

Face recognition technology, which permits approved access for medical professionals to mobile devices or workstations, rose to popularity due to its ease.

Deep learning facial recognition algorithms must be used in the COVID-19 pandemic to distinguish staff members wearing masks. Specific sources claim that some businesses have already achieved 99.9% accuracy in the face recognition of people wearing masks.

Nanotechnology may still seem like science fiction, yet it is steadily influencing our daily lives. By the end of 2021, fantastic news about the creation of tiny, organic robots that can reproduce themselves will reach every part of the globe. Therefore, it is realistic to anticipate that 2022 will bring forth several significant advancements in the nanomedicine sector. Early investments are welcome in the burgeoning nanomedicine industry.

Here is a brief explanation of what nanomedicine is: it uses nanoscale (microscopically small) materials and objects, like biocompatible nanoparticles, nanoelectronic devices, or even nanorobots, for specific medical uses and manipulations, like the diagnosis or treatment of living organisms. The injection of a group of nanorobots into a humans blood vessels might be utilized as a possible hunter for cancer cells or viruses, for instance. This method is anticipated to effectively combat a wide range of cancers, rheumatoid arthritis, and other hereditary, oncologic, or auto-immune illnesses on a cellular level (or even become an ultimate solution to them).

Even though the IoMT will not be a novel concept by 2022, this industry will experience exponential growth. Every one of the several digital health developments in this sector has excellent applications for healthcare professionals and has the potential to save billions of dollars.

Apps for remote health monitoring and wellness will continue to grow in popularity in 2022. You may discover a decent number of professional (and many other semi-professionals) mobile applications for healthcare and health in the GooglePlay or iTunes libraries.

Some mobile applications can connect to wearables like pulsometers or fitness trackers to use the information gathered by the sensors attached to your body to report or evaluate your health problems, including blood pressure, body temperature, pulse, and other metrics.

Autonomous nursing robots or self-moving smart gadgets can substantially assist by minimizing the tasks linked to supply management or sanitary maintenance that medical professionals must perform.

Different types of robots can work in various hospital-based settings and jobs, protecting human workers from infection risks or stress from the extreme burden imposed on many US hospitals by a COVID-19 patient overflow. An Italian hospital, for instance, employed robot nurses during a COVID-19 severe epidemic. These clever assistants were utilized to remotely check patients blood pressure and oxygen saturation levels because they are two critical indicators of their present state of health. Those levels might decline quickly, necessitating emergency intervention for the patient. This drastically decreased the requirement for nurses to visit patients in person.

Healthcare systems primarily concentrate on elements within their area of expertise: quality and price of medical services while generating risk assessments and accumulating illness data. However, they represent the very beginning. Before patients feel symptoms and seek the help of physicians, a host of other less apparent circumstances impact them.

Initial health problems are caused by factors other than a lack of care. Their origins are deeper; they are found in social, environmental, and demographic contexts that are rarely taken into account in the context of conventional clinical diagnoses.

Medical institutions mainly handle symptoms and offer advice on lifestyle modifications, having a minimally significant influence on treatment results (between 10% and 20%). In addition, between 80% and 90% of health outcomes are determined by non-medical variables. The term social determinants of health refers to these elements (SDOH).

In 2022, healthcare providers will approach SDOH with greater caution than ever before and carefully review patients medical histories, taking into account details that were overlooked in earlier years.

Doctors will shift from treating symptoms to prediction and prevention based on patients SDOH predisposition to particular diseases to stop the advancement of dangerous health concerns and reduce individual medical expenditures.

More implant-related options and technology will hit the global and American healthcare markets in 2022. This offers dramatically improved regenerative medicine effectiveness, patient rehabilitation, and a solution for many disabilities previously thought to be incurable.

Increasing the Use of 3D Bioprinting

By 2027, it is anticipated that the medical industrys volume of 3D printing potential will surpass $6 billion. Even if 3D printing biocompatible implants is not a novel technique in 2022, new materials and more advanced prosthetic methods will make this technology more dependable and available to a more extensive range of patients. In particular, it is anticipated that advancements in 3D bioprinting technology would improve the following areas:

Neural Implants

In 2022, effective options for brain-computer implants are anticipated to debut. Neuralink plans to begin inserting its devices into human brains at least in 2022. More businesses, groups, initiatives, and startups are preparing to market their neuro-implants for various medical requirements, including regaining functional independence in patients with multiple forms of paralysis or blindness.

For instance, it was stated that by the end of 2021, a team of scientists had implanted a microelectrode array (a penny-sized implant) into the visual brain of a blind individual, enabling her to recognize several letters and shapes. Although there is still a long way to go, brain implants potential to help people with various disabilities seems to have a genuinely fantastic and promising future.

Healthcare businesses will employ an exponentially growing number of data sources, and the volume of gathered healthcare data (including patient records, DICOM files, and medical IoT solutions) will also rapidly increase. Medical service providers will seek contemporary platforms, such as data fabrics, to combine and handle massive amounts of dispersed and structured data.

It will be among the tasks to build safe multi-cloud solutions capable of transporting significant amounts of data to manage, store, and mine it for valuable insights and to link siloed data with the healthcare systems.

Healthcare payers and providers frequently have interests that clash. The standard of their collaborative work decreases when both sides take absolutist positions. Patients, therefore, do not get the care they need. They are frequently mistreated, have to wait longer, and pay more.

Both payers and providers should embrace a value-oriented mindset and work toward group goals rather than individual success. All parties must understand that they are working for the same purposeproviding high-end healthcare to the publicand that if either suffers losses, the other will no longer support them. All organizations involved in the healthcare sector will hopefully try their utmost to learn how to collaborate in 2021. They will concentrate on delivering complete care, move from settling disagreements to cooperation, and communicate information to support successful decision-making.

The healthcare sector is already seeing the effects of the vast diversity, universality, and growth of digital communication channels. A brand-new channel for distributing medical data is telehealth. It entails delivering healthcare services remotely through the Internet, videoconferencing, streaming services, and other communication technologies. Long-distance education for patients and medical professionals is included in telehealth. Telehealth has achieved widespread acceptance and has evolved into a regular procedure in 2021. Modern clinics already counsel their patients electronically. This kind of communication will replace conventional internal dialogues and receive full regulatory permission in the upcoming years.

With the introduction of 5G wireless, telehealth will expand rapidly and be universally adopted shortly.

Here is the original post:
Artificial Intelligence (AI), Cloud Computing, 5G, And Nanotech In Healthcare: How Organizations Are Preparing Best For The Future - Inventiva

Read More...

Potassium Channels as a Target for Cancer Therapy & Research | OTT – Dove Medical Press

Monday, July 25th, 2022

IntroductionPotassium Channels Structure and Function

K+ channels are membrane proteins that facilitate the selective potassium ion flow under an electrochemical gradient. Besides the voltage-dependent gating, K+ channels are activated by several intracellular and extracellular stimuli,13 including extracellular and intracellular pH, kinases, SUMOylation, G protein-coupled receptors, stretch, and lipid regulation among others.1,2,4 These channels can be grouped into three major families according to their subunit structure: the Kv (voltage-gated K+ channel), Kir (inwardly rectifying K+ channel), and K2P (two-pore K+ channels)1,2,4 (see Figure 1AC). K+ channels need four pore-forming domains, which together, generate a functional and selective ion pathway. Thus, the Kv and Kir channels need four subunits to form a functional pore in a tetramer architecture.2,4 On the other hand, the K2P family forms a functional channel in a dimer architecture (see Figure 1C).1,5 For each K+ channel, subunit is also clearly identifiable in this pore-forming P domain, characterized by the amino-acid signature GYG that confers the high selectivity to K+ ions observed in potassium channels.6 The Kv channels present a topology model with six transmembrane domains (TM1-6) and one pore-forming domain (P) (Figure 1A). This Kv family represents the most numerous K+ channel group, with 40 genes encoding for K+ subunits in humans. The transmembrane domain (TM4) into Kv channels present positive charged amino acids (Arg and Lys) which act as voltage sensors generating the channel opening in response to changes in voltages7,8 (Figure 1A).

Figure 1 Schematic structure of potassium channels. Lateral view of monomers of a (A) voltage-gated potassium channel (Kv), (B) inward rectifier potassium channel (Kir) and (C) two-pore domain potassium channel (K2P), showing the transmembrane segments, the cap and their corresponding pore-forming loops (P-loops).

For the Kir channel family, each subunit has one P domain and two transmembrane domains (Figure 1B), and this family is integrated by 15 different genes grouped into 7 subfamilies (Kir1.x to Kir7.x), identified in mammals.24 Kir potassium channels present a gating governed by a voltage-dependent blocked process by Mg2+ and polyamines.3,4 Moreover, the gating voltage-dependence for Kir channels defines their characteristic K+ inward rectification (movement into the cell).3,4

K2P family has a two-pore forming domain and four transmembrane domains, whose subunits assemble as dimers (Figure 1C). Fifteen different genes found in mammals encode these family subunits and are grouped into 6 subfamilies according to their homology and functional properties.1,5,9,10 The K2P channels are voltage-independent and highly modulated channels, playing key roles in the maintenance of the resting membrane potential in the cells. These channels are recognized as the leak or background potassium channels.1,5

Cancer condition is a major non-infectious public health problem and affects millions of people worldwide. Cancer is also the second most common cause of death after cardiovascular disease, with 10.0 million deaths (9.9 million excluding nonmelanoma skin cancer) in 2020,11 with estimated 28.4 million cases in 2040, a 47% rise from 2020.11 The Americas accounts 20.9% of cancer incidence and 14.2% of mortality worldwide,11 and for Latin America and the Caribbean region, it has been estimated that 1.7 million cancer cases will be diagnosed by 2030, whereas more than one million of the cases will die per year.12 Currently, more than 100 types of cancer have been identified, being breast (24.5%), colorectal (9.4%), lung (8.4%), cervix (6.5%), and thyroid (4.9%) most frequent types of cancer in women.11 Meanwhile, lung cancer (14.3%), prostate (14.1%), colorectal (10.6%), stomach (7.1%) and liver (6.3%) are the most common type of cancers among men.11

In recent years, ion channels, and particularly potassium (K+) channels, have emerged as relevant molecular targets for the development of cancer treatments.1316 The association between potassium (K+) channels and cancer disease is mainly due to the participation of those proteins in the cancer progression mechanisms.13,1618 Potassium channels are complex proteins that form selective pores for K+ conduction in biological membranes, which are critical in K+ homeostasis, cell volume regulation, setting of resting membrane potentials, the neurotransmitters release, and regulating the excitability of neurons and muscle tissue.1,2,19

For instance, overexpression of different potassium channels, such as Kv, Ca2+-activated (KCa), ether go-go human (hEag), ATP-sensitive (KATP), and K2P has been reported in prostate cancer cells, colon, lung, breast, and other organs.20 It has been hypothesized that there is a relationship between K+ channel overexpression and the generation and growth of malignant tumors,14,17,18,21 being involved in cell proliferation, apoptosis, and differentiation.14,18,21 Studies performed with pharmacological drugs that specifically block K+ channels have shown antitumor effects by inhibiting tumor growth directly or enhancing the effectiveness of chemotherapeutics or cytotoxic drugs as a combined therapeutical strategy.18,22 On the other hand, several studies have exhibited the impact of Kv channels (Eag1, HERG, and Kv1.3), Kir (Kir3.1), and Ca2+-activated potassium channels (KCa1.1 and KCa3.1) in cancer cell proliferation and their association with tumorigenesis process in patients and animal models.17,18,2123

A relatively minor amount of research has focused on the relationship between K2P channels and cancer.18,24 Those studies suggested that TASK-3 is involved in tumor formation in several types of human cancer.14,18,24,25 Moreover, other investigations showed that breast cancer cells metastatic properties depend on TASK-3 expression levels.20

By contrast, the Kir channels have been related to different cancer conditions, such as lung, gastric, prostate, stomach, breast, and choroid plexus.2632

The Kv channel is the most numerous K+ channel family, playing relevant functions in various cellular and physiological processes.2 Additionally, these channels have been implicated in cancer hallmarks, such as cell proliferation, cancer progression, and migration14,15,3335 (Figure 2 and Table 1).

Table 1 Potassium Channels Associated with Cancer

Figure 2 Roles of K+ channels in cancer hallmarks. Cellular processes associated with changes in expression and increased activity of the two-pore domain K+ channel (K2P), the inward rectifier K+ channel (Kir), and the voltage-gated K+ channel (Kv) in cancer. K+ channels structure in ribbon representation were generated with the PDB 6RV2, 7s5z and 7wf4.

