header logo image


Page 15«..10..14151617..»

Archive for the ‘Nano medicine’ Category

Nanomedicine and Drug Delivery

Wednesday, June 20th, 2018

About Us

3rd ,International Conference and Exhibition on Nanomedicine and Drug Delivery March 13-14, 2019 Singapore

Conference Series LLC Ltd is a renowned organization that organizes highly notablePharmaceutical Conferencesthroughout the globe. Currently we are bringing forth3rdInternational Conference on Nanomedicine and Drug Delivery(NanoDelivery 2019) scheduled to be held duringMarch 13-14, 2019 at Singapore. The conferenceinvites all the participants across the globe to attend and share their insights and convey recent developments in the field of Nanomedicine and Drug Delivery.

Conference Series LLC Ltdorganizes 1000+ Global Events inclusive of 1000+ Conferences, 500+ Upcoming and Previous Symposiums and Workshops in USA, Europe & Asia with support from 1000 more scientificsocietiesand publishes 700+Open access Journalswhich contains over 50000 eminent personalities, reputed scientists as editorial board members.

2019 Highlights:

Nanomedicine and Drug Delivery will account for 40% of a $136 billion nanotechnology-enabled drug delivery market by 2021. We forecast the total market size in 2021 to be US$136 billion, with a 60/40 split between Nano medicine and Drug Delivery respectively, although developing new targeted delivery mechanisms may allow more value to be created for companies and entrepreneurs.

However, the Asia-Pacific region is expected to grow at a faster CAGR owing to presence of high unmet healthcare needs, research collaborations and increase in nanomedicine research funding in emerging economies such as Singapore, Japan, China, India and other economies in the region. Singapore is expected to surpass the United States in terms of nanotechnology funding in the near future, which indicates the growth offered by this region.This conference seeks to showcase work in the area of Nanomedicine, Drug Delivery Systems, and nanotechnology, Nanobiothechnology, particularly related to drug delivery.

For More PS:https://nanomedicine.pharmaceuticalconferences.com/

(Click here for any queries)

Nanomedicine and drugdelivery can address one of the greatest challenges in the post-genomic era of the 21st century making the essential connections between Academics and industry professionals.

To meet these challenges, the field of Nanomedicine and drugdelivery has undergone exponential growth during the last 5 years. Technologies such asPersonalized Nanomedicine, Design of Nanodrugs,Synthesis of Nanoparticles for Drug Delivery,Regenerative MedicineandTissue Engineering, Nanomedicines and Biomedical applications,Nanomaterials for drug delivery,Regulatory Aspects Towards Approval of Nanomedicine,NanoPharmaceutical, Industry and Market processing and drug delivery promise to transform the world ofAdvanced nanomedicinesanddrug deliverymuch in the same way that integrated and transformed the world of pharmaceutical sciences.

Nanodelivery 2019 has everything you need:

Open panel discussions: Providing an open forum with experts from academia and business to discuss on current challenges innanomedicineanddrug delivery, where all attendees can interact with the panel followed by a Q&A session.

Speakerandposter presentations: Providing a platform to all academicians and industry professionals to share their research thoughts and findings through a speech or a poster presentation.

Editorial board meeting: Discussing on growth and development of open access Nanomedicine and drugdelivery International Journals and recruiting board members and reviewers who can support the journal.

Round table meetings: Providing a platform where industry professionals meet academic experts.

Over 50+ organizations and international pavilions will be exhibiting at the Nanodelivery 2018 conference and Exhibition. Exhibitors will include equipment manufacturers and suppliers, systems providers, finance and investment firms, R&D companies, project developers, trade associations, and government agencies.

In addition to the products and services you will see at the Nanodelivery Exhibition, you will have access to valuable content, including Keynote Presentations, Product Demonstrations and Educational Sessions from todays industry leaders.

The Nanodelivery 2019 has everything you need, all under one roof, saving you both time and money. It is the event you cannot afford to miss!

Who's Coming to Nanodelivery 2019?