The Kv1.1 (KCNA1) channel is relevant for potassium transport in the central nervous system and kidney.36,37 Moreover, it is overexpressed in cervical cancer tissues and medulloblastoma.38,39 Additionally, the Kv1.1 depletion suppressed growth, proliferation, migration and invasion of HeLa cells.38

Kv1.3 channels also have been reported as overexpressed in the breast, lung, colon, prostate, pancreas, smooth muscle, skeletal muscle, and lymph node of some types of cancers.4044 However, its relevance as a therapeutic target has been evidenced in glioblastoma, melanoma, and pancreatic adenocarcinoma models,4547 where Kv1.3 suppression induces apoptosis.

Another related channel is Kv1.5. This channel shows a correlated expression pattern with glioma entities and malignancy grades, with a high expression in astrocytomas, moderate in oligodendrogliomas, and low in glioblastomas.48 For the Kv1.5 channel, an overexpression was detected in some gastric cancer cell lines.49 Furthermore, Kv1.5 plays a role in the activation and proliferation of cells in the immune system, is remodeled during carcinogenesis, and has shown an abundance that inversely correlates with clinical aggressiveness in human non-Hodgkin lymphomas.50 In the same way that Kv1.3, this channel is overexpressed in human smooth muscle tumors.40 Kv1.5 has been involved in tumor cell proliferation of gastric cancer cells, where this channel is overexpressed.49

The expression of the Kv2.1 channel recently was reported to be higher in the metastatic prostate cancer cells (PC3), and their blockade with stromatoxin-1 or siRNA significantly inhibits the migration of malignant prostate cancer cells.51 This channel as Kv1.4, Kv4.2, Kv7.1 and large-conductance Ca2+-activated K+ channel (BKCa) also showed a high expression in the CD133+ subpopulation of SH-SY5Y neuroblastoma cells.52

Increased levels of Kv3.4 channel expression were identified in OSCC (oral squamous cell carcinoma).53 In addition, the expression and clinical significance of this channel in the development and progression of head and neck squamous cell carcinomas was reported.54 The Kv3.4 and Kv3.1 are known as oxygen sensors, and their function in hypoxia has been well investigated.55 These channels, Kv3.1 and Kv3.4, are tumor hypoxia-related channels involved in cancer cell migration and invasion in A549 and MDA-MB-231 cells (lung and breast cancer models, respectively).55

Another set of experiments showed a varied expression of Kv4.1 mRNA depending on the tumor stage in human breast cancer tissues.56 Recent studies have demonstrated that Kv4.1 channels are expressed in the human gastric cancer cell lines.57 Moreover, the suppression of Kv4.1 induces a G1-S transition blockade affecting the cell cycle progression.57

Interestingly, together with the expression profile of Kv7.1 in neuroblastoma cells,52 this channel was also found to be up-regulated in human colonic cancer cells.58 Conversely, Kv7.1 and Kv7.5 expression in vascular cancers was reported to be down-regulated.59 In this case, the proposed role of Kv7 channels is related to cell proliferation rather than controlling vascular tone.59

A particular case is a Kv9.3 channel, an electronically silent subunit, which forms heterotetramers with Kv2.160. The Kv2.1/Kv9.3 heterotetramers are overexpressed in colon carcinoma, lung adenocarcinoma, and cervical adenocarcinoma cells.60,61 Moreover, the knockdown of Kv9.3 inhibits proliferation in colon carcinoma and lung adenocarcinoma models.60

The Ether go-go (Eag (hERG); Kv10.1) K+ channel expression is typically restricted to the adult brain and the heart, but it has been detected in several cancer cell lines and tumor tissues from patients,62,63 showing it to influence cell proliferation. This channel is overexpressed in 71% of tumors and cancer cell models of neuroblast, glial, liver, lung, breast, ovary, cervix, prostate, gastrointestinal tract, myeloid leukemia, and retinoblastoma.34,6368 The Kv10.1 channel suppression generates apoptosis, inhibition of cell proliferation, and decrease in cancer cell migration.63,6972 Additionally, the inhibition of Kv10.1 channels sensitizes the mitochondria of tumor cells to antimetabolic treatments, improving the efficacy of the metabolic inhibitors.73

Kv11.1 is overexpressed in leukemia, ovarian, lung, pancreatic, colorectal, and breast cancer cells, among others.7479 The Kv11.1 channels have a key role in the cell cycle, acting as regulators for apoptosis and cell proliferation in cancer cells.74,7981 However, blockers of Kv11.1 channels also retard the cardiac repolarization.80

Another subgroup of potassium channels involved in cancer corresponds to the calcium-activated potassium channels. These channels are activated by rise in cytosolic calcium ions, allowing the K+ ion to flow under an electrochemical gradient. As a member of this subgroup, the KCa1.1 channel is overexpressed in prostate, glia, breast, pancreas, and endometrium cancer cell types.8286 KCa1.1 channel regulates the proliferation and migration of prostate cancer condition.83 In breast cancer, KCa1.1 channel overexpression has been associated with advanced tumor stage, cell proliferation, and poor prognosis.87

On the other side, the KCa3.1 (intermediate conductance Ca2+-activated K+ channel) is overexpressed in 32% of glioma patients and correlates with poor patient survival.88 In addition, these channels are overexpressed in breast cancer, non-small cell lung cancer, melanoma, leukemia, renal and hepatocellular carcinoma.8994 The inhibition of KCa3.1 channel activity reduces the cancer cell motility, proliferation and induces apoptosis.91,94,95

A less associated channel to a cancer condition corresponds to KCa2.3 (SK3), with a report of overexpression in melanoma cell lines, and their knockdown led to plasma membrane depolarization and decreased cell motility.96

The Kir channel family is integrated by 15 different genes grouped into seven subfamilies. Among these channels, different subunits have been associated with cancer conditions (Kir2.1, 2.2, 3.1, 3.4, 4.1, 6.1, 6.2)26,27,2932,94 (Figure 2 and Table 1).

Kir2.1 (KCNJ2) is overexpressed in 44.23% of small-cell lung cancer (SCLC) tissues, and it correlates with the clinical stage and chemotherapy response in SCLC patients. Additionally, the Kir2.1 knockdown in H69AR and H446AR cells inhibited cell growth and was sensitized to chemotherapeutic drugs by increasing cell apoptosis and cell cycle arrest.28 Kir2.1 channel also promotes the invasion and metastasis of human gastric cancer by enhancing MEKK2-MEK1/2-ERK1/2 signaling by interaction with Stk38.97

Similarly, Kir2.2 is found in human SCLC cells.31 Kir2.2 knockdown induced growth arrest and senescence by a mechanism involving reactive oxygen species (ROS) accumulation in cell lines derived from tissues of the prostate, stomach, and breast.98 Kir2.2 plays a role as an unconventional activator of RelA and increases the expression level of NF-B targets, including cyclin D1, matrix metalloproteinase (MMP)9, and vascular endothelial growth factor (VEGF)99 in cancer cells.

Another inward potassium channel associated with cancer is the Kir3.1 which is found within lymphocytes and in resected human pancreatic ductal adenocarcinoma (PDAC), overexpressed in 80% of tumor specimens. However, no associations were found between metastasis and Kir3.1 expression.26 On the other hand, the gene encoding the Kir3.1 channel was found to be aberrantly overexpressed in invasive breast carcinomas.100 In addition, the Kir3.1 overexpression correlates with lymph node metastasis, and this overexpression is greater in tumors with more than one positive lymph node.100

Kir3.1 gene overexpression is detected in tissue specimens from patients with non-small cell lung cancers (NSCLCs).101 In addition, the expression of Kir3.1 has been shown in tissue samples from approximately 40% of primary human breast cancers and in breast cancer cell lines.102

Also, the inwardly rectifying K+ channel Kir3.4 (KCNJ5 gene) (or GIRK4 channel) have been identified in adrenal aldosterone-producing adenomas (APAs), where several ion channel gain-of-function mutants are associated with the APA condition.29,103

In human brain tumors (low- and high-grade astrocytomas and oligodendrogliomas), mislocalization (redistribution) of the Kir4.1 channel has been reported and suggests a compromised buffering capacity of glial tumor cells.32 Furthermore, in human astrocytic tumors, Kir4.1 channel expression markedly increases with the pathologic grade of cancer104 and suggests that Kir4.1 activation could promote proliferation and inhibit apoptosis in the tumors.104

The subunits of ATP-sensitive Kir potassium channels (Kir6.1, Kir6.2) are highly expressed in leiomyoma cells.30 The estrogen-induced proliferation of the leiomyoma cells is inhibited by treatment with glibenclamide (KATP-channel inhibitor).30 These two channels are expressed in MDA-MB-231 cancer cells, and the cytostatic effect of glibenclamide is mediated through KATP channels (Kir6.1 and 6.2), associated with the inhibition of the G1-S phase progression.105 In hepatocellular carcinoma (HCC), the KCNJ11 (Kir6.2) gene was identified as a key dysregulated K+ channel and is associated with a poor prognosis in HCC patients.106 In agreement, the knockdown of Kir6.2 inhibited cell proliferation, promoted cell apoptosis, and reduced cell invasive capacity.106 The Kir6.2 overexpression was observed in cervical cancer cell lines and cervical tumor tissues.107 In particular, the increased Kir6.2 channel expression was observed in high-grade, poorly differentiated and invasive human cervical cancer biopsies.107 Moreover, an inhibitory effect of glibenclamide on the proliferation of cervical cancer cell lines is associated with Kir6.2 channel.107

Kir6.2 channel activity plays a critical role in the proliferation of glioma cells where the expression is greatly increased.108 Moreover, the treatment with tolbutamide (a Kir6.2 inhibitor) suppressed the proliferation of glioma cells and blocked the cell cycle.108 The Kir6.2 knockdown obtained a similar result in glioma cell proliferation.108

Finally, a less studied channel corresponds to Kir7.1 (KCNJ13) with a high expression linked to choroid plexus epithelium or choroid plexus tumors (CPTs)27,109,110 and it has been considered a sensitive and specific diagnostic marker for choroid plexus tumors.27,109,111

The two-pore domain K+ channels (K2P), encoded by the KCNK genes, are a family of fifteen members that form the leak or background channels.1,5,9 K2P channels display K+ outward rectifying currents, constitutively open, that control the neuronal excitability. Thus, activation of K2P channels stabilizes the cell membrane potential below the firing threshold, whereas the K2P channels inhibition facilitates membrane depolarization and cell excitability.

The K2P family can be divided into six subfamilies based on structural and functional properties.1,5,9 Regarding protein structure, each K2P channel subunit has four transmembrane domains (TM1-TM4) and two pore-forming domains (P1 and P2) (Figure 1C). Moreover, two subunits are required to form a functional channel.112,113 K2P channels display an exclusive extracellular cap domain formed by the extracellular loop that connects the first transmembrane domain and the first pore-forming sequence (TM1-P1 loop) (Figure 1C). The extracellular cap covers the upper selectivity filter (SF) pore,114 and this structure is responsible for the poor sensitivity of K2P channels to classical K+ channel blockers.114

From the K2P family, seven members are confirmed to be involved in cancer (TASK-1, TASK-2, TASK-3, TREK-1, TREK-2, TWIK-1, and TWIK-2)15,115120 (Figure 2 and Table 1). Among these, TASK-1 (K2P3, encoded by KCNK3 gene) has been detected in medulloblastoma and Ehrlich ascites tumor cells.121,122 Also, in MG63 osteosarcoma cells, the overexpression of TASK-1 was reported.118 Additionally, TASK-1 is overexpressed in a subset of non-small cell lung cancers, promoting proliferation and inhibiting apoptosis. TASK-1 knockdown enhances apoptosis and reduces the proliferation of lung cancer cell-line A549.123 In these cells, A549, the overexpression of TASK-1 promoted epithelial mesenchymal transition (EMT), a pivotal event in lung cancer cell invasion and metastasis.124 Moreover, the expression of TASK-1 has been associated with aldosterone production in both aldosterone-producing adenomas and normal adrenals.125

The second K2P channel associated with cancer is TASK-2 (K2P5; encoded by KCNK5 gene), a member of the TALK subfamily. TASK-2 plays a role in the proliferation of estrogen receptor positive breast cancer cells being highly upregulated in response to 17-estradiol (E2) in MCF-7 and T47D breast cancer cell lines.126,127 In these cells, the knockdown of the TASK-2 channel reduces the estrogen-induced proliferation of breast cancer cells.127 Also, the overexpression of TASK-2 has found in HPAF cells, a human pancreatic ductal adenocarcinoma cell line, but the role in cancer progression has not been further studied.128

Among the K2P channels, the most studied in cancer correspond to TASK-3 (TWIK-related acid-sensitive K+ channel 3). This channel has been shown to localize in both the plasma membrane and mitochondrial inner membrane.117 The TASK-3 channel overexpression occurs in several types of cancer, such as melanoma, ovarian carcinoma, and breast cancer.24,117,129132

Also, TASK-3 (KCNK9, located in chromosomal region 8q24.3) gene expression is enhanced by 1044% in human breast tumors and 35% in lung tumors.24 Additionally, overexpression of KCNK9 has been reported in over 90% of ovarian tumors.130 In most cases studied, TASK-3 is associated with the acquisition of malignant characteristics, including hypoxia resistance or serum deprivation conditions.24,25 Consistently, a monoclonal antibody (Y4) against the cap domain of TASK-3 inhibits the growth of human lung cancer xenografts and breast cancer metastasis in mice.133 Further studies showed that TASK-3 gene knockdown in breast cancer cells is associated with an induction of cellular senescence and cell cycle arrest.132 Furthermore, TASK-3 is overexpressed in colorectal cancers and gastric cancers.134136 In gastric adenocarcinoma cells, the TASK-3 gene knockdown causes changes in migration and reduces cell proliferation and viability by increasing apoptosis without ffecting cell cycle checkpoints.136

TASK-3 is highly expressed in melanoma,117,129,137 being identified in the inner mitochondrial membrane of melanocytes, WM35 and B16F10, and keratinocytes.117,129,137,138 In WM35 and A2058, human melanoma cells, the knockdown of TASK-3 resulted in compromised mitochondrial function, mitochondrial membrane depolarization, and reduced cell survival inducing apoptosis.139,140

Another K2P channel related to cancer is TREK-1 (K2P2, encoded by KCNK2). This channel has been shown to play a pro-proliferative role in the human prostate cancer cell-line PC3.116 In MG63 osteosarcoma cells, overexpression of TREK-1 was reported118 and it is correlated with the proliferation of the osteoblast cells.141 TREK-1 is also overexpressed in prostate cancer tissues142 and epithelial ovarian cancer.130 For TREK-1 channel, the exact role of cancer development is still unclear. However, TREK-1 overexpression is associated with a poor prognosis for patients with prostate cancer.142 In prostate cancer, inhibition or knockdown of TREK-1 inhibits proliferation by inducing cell cycle arrest at the G1/S checkpoint.142 On the other side, the treatment with TREK-1-blocking agents, such as curcumin, has shown reduced ovarian cancer cells proliferation and increased late apoptosis processes.130

Among the TREK subfamily, the TREK-2 channel (K2P10, encoded by KCNK10) was present in bladder cancer cell lines and contributed to cell cycle-dependent growth.119 The sixth K2P channel involved in cancer is TWIK-1 (K2P1, encoded by KCNK1). The TWIK-1 was detected as an upregulated channel in pancreatic ductal adenocarcinoma (PDAC) compared to normal tissue.115 Recently, TWIK-2 (K2P6, encoded by KCNK6 gene) was reported as a significantly overexpressed channel in breast cancer.120 Moreover, the overexpression of TWIK-2 increases the capacity of proliferation, invasion, and migration of breast cancer cells.120

The rational design and development of selective blockers is a dynamic field of study that includes diverse methods such as high-throughput screening, bioengineering techniques, and chemical modification, among others.143,144 Fortunately, we count on several software and computational tools that allow us to explore innovative approaches based on the molecular interaction of potassium channels structural data from the ligands and molecules, and the physicochemical and pharmacological properties of K+ channels interacting with drugs.

Some computational tools used for the rational design of specific modulators (blockers and activators) examine the three-dimensional structure of the target (K+ channels, in this case), previously solved by X-ray crystallography, cryoelectron microscopy145 or comparative modeling. Following this, it is necessary to study the binding sites and affinity of the ligand.143 This approach has been particularly helpful for the identification of ligands, targeting membrane proteins.146,147

Additionally, the multidisciplinary work among different areas, such as biochemistry, bioinformatics, bioengineering, medical chemistry, genomics, proteomics, and metabolomics, has contributed to the development of new computational tools for the rational design of ion channel modulators.143 Thus, the combinatory strategy including docking, virtual screening, de novo drug design, molecular simulations and the experimental validation by electrophysiological measures have allowed the development and a successful search for small modulators.146,147 For the K+ channels, a three-dimensional structure of representative K+ subunits (Kv, K2P, and Kir) has been reported, providing insights into how these channels can be used to design specific modulators for cancer treatment.

Moreover, ion channels with limited background expression in normal tissues and strong overexpression in tumors due to their cell-surface accessibility constitute a preferential target for the development of antibody-based therapies.148152 Antibodies recognizing ion channels represent a strategy effective in modulation of ion channel activity. The mechanisms of action include direct block of ion permeation pathway, modulation of ion channel gating, and internalization and degradation upon surface clustering.152154 For example, systemic administration of specific mouse monoclonal antibodies generated in the human channel K2P9 (KCNK9) using its M1P1 loop fused into the Fc domain of IgG2a, effectively inhibits the growth of human lung cancer xenografts and murine breast cancer metastasis in mice.133 In addition, a specific monoclonal antibody which inhibits the function of highly oncogenic Kv10.1 potassium channel can effectively restrict cancer cell proliferation and reduce tumor growth in animal models with no significant side effects.155 However, currently, only one polyclonal antibody (BIL010t; Biosceptre) targeting a non-functional form of P2X7 (nfP2X7) has reached the level of clinical trials for the treatment of basal cell carcinoma.156,157

Other developing innovative strategies consist of the rational design of specific short peptides (less than 50 amino acid residues), which have acquired widespread interest as tools to address challenging proteinprotein interactions (PPIs).158,159 These short peptides can form complexes, and structures, mimicking critical motifs of proteins,160 which allow them to inhibit PPIs or functional activities with high specificity and affinity, emerging as a promising alternative to small molecules and biopharmaceuticals (>5000 Da). Furthermore, short peptides are easy to produce and modify161 and present low off-target side-effects given their higher specificity and reduced immunogenicity.161 All those attractive features make short peptides exceptional candidates to serve as therapeutics, even more considering that more than 100 peptide-based drugs are available in the market for AIDS, Cancer, and other medical conditions.162,163 Some examples of therapeutic drug-based peptides include oxytocin (8 aa), calcitonin (32 aa), teriparatide (34 aa), Fuzeon (36 aa, antiretroviral), corticotropin-releasing hormone (41 aa), and growth-hormone-releasing hormone (44 aa).159

Additionally, animal venoms are a natural and affluent source of peptides.164166 These peptide sources (from different animals such as cone snails, scorpions, sea anemones, snakes, spiders, among others) have been widely used as a starting point to develop toxin-based drugs, and some of them have currently reached clinical trials.165 Captopril was the first toxin-based drug approved for humans (1981). It is a nonapeptide that acts by blocking the angiotensin-converting enzyme (ACE) activity inhibiting the production of angiotensin II and was developed from Bothrops jararaca snake venom.167 Captopril is currently suitable and widely used for hypertension treatment.168 Among the different approved toxin-based drugs marketed, the ziconotide is obtained from cone snails, exenatide and lixisenatide are obtained from lizards. Bivalirudin and desirudin from leeches and Batroxobin and cobratide are purified from snake venoms.165 Desirudin, on the other hand, is a recombinant peptide derivated from snake. Other drugs (bivalirudin, enalapril, eptifibatide, exenatide, tirofiban, and ziconotide) are synthetic molecules from the same source.165

Currently, a large number of ionic channel blocking peptides (for Ca2+, K+ and Na+ channels) have been reported and obtained from different origin.166,169173 For instance, some peptides with antitumor effect are -hefutoxin 1 and analogues, APETx4, purpurealidin analogs, KAaH1 and KAaH2 among others.174177

There is no doubt that the specific short peptide blockers can inhibit the functional activity of K+ channels and show an antitumor effect, impacting the hallmark of cancer and representing a novel strategy for the rational design of new cancer drugs.

Compelling evidence indicates that the upregulation of the majority of K+ channels is associated with current cancer hallmarks (Figure 2 and Table 1). Thus, these channels have emerged as alternatives to develop new cancer treatments. K+ channel subunits are diverse and highly regulated proteins that respond to different stimuli. In different cancer conditions, where K+ channels are overexpressed, K+ channel blockers have been shown to reduce the tumorigenic properties and reverse the cancer progression in cell lines and animal models. However, K+ channels are critical regulators in several cellular and physiological processes; therefore, the search for selective K+ channel blockers becomes restrictive in developing future cancer treatments. Fortunately, the 3D structure of representative K+ channels178180 opens new possibilities for the rational design of highly selective K+ modulators.

The research for these highly selective potassium channel blockers must also include natural products (eg, plant extracts), bioinformatics search using the database (eg, Zinc181), venoms peptides, and the design of cyclic peptides (CPs) as modulators of proteinprotein interactions. Indeed, there is no doubt that rational design, search, and development might increase the therapeutic arsenal of drugs against cancer conditions associated with K+ channels. Nevertheless, the design, search, and development of selective K+ channel blockers remains a challenge that must be addressed in a multidisciplinary manner, including chemistry, bioinformatics, bioengineering, and biophysics groups.

All authors made a significant contribution to the work reported, whether that is in the conception, study design, execution, analysis and interpretation, or in all these areas; took part in drafting, revising or critically reviewing the article; gave final approval of the version to be published; have agreed on the journal to which the article has been submitted; and agree to be accountable for all aspects of the work.

This work was supported by Fondecyt 1191133 to WG and LZ, FIC-R BIP 40.027.577-0 Portafolio de servicios para la caracterizacin de blancos teraputicos para el tratamiento de cncer y enfermedades crnicas no transmisibles to WG and LZ. C.V. acknowledges the financial support of the National Fund for Science & Technology Development FONDECYT 1201147 and the BASAL Grant AFB180001 (CEDENNA) from the National Research and Development Agency (ANID), Government of Chile.

The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed in the funding section and report no conflicts of interest in relation to this work.

1. Goldstein SAN, Bockenhauer D, OKelly I, Zilberberg N. Potassium leak channels and the KCNK family of two-P-domain subunits. Nat Rev Neurosci. 2001;2(3):175184. doi:10.1038/35058574

2. Gonzlez C, Baez-Nieto D, Valencia I, et al. K+ channels: function-structural overview. Compr Physiol. 2012;2:20872149.

3. Hibino H, Inanobe A, Furutani K, et al. Inwardly rectifying potassium channels: their structure, function, and physiological roles. Physiol Rev. 2010;90(1):291366. doi:10.1152/physrev.00021.2009

4. Cui M, Cantwell L, Zorn A, Logothetis DE. Kir channel molecular physiology, pharmacology, and therapeutic implications. Handb Exp Pharmacol. 2021;267:277356. doi:10.1007/164_2021_501

5. Ziga L, Ziga R. Understanding the cap structure in K2P channels. Front Physiol. 2016;7:228. doi:10.3389/fphys.2016.00228

6. Zhou Y, Morais-Cabral JH, Kaufman A, MacKinnon R. Chemistry of ion coordination and hydration revealed by a K+ channel-Fab complex at 2.0 resolution. Nature. 2001;414(6859):4348. doi:10.1038/35102009

7. Bezanilla F. The voltage sensor in voltage-dependent ion channels. Physiol Rev. 2000;80(2):555592. doi:10.1152/physrev.2000.80.2.555

8. Jiang Y, Lee A, Chen J, et al. X-ray structure of a voltage-dependent K+ channel. Nature. 2003;423(6935):3341. doi:10.1038/nature01580

9. Lotshaw DP. Biophysical, pharmacological, and functional characteristics of cloned and native mammalian two-pore domain K+ channels. Cell Biochem Biophys. 2007;47:209256. doi:10.1007/s12013-007-0007-8

10. Enyedi P, Czirjk G. Molecular background of leak K+ currents: two-pore domain potassium channels. Physiol Rev. 2010;90:559605. doi:10.1152/physrev.00029.2009

11. Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209249. doi:10.3322/caac.21660

12. Goss PE, Lee BL, Badovinac-Crnjevic T, et al. Planning cancer control in Latin America and the Caribbean. Lancet Oncol. 2013;14(5):391436. doi:10.1016/S1470-2045(13)70048-2

13. Bates E. Ion channels in development and cancer. Annu Rev Cell Dev Biol. 2015;31(1):231247. doi:10.1146/annurev-cellbio-100814-125338

14. Huang X, Jan LY. Targeting potassium channels in cancer. J Cell Biol. 2014;206(2):151162. doi:10.1083/jcb.201404136

15. Pardo LA, Sthmer W. The roles of K+ channels in cancer. Nat Rev Cancer. 2014;14(1):3948. doi:10.1038/nrc3635

16. Prevarskaya N, Skryma R, Shuba Y. Ion channels in cancer: are cancer hallmarks oncochannelopathies? Physiol Rev. 2018;98(2):559621. doi:10.1152/physrev.00044.2016

17. Ouadid-Ahidouch H, Ahidouch A. K+ channel expression in human breast cancer cells: involvement in cell cycle regulation and carcinogenesis. J Membr Biol. 2008;221(1):16. doi:10.1007/s00232-007-9080-6

18. Shen Z, Yang Q, You Q. Researches toward potassium channels on tumor progressions. Curr Top Med Chem. 2009;9(4):322329. doi:10.2174/156802609788317874

19. Lesage F, Lazdunski M. Molecular and functional properties of two-pore-domain potassium channels. Am J Physiol Renal Physiol. 2000;279:F793F801. doi:10.1152/ajprenal.2000.279.5.F793

20. Lee G-W, Park HS, Kim E-J, et al. Reduction of breast cancer cell migration via up-regulation of TASK-3 two-pore domain K+ channel. Acta Physiol. 2012;204:513524. doi:10.1111/j.1748-1716.2011.02359.x

21. Kunzelmann K. Ion channels and cancer. J Membr Biol. 2005;205:159173. doi:10.1007/s00232-005-0781-4

22. Wang Z. Roles of K+ channels in regulating tumour cell proliferation and apoptosis. Pflugers Arch Eur J Physiol. 2004;448:274286. doi:10.1007/s00424-004-1258-5

23. Asher V, Sowter H, Shaw R, Bali A, Khan R. Eag and HERG potassium channels as novel therapeutic targets in cancer. World J Surg Oncol. 2010;8(1):113. doi:10.1186/1477-7819-8-113

24. Mu D, Chen L, Zhang X, et al. Genomic amplification and oncogenic properties of the KCNK9 potassium channel gene. Cancer Cell. 2003;3:297302. doi:10.1016/S1535-6108(03)00054-0

25. Pei L, Wiser O, Slavin A, et al. Oncogenic potential of TASK3 (Kcnk9) depends on K+ channel function. Proc Natl Acad Sci USA. 2003;100:78037807. doi:10.1073/pnas.1232448100

26. Brevet M, Fucks D, Chatelain D, et al. Deregulation of 2 potassium channels in pancreas adenocarcinomas: implication of KV1.3 gene promoter methylation. Pancreas. 2009;38(6):649654. doi:10.1097/MPA.0b013e3181a56ebf

27. Hasselblatt M, Bhm C, Tatenhorst L, et al. Identification of novel diagnostic markers for choroid plexus tumors: a microarray-based approach. Am J Surg Pathol. 2006;30(1):6674. doi:10.1097/01.pas.0000176430.88702.e0

28. Liu H, Huang J, Peng J, et al. Upregulation of the inwardly rectifying potassium channel Kir2.1 (KCNJ2) modulates multidrug resistance of small-cell lung cancer under the regulation of miR-7 and the Ras/MAPK pathway. Mol Cancer. 2015;14:59. doi:10.1186/s12943-015-0298-0

29. Murthy M, Azizan EA, Brown MJ, OShaughnessy KM. Characterization of a novel somatic KCNJ5 mutation delI157 in an aldosterone-producing adenoma. J Hypertens. 2012;30(9):18271833. doi:10.1097/HJH.0b013e328356139f

30. Park S-H, Ramachandran S, Kwon S-H, et al. Upregulation of ATP-sensitive potassium channels for estrogen-mediated cell proliferation in human uterine leiomyoma cells. Gynecol Endocrinol. 2008;24(5):250256. doi:10.1080/09513590801893315

31. Sakai H, Shimizu T, Hori K, et al. Molecular and pharmacological properties of inwardly rectifying K+ channels of human lung cancer cells. Eur J Pharmacol. 2002;435(2):125133. doi:10.1016/S0014-2999(01)01567-9

32. Warth A, Mittelbronn M, Wolburg H. Redistribution of the water channel protein aquaporin-4 and the K+ channel protein Kir4.1 differs in low- and high-grade human brain tumors. Acta Neuropathol. 2005;109(4):418426. doi:10.1007/s00401-005-0984-x

33. Wulff H, Castle NA. Therapeutic potential of KCa3.1 blockers: an overview of recent advances, and promising trends. Expert Rev Clin Pharmacol. 2010;3(3):385396. doi:10.1586/ecp.10.11

34. Ouadid-Ahidouch H, Ahidouch A, Pardo LA. Kv10.1 K+ channel: from physiology to cancer. Pflugers Arch Eur J Physiol. 2016;468(5):751762. doi:10.1007/s00424-015-1784-3

35. Chow LW, Cheng K-S, Wong K-L, Leung Y-M. Voltage-gated K+ channels promote BT-474 breast cancer cell migration. Chin J Cancer Res. 2018;30(6):613622. doi:10.21147/j.issn.1000-9604.2018.06.06

36. Miceli F, Guerrini R, Nappi M, et al. Distinct epilepsy phenotypes and response to drugs in KCNA1 gain- and loss-of function variants. Epilepsia. 2022;63(1):e7e14. doi:10.1111/epi.17118

37. van der Wijst J, Konrad M, Verkaart SA, et al. A de novo KCNA1 mutation in a patient with tetany and hypomagnesemia. Nephron. 2018;139:359366. doi:10.1159/000488954

38. Liu L, Chen Y, Zhang Q, Li C. Silencing of KCNA1 suppresses the cervical cancer development via mitochondria damage. Channels. 2019;13(1):321330. doi:10.1080/19336950.2019.1648627

39. Taylor MD, Northcott PA, Korshunov A, et al. Molecular subgroups of medulloblastoma: the current consensus. Acta Neuropathol. 2012;123(4):465472. doi:10.1007/s00401-011-0922-z

40. Bielanska J, Hernndez-Losa J, Moline T, et al. Differential expression of Kv1.3 and Kv1.5 voltage-dependent K+ channels in human skeletal muscle sarcomas. Cancer Invest. 2012;30(3):203208. doi:10.3109/07357907.2012.654872

41. Bielanska J, Hernndez-Losa J, Moline T, et al. Increased voltage-dependent K+ channel Kv1.3 and Kv1.5 expression correlates with leiomyosarcoma aggressiveness. Oncol Lett. 2012;4(2):227230. doi:10.3892/ol.2012.718

42. Comes N, Bielanska J, Vallejo-Gracia A, et al. The voltage-dependent K+ channels Kv1.3 and Kv1.5 in human cancer. Front Physiol. 2013;4:283. doi:10.3389/fphys.2013.00283

More here:
Potassium Channels as a Target for Cancer Therapy & Research | OTT - Dove Medical Press

Read More...

How can Nanotechnology be Used to Reverse Skin Aging? – AZoNano

Friday, May 20th, 2022

Although skin aging has not been related to many health complications, it has aesthetic issues. Some of the common symptoms of skin aging are changes in the skin texture (rough, dry, and itchy), discoloration, reduction in skin elasticity, and enhanced susceptibility to bruises.

Image Credit:Claire Adams/Shutterstock.com

Scientists have formulated various nano-based products to reverse, prevent or decelerate the process of skin aging. This article discusses some of the nanotechnology-based approaches to reverse skin aging.

The skin is the outermost cutaneous membrane that covers the bodys surface and provides protection from the external environment. It is primarily classified into three layers, i.e., the outer layer (epidermis), middle layer (dermis), and innermost layer (subcutaneous).

The outer epidermis layer predominantly contains keratinocytes without any blood vessels. The dermis layer contains cellular components and an extracellular matrix. The main components of the dermis include collagen fibers (tensile strength), elastic fibers (elasticity and resilience), glycoproteins (e.g., integrins, and fibulins), and glycosaminoglycans (hydration).

Studies have shown that both endogenous and exogenous factors are associated with the process of skin aging. Intrinsic aging occurs due to changes in the epithelial layers, while extrinsic aging is caused by the abnormal accumulation of elastic fibers in the dermis middle layer. Intrinsic aging is governed by the genetic traits of an individual, along with changes in their hormones and cellular mechanisms.

Some of the hormones related to skin functions are testosterone, estrogen, melatonin, cortisol, and thyroxine. For instance, hypoestrogenism occurs in postmenopausal women, making their skin thinner and drier. Oxidative stress, caused due to continual production of reactive oxygen species (ROS), leads to mitochondrial DNA damage and loss of skin elasticity.

Scientists have stated that mitochondrial DNA damage and shortening of telomeres are highly correlated to aging. A decrease in collagen production with aging leads to sagging of skin.

One of the factors associated with extrinsic aging is prolonged sun exposure. The UV rays change the cellular component of the skin and cause discoloration, loss of skin elasticity, deep wrinkling, and loss of hydration. Other lifestyle-related factors, such as sleep, diet, exercise, and smoking, are linked with skin aging. Scientists revealed that smoking damages the collagen and elastic fibers present in the dermis, making the skin loose and dry.

Conventionally, many skin products contain antioxidants to counterbalance the effects of ROS and make the skin look younger. Some of the disadvantages of these skin products are restricted permeability, lack of target-specific delivery, and breakdown of active ingredients with time. Recently, the cosmetic industry, which is popularly referred to as nanocosmeceuticals, has used nanotechnology for the development of various skin products.

Some of the advantages of nanocosmeceuticals include enhanced efficacy and stability of the active ingredients in the skin product. Studies have shown that nanoparticle-based cosmeceutical formulations exhibit superior skin permeability and cause minor side effects.

Scientists have developed several nanoparticle formulations for the cosmetic industry. Some of the nanocarriers developed for anti-aging applications are as follows:

This is a popularly used nanodelivery system that significantly enhances the efficacy of a drug and reduces its side effects. These nanoparticles possess an aqueous core with phospholipid bilayers surrounding them. Liposomes are regarded as an ideal nanocarrier for skincare formulations because of their excellent penetration capacity and biocompatibility. When applied, liposomes bind to the skin cell membranes and release the active ingredients into the cell, which combats wrinkles and promotes the regeneration of skin cells. Many popular high street brands have developed liposome-based anti-aging formulations.

Niosomes are vesicle-like structures, composed of non-ionic surface-active agents. A study related to entrapping rice bran components with antioxidant properties into niosomes revealed promising anti-aging properties.

Typically, ethosomes are used to transport drugs deep into the dermis. These small, malleable nanostructures are used to deliver drugs via the transdermal route. One of the most advantageous properties of this nanostructure is that it can easily penetrate smaller pores of the skin.

In a recent study, scientists loaded rosmarinic acid into ethosomes which exhibited a significant anti-aging effect. This is because ethosomes enhanced the penetration of rosmarinic acid into the skin, and this prevented the degradation of elastin and collagen.

These arepolymeric nanoparticles where active ingredients are covalently attached to the walls. Nanocapsule-based formulations containing various active compounds, for example, Vitamin E, antioxidants, retinoids, and -carotene, have been developed for effective and targeted delivery. The development of an anti-wrinkle cream by encapsulating Vitamin C offers a slow release of the active compound for a prolonged time, preserving skin health for a longer periods.

As the same suggests, these are spherical nanoparticles in which active compounds are distributed throughout the matrix. Poly D, L lactic-co-glycolic acid (PLGA) polymer is popularly used for the development of nanospheres.

Research has shown that Vitamin C-loaded PLGA nanospheres could penetrate melanocytes and fibroblasts in the skin and gradually release the compound. Vitamin C reduces skin blemishes and wrinkles by promoting the formation of collagen and its antioxidant properties reduce ROS levels. Therefore, this formulation has proved to be an effective anti-aging and anti-wrinkle agent.

Scientists have prepared nanoemulsions of grapeseed oil and studied its efficacy in preventing skin aging. They observed that the antioxidant property of grapeseed oil helped to keep the skin healthy. This technology has been used by many brands to develop an effective treatment to cure wrinkles and fine lines of the skin.

Fullerene is a carbon allotrope, composed of spherically attached carbon atoms. A recent study reported that fullerene nanocapsules containing ascorbic acid and Vitamin E exhibited a protective function against premature skin aging.

The rapid advancements in nanocosmeceuticals promise many innovative skin formulations that could effectively reverse skin aging. Researchers are set to discover new bioactive compounds and phytochemicals with excellent anti-aging and antioxidant properties in the future. Additionally, the development of novel nanocarriers will ensure targeted delivery of these compounds and protect them from degradation for a prolonged period.

Sharma, A. et al. (2022) Novel nanotechnological approaches for treatment of skin-aging. Journal of Tissue Viability. https://doi.org/10.1016/j.jtv.2022.04.010

Vaiserman, A. et al. (2021) Phyto-nanotechnology in anti-aging medicine.Aging,13(8), pp. 1081810820. https://doi.org/10.18632/aging.203026

Bhatia, E. et al. (2021) Nanoparticle platforms for dermal anti-aging technologies: Insights in cellular and molecular mechanisms. Nanomedicine and Nanobiotechnology, 14(2). https://doi.org/10.1002/wnan.1746

Dobke, M. and Hauch, A. (2020) Targeting facial aging with nano and regenerative technologies and procedures. Plastic and Aesthetic Research, 7(1). 10.20517/2347-9264.2019.65

Agostini, A. et al. (2012) Targeted Cargo Delivery in Senescent Cells Using Capped Mesoporous Silica Nanoparticles.Angewandte Chemie International Edition. DOI:10.1002/anie.201204663

Disclaimer: The views expressed here are those of the author expressed in their private capacity and do not necessarily represent the views of AZoM.com Limited T/A AZoNetwork the owner and operator of this website. This disclaimer forms part of the Terms and conditions of use of this website.

Read more:
How can Nanotechnology be Used to Reverse Skin Aging? - AZoNano

Read More...

Should Nanomaterial Synthesis Rely on Automation? – AZoNano

Friday, May 20th, 2022

Nanoparticles and other nanomaterials are essential components of cutting-edge science and technology, including photochemistry, energy conversion, and medicine. New research suggests that automating nanomaterial synthesis can reduce the environmental footprint of these advanced materials while at the same time improving quality and scalability.

Image Credit:Ico Maker/Shutterstock.com

The groundbreaking paper, Towards automation of the polyol process for the synthesis of silver nanoparticles makes the argument for automated synthesis to enable the manufacturing of colloids with properties that are precisely tunable and crucially for industrial nanomaterial synthesis reproducible.

The study, which was published in the journal Scientific Reports in 2022, could have a significant impact in various fields of science, as the metal nanoparticles its authors synthesized are used at the forefront in photochemistry, energy conversion, and medicine.

The interdisciplinary team behind the paper materials researchers, nanotechnology specialists, and chemical engineers from Germanys Federal Institute for Materials Research and Testing (BAM), Max Planck Institute of Colloids and Interfaces, and Humboldt-Universitt zu Berlins Department of Chemistry focused their research on silver nanoparticle synthesis.

Silver was a suitable test candidate for the automated synthesis method because, while it is one of the more commonly used nanoparticles due to its antibacterial properties and sensing and catalysis applications, it is difficult to produce in well-defined products. The obstacles to this are silvers high polydispersity: it is difficult to precisely control or tune silver nanoparticles sizes.

Responding to this challenge, the German researchers developed an automatic approach for on-demand silver nanoparticle synthesis. The method enables fabricators to synthesize silver nanoparticles between 3 and 5 nm, employing a modified polyol process.

To test their results, the team employed small-angle X-ray scattering, dynamic light scattering, and a number of other investigations. All results showed that the new automated synthesis method is suitable for yielding reproducible and tunable properties in synthetic colloids.

Synthetic nanomaterials are made with shapes or structural components that measure between 0.1 and 100 nm or 0.1 to 100 billionths of a meter. The metal nanoparticles that the present research focuses on find numerous applications in research, medicine, and technology contexts.

Synthesis methods for nanoparticles have to provide a high degree of control over the nanoparticles size, shape, and polydispersity while limiting the effects of aggregation or agglomeration (ensuring an even distribution). They also need to take into account the rheological properties of nanoparticle dispersions and the long-term stability of the solution.

Challenges with synthesizing nanoparticles include reproducibility and colloidal stability. These challenges mean there are limited nanoparticle-based references available, despite calls for such materials from environmental, health, and safety concerns for a number of years.

For example, gold nanoparticles are ubiquitous in nanotechnology due to their straightforward synthesis requirements, distinct size regulation, and ability to realize predictable nanoparticle sizes and dispersion.

But, despite a high demand due to silvers well-known antibacterial properties and use in catalysis, photochemistry, sensing, and optoelectronics, silver nanoparticles remain difficult to synthesize with available methods.

One available method is based on a polyol process. Here, silver nanoparticles are formed by reducing silver ions in the presence of polyacrylic acid in hot ethylene glycol. The ethylene glycol acts as both a reducing agent and a solvent.

This method is considered important because it stabilizes nanoparticles in a water-based solution by adjusting the solutions pH balance to 10, creating a negatively charged shell that means particles can remain unchanged in the suspension for over six months.

As a result, the nanoparticles produced make good candidates for reference materials. Reference materials are used in nanomaterial synthesis to quantify the size, distribution, and concentration of nanoparticles in doped materials.

Reference materials need to be made in bulk and able to remain stable for a long period of time in storage to be useful. The adapted polyol process described above can achieve these requirements, although it is not best suited for the task.

To develop reference materials like silver nanoparticles faster, researchers focused on developing an automated platform for rapid on-demand synthesis.

An automated platform could avoid the need for bulk quantities and long-term stability by offering required reference materials to researchers at minimal cost and without excessive lead-in times.

It would also enable targeted testing of nanomaterials physicochemical properties and a shorter development cycle before arriving at the desired properties.

To achieve this, the German scientists developed an automated silver nanoparticle synthesis method with the polyol process producing a colloidally stable silver.

They deployed the so-called Chemputer for the first time in the field of inorganic chemistry. The Chemputer is an automated platform that was developed by the Cronin group to execute multi-step, solution-based organic synthesis and purification tasks.

The Chemputer works in a batch mode with common laboratory items like heaters and glassware connected to a backbone made out of HPLC selection valves and syringe pumps. Liquid solutions are transferred across the backbone and manipulated along its various modules in different ways.

Every operation is controlled with a software script, which ensures a high rate of reproducibility. The accompanying software also makes it easy to adjust the synthesis conditions as required and documents all changes in the reaction log file.

Caldern-Jimnez, B. et al. (2017). Silver nanoparticles: Technological advances, societal impacts, and metrological challenges. Frontiers in Chemistry. doi.org/10.3389/fchem.2017.00006.

Dong, H. et al. (2015). Polyol synthesis of nanoparticles: Status and options regarding metals, oxides, chalcogenides, and non-metal elements. Green Chemistry. doi.org/10.1039/C5GC00943J.

Kaabipour, S., and S. Hemmati (2021). A review on the green and sustainable synthesis of silver nanoparticles and one-dimensional silver nanostructures. Beilstein Journal of Nanotechnology. doi.org/10.3762/bjnano.12.9.

Wolf, J.B., et al. (2022). Towards automation of the polyol process for the synthesis of silver nanoparticles. Scientific Reports. doi.org/10.1038/s41598-022-09774-w.

You, H., and J. Fang (2016). Particle-mediated nucleation and growth of solution-synthesized metal nanocrystals: A new story beyond the LaMer curve. Nano Today. doi.org/10.1016/j.nantod.2016.04.003.

Disclaimer: The views expressed here are those of the author expressed in their private capacity and do not necessarily represent the views of AZoM.com Limited T/A AZoNetwork the owner and operator of this website. This disclaimer forms part of the Terms and conditions of use of this website.

Read the original:
Should Nanomaterial Synthesis Rely on Automation? - AZoNano

Read More...

Fabrication Methods of Ceramic Nanoparticles – AZoNano

Friday, May 20th, 2022

Ceramic nanoparticles are generally composed of metals and metal oxides, silicon carbide, nitrates, and carbonates like magnesium, chromium, and silicate. Because of their beneficial qualities, including strong heat tolerance and chemical stability, they have a wide variety of uses. There are a number of techniques widely used to synthesize nanoparticles of different ceramic materials.

Image Credit:GiroScience/Shutterstock.com

Ceramics are defined as having a definite solid core, arranged by the applying heat or even both heat and pressure, and consisting of a metallicand non-metallic mixture. Ceramic nanoparticles are made up of inorganic substances like aluminosilicate and are very prone to external disturbances.

Nevertheless, the nanoparticle center is not restricted to these two substances; instead, metals, metallicoxides, and metal sulfur compounds may be employed to create nanostructures of various sizes, forms, and permeability.

Ceramic nanoparticles have many benefits, including simple fabrication with appropriate size, form, and pores, and no influence on dilatation or permeability with pH values. The production of novelceramic materials for biological applications has increased rapidly in recent years.

Controlled drug discharge is among the most explored areas of ceramic nanoparticles use in bioscience, where dosage and structure are critical. Long-term stability, relatively high loadingcapability, facile inclusion of hydrophilic and hydrophobic networks, and various delivery routes are all characteristics that make these nanostructures a promising tool in managing drug release.

Usually, ceramic nanoparticles are created via solid-state processes. Raw ingredients such as oxide, hydroxide, nitrate, sulfate, or carbonate are physically combined and then processed at elevated temperatures for extended timespansto allow the nanoparticles to form. This process produces coarse-sized,aggregated nanoparticles with a reduced specificarea.

The employment of elevated temperatures to create solid-state compoundsoften results in irregular grain development and a loss of stoichiometriccontrol. Numerous modified chemical fabrication procedures have been devised to create ceramic nanoparticles with an acceptable shape at low temperatures.

The sol-gel procedure, also termed chemical solution deposition, is one method for creating nanoceramics. This comprises a liquid solution, or sol, composed of liquid-phase nanostructures and a predecessor, often a gel or polymer composed of particles submerged in a liquid.

The sol and gel are combined to form an oxide substance, which is a sort of ceramic, and the byproductis vaporized. The majority of the nanoparticles are then warmed in a procedure termed densification to generate a quality product. This process might potentially be used to create a nanocomposite by burning the gel on top of a thin layer to build a nanoceramic coating.

Another way is two-photon lithography, which employs a laser to scrape a polymer into a three-dimensional pattern. The lasers strengthen the areas it hits but keep the remainder unhardened. The unhardened substance is then dispersed to form a "shell." The shell is then covered with ceramics, alloys, metallic crystals, and so forth. The final ceramic nanotruss may be crushed and returned to its original condition.

High-temperature sintering has also been utilized to solidify nanoceramic particles. This produced a rough substance that harmed the characteristics of ceramics and increased the duration required to produce a final product. This approach also restricts the final geometry that may be created. Microwave sintering was devised to address such issues.

A magnetron generates energy by vibrating and heating the particles with electromagnetic waves. Rather than transferring heat externally, this approach instantaneously transfers heat over the entire quantity of data.

The apparatus for the fabrication is made up of many elements. For instance, the major component of the arrangement proposed by Rasche et al. (2020) is a three-zone heated flow tube reactor positioned vertically. It has a span of 6 m and can achieve temperatures of up to 1700 degrees Celsius. As individualized energy input into the separate zones is possible, the three-zone heating configuration promotes a homogenous temperature distribution.

The reaction zone for the synthesis method is an Al2O3 tube with an internal diameter of 105 millimeters. Because of its relatively strong heat transmission and damage tolerance, Al2O3 is an excellent option. Both sides of the tubes, and the fittings, are insulated with ceramics wool to prevent heat leaks and promote a consistent temperature distribution.

It must be noted that, in addition to reducing thermal losses, insulation contributes to a prolonged tube lifespan by preventing significant axial temperature differences. The processing gas is warmed to roughly 500 degrees Celsius for the same reason. To preserve the tube's longevity, heating and cooling rates must not exceed 300 K/h, which is accomplished by careful power regulation.

Synthesis and processing are critical concerns in nanotechnology to harness the unique features of nanoparticles and realize their promising utility in research and technology. Many technical strategies for fabricating nanoparticles have been investigated.

There are some fundamental issues associated with the fabrication of ceramic nanoparticles utilizing any method or technology. These include a lack of controllability of nanoparticle size and structure, and the inability to manipulate the form of synthesized nanoparticles and particle size distribution. Moreover, the toxicity of the synthesized nanoparticles is also a key concern concerning real-world biomedical applications.

Addressing these concerns is critical in developing an optimal fabrication process for ceramic nanoparticles.

Rasche, D. B., Tigges, L., & Schmid, H.-J. (2020). An apparatus to synthesize ceramic nanoparticles with a precisely adjusted temperature history and a significant mass output. Review of Scientific Instruments. Available at: https://doi.org/10.1063/1.5133438

Singh, D., Singh, S., & Singh, M. R. (2016). Ceramic nanoparticles: Recompense, cellular uptake and toxicity concerns. Artificial Cells, Nanomedicine, and Biotechnology. Available at: https://doi.org/10.3109/21691401.2014.955106

Thomas, S. C., Harshita, Mishra, P. K., & Talegaonkar, S. (2015). Ceramic Nanoparticles: Fabrication Methods and Applications in Drug Delivery. Current Pharmaceutical Design. Available at: https://doi.org/10.2174/1381612821666151027153246

Disclaimer: The views expressed here are those of the author expressed in their private capacity and do not necessarily represent the views of AZoM.com Limited T/A AZoNetwork the owner and operator of this website. This disclaimer forms part of the Terms and conditions of use of this website.

View original post here:
Fabrication Methods of Ceramic Nanoparticles - AZoNano

Read More...

Explained: What are nanobots and how they can be used to help clean teeth? – Firstpost

Friday, May 20th, 2022

FP ExplainersMay 17, 2022 16:48:58 IST

If all goes as planned, root canal procedures may not be as painful as before. Researchers at the Indian Institute of Science (IISc) in Bengaluru have developed tiny nanobots to help with root canal treatments.

However, what are nanobots? What role do they play? Why are they being called the future of medicine?

We provide the answer to these questions and explain how nanobots are being used to help clean teeth.

Nanobots explained

Nanobots are robots that are microscopic in nature, measured largely on the scale of nanometers. Nanobots are also known as nanomachines, nanorobots, nanomites, nanites or nanoids.

According to Techopedia, the idea behind nanobots is in having a device which can interact at the nano scale and help in understanding or manipulating structures at the nanoscale level.

Most theoreticians credit the concept of nanotechnology to physicist Richard Feynman and his speech in 1959 entitled: Theres Plenty of Room at the Bottom. In the speech, Feynman predicted the development of machines that could be miniaturised and huge amounts of information being encoded in minuscule spaces. However, it was K Eric Drexlers 1986 book, Engines of Creation: The Coming Era of Nanotechnology, which galvanised nanotechnological doctrine.

The size of nanobots has made their application most relevant in the field of medical science. Experts note that they can be used to aid in research related to cancer, AIDS and other major diseases as well as in helping brain, heart and diabetes research.

Besides medicine, nanobots can be of use are in the field of aerospace, security, defence, electronics and environmental protection.

Using nanobots for dental care

On Monday, researchers at IISc announced that they had created nanobots that can be utilised to fit through the dentinal tubules and kill bacteria.

An NDTV report said that the researchers had created nanobots, made from silicon dioxide and coated with iron which can be controlled by a device that creates a low intensity magnetic field. This new technique and study has been published by the journal Advanced Healthcare Materials.

Explaining how it worked, the researchers said that the nanobots, developed at IISc-incubated startup Theranautilus, were injected into extracted tooth samples and their movement was tracked using a microscope.

IISc said that by tweaking the frequency of the magnetic field, the researchers were able to make the nanobots move at will, and penetrate deep inside the dentinal tubules. They manipulated the magnetic field to make the surface of the nanobots generate heat, which can kill the bacteria nearby.

Hailing the success of their research, Ambarish Ghosh, professor at the Centre for Nano Science and Engineering, who led the research was quoted as telling NDTV, These studies have shown that they are safe to use in biological tissues. We are very close to deploying this technology in a clinical setting, which was considered futuristic even three years ago. It is a joy to see how a simple scientific curiosity is shaping into a medical intervention that can impact millions of people in India alone.

Other use of nanobots in medicine

Other than using nanobots in dentistry, scientists have also used nanobots to fight bacteria in a wound.

Researchers from the Institute of Bioengineering of Catalonia, in a study published in ACS, said that they had used the nanobots to deliver the necessary medicinal compounds to the wound by plunging into a liquid medium and thereby destroying pathogens.

In December 2021, Maharashtra Institute of Medical Education and Research (MIMER), Pune had developed a nano robot that is programmed to capture and isolate circulating tumor cells.

The tool was hailed as it would lead to a new rapid and accurate diagnostic method for cancer.

With inputs from agencies

Read all the Latest News, Trending News, Cricket News, Bollywood News,India News and Entertainment News here. Follow us on Facebook, Twitter and Instagram.

Continue reading here:
Explained: What are nanobots and how they can be used to help clean teeth? - Firstpost

Read More...

Understanding the Health Risks of Graphene – AZoNano

Friday, May 20th, 2022

Graphene is a two-dimensional (2D) carbon nanomaterial, which is often referred to as super material or wonder material. Due to its unique characteristics, graphene is applied in many branches of science and technology, which makes understanding its health risks a critical aspect of its use.

Image Credit:Yurchanka Siarhei/Shutterstock.com

Graphene is a carbon allotrope with a thickness of a single atom, arranged in a honeycomb-like orientation. To date, the majority of carbon nanomaterials developed are based on graphene. Some of the key advantageous features of graphene are that it can be stacked, rolled, or wrapped to form various structures, such as carbon nanotubes (CNTs), which are used in many industries.

As mentioned above, graphene is used in many innovative applications, including nanoelectronics, energy technology that has improved energy storage systems (e.g., highly effective batteries), medical utilities (e.g., antibacterial agents), and the development of composite materials and sensors.

Apart from the aforementioned applications, graphene has been widely applied in biomedical research. For instance, it is used in drug/gene delivery and the development of biocompatible scaffolds for cell culture and biological sensors to detect biomolecules.

Scientists reported that graphene oxide (GO), which is synthesized by fast oxidation of graphite, is an ideal nanocarrier for the efficient delivery of drugs/genes. Gene therapy is a novel approach utilized in the treatment of genetic disorders, such as Parkinson's disease, cystic fibrosis, and cancer.

Owing to the unique properties, such as high specific surface area, superior biocompatibility, enriched oxygen-containing groups, and stability, scientists have been able to load genes/drugs via chemical conjugation or physisorption methods. Recently, researchers have developed polyethyleneimine-modified GO for gene delivery.

Graphene derivatives, e.g., reduced GO (rGO) and doped graphene, have been utilized for the detection of biomolecules, such as amino acids, dopamine, thrombin, and oligonucleotide. GO-based biosensors are also used to identify DNA. Additionally, scientists have used GO for bioimaging of cellular uptake, of polyethylene glycol-modified GO, during drug delivery.

Scientists have performed various nanotoxicological studies to determine the risk factors associated with graphene applications and its derivatives. They determined the toxicological profile of graphene nanosheets in both Gram-positive and Gram-negative bacterial models.

These studies have shown that graphene damages bacterial cell membranes via direct contact with the sharp edges of the nanowalls. However, studies have shown that graphene has low toxicity on the luminal macrophages and epithelial cells.

Some of the key determining factors of graphene toxicity to human red blood cells and skin fibroblasts are particulate state, size of the particle, and oxygen content of graphene. Additionally, the functional groups present on the surface of GO nanostructures play a vital role in inducing cytotoxicity.

Genotoxicity and cytotoxicity in human lung fibroblasts associated with GO are due to the generation of reactive oxygen species (ROS) and apoptosis. One of the potential concerns of application GO is that it can induce DNA cleavage, which could lead to many adverse effects on humans.

Unlike CNTs, minimal research is available regarding the safety of graphene. This is partly due to the initial difficulties associated with enhancing its production. Another reason for the limited knowledge could be that graphene is still in its early developmental stage.

The introduction of carbon nanomaterials in human bodies could result in its accumulation in tissues or elimination via excretion. In the case of accumulation, it could affect the proper functioning of human organs. Additionally, it is important to determine if an individual exposed to graphene induces an immune response or causes inflammation.

One of the major concerns of nanoscopic platelets of graphene-based materials is their thin, lightweight, and tough structure, which causes a detrimental effect when inhaled. Scientists stated that the flakes of carbon might be transported deep inside lung tissues, which might either induce chronic inflammatory responses or inhibit normal cellular functions.

Scientists stated that as the skin is the first interface between the body and the surrounding, it is most exposed to graphene materials. The impact of graphene and GO on the skin depends on their size and physicochemical properties.

Several studies have indicated that exposure to a high concentration of graphene and its derivative for a prolonged period causes membrane damage, indicating low toxicity to skin cells.

Several studies have shown that toxicity related to GO can be reduced by altering the surface functional groups and masking the oxygenated functional groups with a biocompatible polymer. For instance, an in vitro study revealed that compared to GO, polyvinylpyrrolidone-modified GO exhibits lower immunogenicity.

Some of the measures undertaken to minimize health risks for workers who are directly associated with the development of graphene or graphene-based technologies include utilizing stable and individual graphene nanosheets that can be easily dispersed in water to reduce aggregation problems in the body.

Other recommendations include using graphene sheets that are small enough to be engulfed by immune cells and readily removed and biodegradable forms of graphene to prevent damages caused by chronic accumulation in tissues.

Foley, T. (2021) Graphene Flagship. [Online] Available at: https://graphene-flagship.eu/graphene/news/understanding-the-health-and-safety-of-graphene/

Arvidsson, R., et al. (2018) "Just Carbon": Ideas About Graphene Risks by Graphene Researchers and Innovation Advisors.Nanoethics,12(3), pp. 199210. https://doi.org/10.1007/s11569-018-0324-y

Awodele, M.K. et al. (2018) Graphene and its Health Effect Review Article. International Journal of Nanotechnology and Nanomedicine, 3 (2), pp. 1-5.

Seabra, B.A. et al. (2014) Nanotoxicity of Graphene and Graphene Oxide. Chemical Research in Toxicology.2014, 27, 2. pp.159168. https://doi.org/10.1021/tx400385x

Bussy, C. et al. (2013) Safety considerations for graphene: lessons learnt from carbon nanotubes. Accounts of Chemical Research, 46(3), pp. 692701. https://pubs.acs.org/doi/10.1021/ar300199e

Bradley, D. (2012) Is graphene safe? Materials Today, 15 (6), pp. 230. https://doi.org/10.1016/S1369-7021(12)70101-3

Shen, H. et al. (2012) Biomedical applications of graphene.Theranostics,2(3), pp. 283294. https://doi.org/10.7150/thno.3642

Disclaimer: The views expressed here are those of the author expressed in their private capacity and do not necessarily represent the views of AZoM.com Limited T/A AZoNetwork the owner and operator of this website. This disclaimer forms part of the Terms and conditions of use of this website.

Follow this link:
Understanding the Health Risks of Graphene - AZoNano

Read More...

Prevalence and predictors of SARS-CoV-2 | IDR – Dove Medical Press

Friday, May 20th, 2022

Introduction

In December 2019, a novel coronavirus (initially named 2019-nCov) was discovered to be responsible for outbreaks of an unusual series of viral pneumonia of unknown origin in Wuhan. It was later named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), because of the structural similarities with SARS-CoV, that caused the outbreak of SARS in 2003.13

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is an enveloped, single-stranded ribonucleic acid beta coronavirus. This highly contagious pathogen is transmitted by respiratory droplets and aerosols, direct contact of mucous membranes and probably the fecaloral route.46

This viral infection primarily targets the respiratory system, and is usually presented by fever, cough, sore throat or shortness of breath as initial symptoms.7,8 Although some patients may be asymptomatic and they are likely to spread the infection, a group of them may develop symptoms and their condition may worsen.912

Pulmonary symptoms are the most frequently reported symptoms, however recent studies proved the presence of neurological and gastrointestinal manifestations among the SARS-CoV-2 infected patients.13,14

Although real-time reverse transcription-polymerase chain reaction (RT-PCR) assay is considered the first tool to make a definitive diagnosis of COVID-19, the high false negative results, low sensitivity and limited supplies might delay accurate diagnosis. Computed tomography (CT) has been reported as an important tool to identify and investigate suspected patients with COVID-19 at an early stage.15

Many patients with mild or severe SARS-CoV-2 do not make a full recovery and have a wide range of persistent symptoms for weeks or months after infection, often of a neurological, cognitive or psychiatric nature.16

A standardized case definition for post-COVID-19 syndrome is still being developed. The Centre for Disease Control (CDC) has formulated post-COVID-19 conditions to describe health issues that persist more than four weeks after being infected with COVID-19. The World Health Organization has also developed a clinical case definition of post-COVID-19 syndrome to include individuals with a history of probable or confirmed SARS-CoV-2 infection usually 3 months from the onset of infection with symptoms that last for at least 2 months and cannot be explained by an alternative diagnosis.17

The pathophysiological basis is not well understood, however immune reaction, inflammation, persistent viremia, relapse or reinfection are all suggested etiologies.16,18,19

To date physicians and researchers are still learning about the symptoms and signs of this novel virus. Many survivors may experience many morbidities and multiple manifestations requiring long-term monitoring. Hence the aim of this study was to determine the persistence of any symptoms or signs after clearance of SARS-CoV-2 in patients with COVID-19 infection during the first wave.

During the period between August 2020 and October 2020, a multicenter cross-sectional survey was done.

A list was made of all patients who had been discharged from quarantine hospitals after recovery from COVID-19 during the period from March to May 2020. Our patients fulfilled the criteria of the World Health Organization for discontinuation of quarantine which include that the patient should have no fever for 3 consecutive days, the test results should be negative for SARS-CoV-2, with improvement of other symptoms. A stratified sampling technique was used to select a random sample from this list.

The sample size was calculated by OpenEpi, Version 3, and open-source calculator. It was found to be 384 with CI 95% and error probability of 5%.

Data on specific symptoms, which may be correlated with COVID-19, were obtained using a standardized questionnaire which was adapted and administered by the researchers to the patients by visit or phone call.

The study tool included two sections, the first one was for demographic data (age, sex, governorate, and smoking), pre-existing comorbidities, medication used, date of initial diagnosis (first positive PCR test for SARS-CoV-2) and date of negative PCR for SARS-CoV-2. In addition there was a section on health-care management details (home isolation, hospital or ICU admission) including length of hospital stay, medication used, oxygen therapy and if used ventilation (invasive or non-invasive).

Patients were questioned about the presence or absence of symptoms during the acute phase of COVID-19 and if each symptom persisted at the time of the visit or phone call. Patients were asked about: sense of fever, skin rash, pruritus, bone aches, cough, dyspnea, sore throat, rhinorrhea, chest pain/tightness, palpitation, syncopal attacks, fatigue, muscle pain, joint pain/stiffness, anosmia, ageusia, headache, dizziness, numbness, diarrhea, nausea, vomiting, anorexia, abdominal pain, constipation, dyspepsia, dysphagia, jaundice, weight loss/gain, hematemesis, melena, visual changes, hearing changes, vertigo, low/high mood, poor sleep, agitation, self-harm, delusions, hallucinations, thought disorders, suicidal tendency, dysuria, hematuria, vaginal bleeding, abortion, puffy eyes, loss of libido, and erectile dysfunction. Date of appearance and date of resolution were reported. An open text field was added at the end of the symptoms collection sheet to add any other symptoms or possible complications of COVID-19 infection. Patients or the public were not involved in the design, conduct, reporting, or dissemination plans of our research.

The sample size was calculated using OpenEpi, Version 3, for proportion studies. Population size (number of reported COVID-19 patients in Egypt at the time of the study) (N): ~338,000, Hypothesized % frequency of post-COVID-19 symptoms in the population (p): 50% 5, confidence interval of 95%, and design effect (for cluster surveys-DEFF): 1.

The sample size was 384 with CI 95% and error probability of 5%. However, we included 538 cases.

To achieve proper social distancing and to decrease risk of possible transmission of COVID-19, respondents were interviewed either by a visit in a non-COVID designated area or through a phone call. Paper use for documentation was also avoided. We explained to the respondents the objectives of the study and sent them an information sheet containing all details of the study to read before the interview. A written consent to participate in the study was obtained before administration of the questionnaires. This study was approved by the Damietta Faculty of Medicine Al Azhar University Ethical committee IRB 00012367.

There was no direct patient involvement in this study.

Descriptive data analysis was performed for categorical variables including frequencies and proportions. As appropriate, inferential statistics were performed between groups with the Chi square test or KruskalWallis test. Differences within groups were evaluated with the Wilcoxon Signed Rank test. Multiple regression analysis was performed to predict the persistence of symptoms at follow-up. P value level of significance was set at 0.05. Data entry and analysis were completed using MS Excel 2017 and data analysed using SPSS Version 25.

We started with 561 subjects, 23 were excluded either due to difficult communication or refusal of the patient to participate in the study. So, our study included 538 patients with confirmed SARS-CoV-2 infections. The study flow chart is shown in Figure 1. 54.1% were male. The mean age was 41.17 (SD 14.84, range 587 years) and 18.6% were smokers. The most reported co-morbid conditions were diabetes mellitus in 17.1%, hypertension in 19.5% (5.2% were receiving ARBs and 7.6% were receiving ACEIs), COPD in 5.4%, chronic kidney disease in 1.1%, ischemic heart disease in 4.5% and immunosuppressive state in 0.4% (Table 1).

Table 1 Demographic and Clinical Characters of Studied Patients

Figure 1 Study flow chart.

Almost half of the studied patients (51.3%) were admitted to hospital with an average hospital stay of 13.58 (SD 6.40, range 437) days, 6.5% were admitted to ICU with an average ICU stay of 9.66 (SD 5.85, range 230) days. Symptoms were mild in 61.3%, moderate in 31% and severe in 7.6% of patients (Table 2).

Table 2 Severity and Hospital Stay Characterization of Studied Patients

Frequencies of medication used in treatment of the studied patients are presented in Figure 2. Most commonly reported symptoms persisting after viral cure were fatigue, cough, dyspnea, sore throat, loss of smell, anorexia, loss of taste, diarrhea, headache, low mood, abdominal pain, nausea, muscle pain, chest pain, joint pain and poor sleep (Figure 3). Although reported in the active stage of the disease, the following symptoms were not persistent after viral clearance: abortion (reported initially in 0.6%), puffy eyes (reported initially in 0.4%), hallucination (reported initially in 0.8%), thought disorders (reported initially in 0.2%), suicidal tendency (reported initially in 0.4%), self-harm (reported initially in 0.2%), facial droop (reported initially in 0.2%), photophobia (reported initially in 1%), dysarthria (reported initially in 0.6%), vomiting (reported initially in 12.3%), wheeze (reported initially in 2%), hemoptysis (reported initially in 0.4%) and rhinorrhea (reported initially in 5.8%). The symptoms reported initially and that persisted after viral cure are presented in Table 3. Factors associated with symptoms persistence were hospital admission, disease severity, treatment with hydroxychloroquine, steroid, anticoagulant, azithromycin, multivitamins and receiving oxygen therapy; the rest of the other factors were not associated with symptom persistence in univariate analysis (Table 4). Multivariate analysis showed that treatment with hydroxychloroquine, azithromycin and multivitamins were the only factors associated with symptom persistence (Table 5).

Table 3 Symptoms Persisting After Clearance of SARS-CoV-2 Infection

Table 4 Factors Associated with Persistent Symptoms Persistence

Table 5 Multivariate Analysis for Predictors of Post-Covid-19 Persisting Symptoms

Figure 2 Frequencies of medication used in treatment of the studied patients.

Figure 3 Post Covid-19 acute and persistent symptoms.

Since the start of the COVID-19 pandemic, Egypt reported 337,487 confirmed cases and 228,583 were discharged after clearance of the virus.8 Interestingly, some of those patients presented to the outpatient clinics complaining of vague symptoms resembling the acute phase symptoms that triggered the concepts of incomplete recovery or persistence of COVID-19 infection. This is an Egyptian study for assessment of the post-discharge persistent symptoms after recovery from COVID-19 and possible long-term impact of COVID19 infection.

In our study, 84.6% of patients who recovered from COVID-19 have one or more persistent symptoms. Fatigue, cough, sense of fever and dyspnea were among the most common reported symptoms followed by sore throat, anorexia, loss of taste and smell, diarrhea, headache, and low mood.

The median duration to symptom resolution among those with persistent symptoms ranged from 1 to 83 days from the negative PCR test date, with the longest duration reported for vertigo (median = 82 days; 23147 days) and numbness (median = 77 days; 1126 days).

A telephone-based report from the USA investigating 274 symptomatic COVID-19 adult outpatients, found 23 weeks are needed by about 30% of contributors to get back to their usual state. Cough, fatigue and shortness of breath at the time of testing were the most persistent symptoms. The median duration for disappearance of symptoms ranged from 48 days from the test date. The longest duration was reported for anosmia (median = 8 days; IQR = 510.5 days) and loss of taste (median = 8 days; IQR = 410 days).20

Also, a single-center study from Rome included 143 hospitalized post-COVID-19 recovered patients who were assessed 60 days following infection. Surprisingly, only about 13% were completely free of any persistent symptoms. Meanwhile, 32% had at least one or two symptoms and 55% showed three or more persistent manifestations.21

A Facebook-based survey in the Netherlands and Belgium that included a large scale of COVID-19 patients either hospitalized or non-hospitalized, confirmed or suspected, showed that only 0.7% of the respondents were symptom-free 79 days after the infection. Fatigue and dyspnea were the most common symptoms, in both hospitalized and non-hospitalized patients.22

Interestingly, 58.5% of our patients with mild COVID-19 infection have one or more persistent symptoms which is consistent with anecdotal evidence, which stated that patients with the so-called mild COVID-19 may still complain about persistent symptoms, even weeks after the onset of symptoms.23,24

In agreement with our results, Davido et al.25 reported that most of the outpatients who experienced mild symptoms attributable to COVID-19 would further present with persistent symptoms, such as sense of fever, severe fatigue, chest tightness, palpitations, muscle aches, anxiety and headaches shortly after convalescence.

In our study, fatigue persisted in about 59.1% of participants for a median of 31 days. This was in accordance with data reported from France,25 Italy21 and UK.26 Fatigue was explained by dysautonomia that was reported in the ALBA COVID registry (2.5%),27, also endocrine disturbance with hypothalamus-pituitary-adrenal axis attenuation, reactive mood disorder such as depression or anxiety could be contributing factors for pathophysiology of post-COVID-19 fatigue syndrome.28,29

Similar results also reported from a single-center study in the UK that investigated 100 post-discharge COVID-19 patients showed that fatigue was the most commonly described symptom in both ICU and ward groups (72% and 60.3%, respectively).26

Contrary to our findings, a Chinese prospective cohort study of 131 COVID-19 patients in Wuhan found that by 34 weeks post-discharge 86% of patients were asymptomatic, only 1.5% had shortness of breath and 0% had fatigue. This could be attributed to the lower case severity of these patients with few co-morbidities. Moreover, underreporting could be expected due to the nature of this study focusing on evaluation of ongoing transmissibility, and participants were asked about the quarantine situation.30

Post viral infection fatigue syndrome was first described in EpsteinBarr virus (EBV) infection.31 In the previously experienced epidemics of SARS, H1N1 and Ebola, many patients with persistent fatigue were serious enough to be diagnosed as Myalgia Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). More than 50% of patients surviving SARS experienced fatigue during their recovery: 64% reported fatigue at 3 months, 54% at 6 months and 60% at 12 months.32

Fatigue and breathlessness are not uncommonly reported as persistent symptoms following community-acquired pneumonia and ICU admission, but the duration varies substantially.33,34 Hospitalized patients with community-acquired pneumonia in several studies were found to experience breathlessness and fatigue that usually resolved in 1014 days from symptom onset.35

Among the persistent neuropsychiatric symptoms detected in our work were low mood (20.6%), poor sleep (12.6%) and poor concentration (4.8%). Our results are consistent with Garrigues et al.36 who found that after a mean of 110.9 days, the most frequently reported persistent post-COVID-19 symptoms were loss of memory, concentration and sleep disorders (34%, 28% and 30.8%, respectively). These results are in agreement with Srivastava et al. who reported that recovered COVID-19 patients suffered from a significant degree of depression and high rate of post-traumatic stress disorder (PTSD).37

Classic neurological disorder such as loss of taste, smell, headache, numbness and vertigo were present and persist in 22.9%, 21.7%, 21.4, 19% and 12%, respectively, these results were in accordance with results from a systematic review conducted in 2022 by Whittaker et al.38

These neurological disorders are attributed to endothelial injury and microangiopathy, which was described in brain biopsies of severe form of COVID-19.39 Also, severity of condition and PTSD could be co-factor in neuropsychiatric persistence symptoms,40 in children it seems similar to the late Kawasaki syndrome that was reported after COVID-19.41

In the present study, a sense of fever was detected in 250 (46.5%) patients and persisted for 20.68 30.66 days (12 patients confirmed the presence of fever by measuring temperature) in contrast with the progressive decline observed in cases of influenza.

Ng et al. studied 142 patients with COVID-19 for persistence of fever. They observed that 12.7% had fever lasting more than 7 days (prolonged fever), and 9.9% had recurrence of fever lasting less than a day after defervescence after day 7 of illness (saddleback fever) that may be correlated to decreased levels of interleukin 1 alpha and increased levels of interferon gamma-induced protein 10 in their patients with prolonged fever.42

Moreover, it was found that COVID-19 patients may complain of low-grade fever during convalescence which was attributed to the incomplete recovery of their immunity at that stage which elucidates the recurrence of SARS-CoV-2 positivity that was noticed in many patients during convalescence.43

Among the non-respiratory manifestations that are of special concern in COVID-19 patients, were the gastrointestinal tract (GIT) symptoms. They may be solitary, they may become progressive during the course of the disease and they may occur early, which is completely different from the other coronaviruses.44

The most prevalent GI symptom in our study was anorexia which was detected in 131 patients (24.3%) as a persistent symptom after cure for 197 days. Moreover, 131 patients (24.3%) had diarrhea that continued after cure for 1100 days. Diarrhea can be explained by the change in the intestinal permeability that is caused by the virus, leading to dysfunction of the enterocytes.45 That was in agreement with the Garrigues et al.36 study in which diarrhea persisted in 29 patients (24.2%).

In our study, abdominal pain was reported in 106 patients (18.7%) and 97 patients (18%) had persistent pain after cure for 1104 days. In contrast, Kecler-Pietrzyk et al. reported anorexia, diarrhea and nausea among the common persistent symptoms, but abdominal pain was rare, particularly as the initial presenting complaint.46

Neither age nor presence of co-morbid conditions were associated with persistent symptoms in our study, whereas Tenforde et al.20 found that those with older age and chronic co-morbidities were associated with much prolonged disease.

In our work, it was found that hospital admission and the use of some drugs such as chloroquine, steroids, anticoagulants, azithromycin, multivitamins and oxygen therapy during acute COVID-19 phase, and severity of the disease were associated with persistence of symptoms. However, results of multivariate logistic regression analysis revealed that the use of chloroquine, azithromycin and multivitamins only were significantly associated with persistence of symptoms (Odds ratio 8.03, 8.89 and 10.12, respectively). This is also in accordance with results of other studies on post-viral/infectious syndromes47,48 and those with critically ill ICU (non-COVID) patients, who still suffer a variety of symptoms months after their hospitalization, what is also named post-ICU syndrome.49,50

Limitations of our study include the lack of information on symptom history before acute COVID-19 illness and being based on a single phone call interview that created an obstacle of contacting certain participants, such as those with dementia and/or learning difficulties. Also, the telephone-based survey is subjected to incomplete recall errors or recall bias. So, we recommend future interviews at monthly intervals for better characterization of symptoms progression of postCOVID19 patients. Furthermore, patients who had a negative swab result and clinical-radiological criteria suggestive of COVID-19 were not included in this study. Our study had the advantage of obtaining detailed symptom severity inquiry. In addition, this is a multi-centre study with a relatively large number of patients.

The post-COVID-19 symptoms should be carefully addressed and evaluated carefully. Those patients could suddenly seek care for what might be considered a chronic fatigue syndrome. Persistent symptomatic post-COVID-19 patients should be managed by a multidisciplinary team including a psychologist, a pulmonologist, a neurologist and a specialist in physical medicine and rehabilitation in specialized post-COVID-19 clinics to optimize our health-care services.

The study was conducted in accordance with ethical guidelines of the 1975 Helsinki Declaration. This study was approved by the Damietta Faculty of Medicine Al Azhar University Ethical committee IRB 00012367. All participants were adults and all of them provided written informed consent before collection of samples. To achieve proper social distancing and to decrease risk of possible transmission of COVID-19, respondents were interviewed either by a visit in a non-COVID designated area or through a phone call. Paper use for documentation was also avoided. We explained to the respondents the objectives of the study and sent them an information sheet containing all details of the study to read before the interview. A written consent to participate in the study was obtained before administration of the questionnaires.

Informed consent was obtained from all subjects involved in the study.

All authors made a significant contribution to the work reported, whether that is in the conception, study design, execution, acquisition of data, analysis and interpretation, or in all these areas; took part in drafting, revising or critically reviewing the article; gave final approval of the version to be published; have agreed on the journal to which the article has been submitted; and agree to be accountable for all aspects of the work.

The authors declare no conflicts of interest.

1. Zhou P, Yang XL, Wang XG, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579(7798):270273. doi:10.1038/s41586-020-2012-7

2. Abd Ellah NH, Gad SF, Muhammad K, Batiha EG, Hetta HF. Nanomedicine as a promising approach for diagnosis, treatment and prophylaxis against COVID-19. Nanomedicine. 2020;15(21):20852102. doi:10.2217/nnm-2020-0247

3. Abid SA, Muneer AA, Al-Kadmy IM, et al. Biosensors as a future diagnostic approach for COVID-19. Life Sci. 2021;273:119117. doi:10.1016/j.lfs.2021.119117

4. Xiao F, Tang M, Zheng X, Liu Y, Li X, Shan HJG. Evidence for gastrointestinal infection of SARS-CoV-2. Gastroenterology. 2020;158(6):18311833. e1833. doi:10.1053/j.gastro.2020.02.055

5. Mahmood Z, Alrefai H, Hetta HF, et al. Investigating virological, immunological, and pathological avenues to identify potential targets for developing covid-19 treatment and prevention strategies. Vaccines. 2020;8(3):443. doi:10.3390/vaccines8030443

6. Moubarak M, Kasozi KI, Hetta HF, et al. The rise of SARS-CoV-2 variants and the role of convalescent plasma therapy for management of infections. Life. 2021;11(8):734. doi:10.3390/life11080734

7. Almaghaslah D, Kandasamy G, Almanasef M, Vasudevan R, Chandramohan S. Review on the coronavirus disease (COVID-19) pandemic: its outbreak and current status. Int J Clin Pract. 2020;74(11):e13637. doi:10.1111/ijcp.13637

8. Abdellatif AA, Tawfeek HM, Abdelfattah A, Batiha GE-S, Hetta HF. Recent updates in COVID-19 with emphasis on inhalation therapeutics: nanostructured and targeting systems. J Drug Deliv Sci Technol. 2021;63:102435. doi:10.1016/j.jddst.2021.102435

9. Dai W, Chen X, Xu X, et al. Clinical characteristics of asymptomatic patients with SARS-CoV-2 in Zhejiang: an imperceptible source of infection. Can Respir J. 2020;2020:2045341. doi:10.1155/2020/2045341

10. Magdy Beshbishy A, Hetta HF, Hussein DE, et al. Factors associated with increased morbidity and mortality of obese and overweight COVID-19 patients. Biology. 2020;9(9):280. doi:10.3390/biology9090280

11. Beshbishy AM, Oti VB, Hussein DE, et al. Factors behind the higher COVID-19 risk in diabetes: a critical review. Front Public Health. 2021;9:591982.

12. Koneru G, Batiha GE-S, Algammal AM, et al. BCG vaccine-induced trained immunity and COVID-19: protective or bystander? Infect Drug Resist. 2021;14:1169. doi:10.2147/IDR.S300162

13. Iltaf S Sr., Fatima M, Salman S Sr., Salam JU, Abbas S. Frequency of neurological presentations of coronavirus disease in patients presenting to a tertiary care hospital during the 2019 coronavirus disease pandemic. Cureus. 2020;12(8):e9846. doi:10.7759/cureus.9846

14. Laszkowska M, Faye AS, Kim J, et al. Disease course and outcomes of COVID-19 among hospitalized patients with gastrointestinal manifestations. Clin Gastroenterol Hepatol. 2020;19(7):14021409.

15. Alsharif W, Qurashi A. Effectiveness of COVID-19 diagnosis and management tools: a review. Radiography. 2021;27(2):682687. doi:10.1016/j.radi.2020.09.010

16. Islam MF, Cotler J, Jason LA. Post-viral fatigue and COVID-19: lessons from past epidemics. Fatigue. 2020;8(2):6169.

17. World Health Organization. A clinical case definition of post COVID-19 condition by a Delphi consensus, 6 October 2021; 2021.

18. Dar HA, Waheed Y, Najmi MH, et al. Multiepitope subunit vaccine design against COVID-19 based on the spike protein of SARS-CoV-2: an in silico analysis. J Immunol Res. 2020;2020:8893483. doi:10.1155/2020/8893483

19. Collaborative G, Collaborative C. SARS-CoV-2 vaccination modelling for safe surgery to save lives: data from an international prospective cohort study. Br J Surg. 2021;108(9):10561063.

20. Tenforde MW, Kim SS, Lindsell CJ, et al. Symptom duration and risk factors for delayed return to usual health among outpatients with COVID-19 in a multistate health care systems networkUnited States, MarchJune 2020. MMWR Morb Mortal Wkly Rep. 2020;69(30):993. doi:10.15585/mmwr.mm6930e1

21. Carf A, Bernabei R, Landi F; Group ftGAC-P-ACS. Persistent symptoms in patients after acute COVID-19. JAMA. 2020;324(6):603605. doi:10.1001/jama.2020.12603

22. Gortz YMJ, Van Herck M, Delbressine JM, et al. Persistent symptoms 3 months after a SARS-CoV-2 infection: the post-COVID-19 syndrome? ERJ Open Res. 2020;6(4):0054202020. doi:10.1183/23120541.00542-2020

23. Garner P. Covid-19 and fatiguea game of snakes and ladders; 2020.

24. Callard F, Perego E. How and why patients made Long Covid. Soc Sci Med. 2021;268:113426. doi:10.1016/j.socscimed.2020.113426

25. Davido B, Seang S, Tubiana R, de Truchis P. Post-COVID-19 chronic symptoms: a postinfectious entity? Clin Microbiol Infect. 2020;26(11):14481449. doi:10.1016/j.cmi.2020.07.028

26. Halpin SJ, McIvor C, Whyatt G, et al. Postdischarge symptoms and rehabilitation needs in survivors of COVID-19 infection: a cross-sectional evaluation. J Med Virol. 2021;93(2):10131022.

27. Romero-Snchez CM, Daz-Maroto I, Fernndez-Daz E, et al. Neurologic manifestations in hospitalized patients with COVID-19: the ALBACOVID registry. Neurology. 2020;95(8):e1060e1070. doi:10.1212/WNL.0000000000009937

28. Papadopoulos AS, Cleare A. Hypothalamicpituitaryadrenal axis dysfunction in chronic fatigue syndrome. Nature Rev Endocrinol. 2012;8(1):2232.

29. Sandler CX, Wyller VB, Moss-Morris R, et al. Long COVID and post-infective fatigue syndrome: a review. Paper presented at: Open forum infectious diseases; 2021.

30. Wang X, Xu H, Jiang H, et al. Clinical features and outcomes of discharged coronavirus disease 2019 patients: a prospective cohort study. QJM. 2020;113(9):657665. doi:10.1093/qjmed/hcaa178

31. Hotchin NA, Read R, Smith DG, Crawford DH. Active Epstein-Barr virus infection in post-viral fatigue syndrome. J Infect. 1989;18(2):143150.

32. Tansey CM, Louie M, Loeb M, et al. One-year outcomes and health care utilization in survivors of severe acute respiratory syndrome. Arch Intern Med. 2007;167(12):13121320. doi:10.1001/archinte.167.12.1312

33. Petrie JG, Cheng C, Malosh RE, et al. Illness severity and work productivity loss among working adults with medically attended acute respiratory illnesses: US influenza vaccine effectiveness network 20122013. Clin Infect Dis. 2016;62(4):448455. doi:10.1093/cid/civ952

34. Wootton DG, Dickinson L, Pertinez H, et al. A longitudinal modelling study estimates acute symptoms of community acquired pneumonia recover to baseline by 10days. Eur Respir J. 2017;49(6):1602170. doi:10.1183/13993003.02170-2016

35. Wyrwich KW, Yu H, Sato R, Powers JH. Observational longitudinal study of symptom burden and time for recovery from community-acquired pneumonia reported by older adults surveyed nationwide using the CAP Burden of Illness Questionnaire. Patient Relat Outcome Meas. 2015;6:215223. doi:10.2147/PROM.S85779

36. Garrigues E, Janvier P, Kherabi Y, et al. Post-discharge persistent symptoms and health-related quality of life after hospitalization for COVID-19. J Infect. 2020;81(6):e4e6. doi:10.1016/j.jinf.2020.08.029

37. Srivastava A, Bala R, Devi TP, Anal L. Psychological trauma and depression in recovered COVID-19 patients: a telecommunication based observational study. Trends Psychiatry Psychother. 2021. doi:10.47626/2237-6089-2021-0381

38. Whittaker A, Anson M, Harky A. Neurological manifestations of COVID19: a systematic review and current update. Acta Neurol Scand. 2020;142(1):1422. doi:10.1111/ane.13266

View post:
Prevalence and predictors of SARS-CoV-2 | IDR - Dove Medical Press

Read More...

Page 21234..10..»


2024 © StemCell Therapy is proudly powered by WordPress
Entries (RSS) Comments (RSS) | Violinesth by Patrick