Conference Keywords

Nanomedicine:

Nanomedicineis the medical application ofnanotechnology, nanomedicineranges from the medical applicationsofnanomaterialsandbiological devices, to nanoelectronicbiosensors, and even possible future applications of molecular nanotechnology such asbiological machines.

Nanomedicine : Future Nanomedicine:

We can say that nanomedicine is ourfuture medicine.The usage ofNanomedicine in drug deliverycan unlock the way to cure many life threatening diseases. For examplesnanomedicine in cancer treatment,Nanomedicine for blood disorders,Nanomedicine for Lung Diseases, Nanomedicine for Cardiovascular Diseases. This includesFuture aspects of Nanomedicine,nanobots,nanodrugs.

Nanomedicine research group:

This is only possible by the grace and smart work of thenanomedicine research groupfrom all over the world.Nanomedicine coursesare taught in theuniversities all over the world.They also providepostdoctoral fellowship opportunity in nanomedicine.So we can say thatfuture of nanomedicineshines brightly .

Nanomedicine Market:

Nanomedicinecan be explained as theapplication ofnanotechnologytoachieveinnovation in healthcare.Theglobal nanomedicine marketis anticipatedto reach USD 350.8 billion by2025.This includes:Scope of Nanomedicine,Novel Drugs to NanoDrugs,Nanodrugs for Herbal medicinesand Cosmetics

Nanomedicine in Cancer:

A wide range of new tools and possibilities is already achieved incancer treatments using Nanotechnology, fromdiagnosingit earlier to improvedimagingfortargeted therapies.This includes Nanomedicine for other disease,Nanomedicine for Cardiovascular Diseases,Nanodrugs for Cancer Therapy

New formulations:

Nanomedicines are three-dimensional constructs of multiple components with preferred spatial arrangements for their functions.This includesNano Sized Drugs,Nanodrugs for Veterinary Therapeutics,Nanodrugs for Medical applications,Formulation and Development.

Emergence of Nanomedicines:

Extensive multidisciplinary investigation in the field ofnanomedicine nanotechnology biology and medicinehas caused the emergence of Nanomedicine as promising carriers fordeliveryof diversetherapeutic moleculesto the targeted sites. This includesNanodrugs for Cancer Therapy,Nanodrugs for Veterinary Therapeutics,Nanodrugs for Medical applications.

VLPs:

VLPsare a viruses devoid ofgenetic materialand thus they cannotreplicate.This includesNanoMedicine in HIV,Drug targeting,Nanomedicine for Cancer.

Nanocarrier :

A nanocarriers are used as atransport modulefor adrug. Commonly usednanocarriersincludemicelles,polymers,carbon-based materials,liposomesandmany more.This includesnanoparticles,nanobots,nanodrugs.

Nanomedicine-History:

It was the extensive multidisciplinary investigation in the field ofnanomedicine nanotechnologybiology and medicinethat gave rise to thefuture medicinei.e.Nanomedicine. We know that nanotechnology is a recent development inscientific research,though the development of its central concepts happened over a longer period of time.This includesNanomedicine for other disease,Nanodrugs for Herbal medicines and Cosmetics

Biomedical nanotechnology:

Biomedical nanotechnologyincludes a diverse collection of disciplines.This includesCarbon Nanotubes,BiosensorsandNanobioelectronics,Nanobiomechanics and Nanomedicine.

Drug delivery systems:

Drug deliveryis theformulations,technologies, and systems for transporting apharmaceutical compoundinside the body safely to achieve itsdesired therapeutic effect.This includesLiposomes,Versatile Polymers In Drug Deivery,Drug Development

Toxicity:

Toxicityis the measure to which a particular mixture of substances can damage an organism.This includeGold Nanoparticles,Silver Nanoparticles,Magnetic Nanoparticles.

Xenobiotics:

Axenobioticis a chemical substances which is not produced naturally or expected to be found within an organism.This includesNano Micro Particles,BiosensorsandNanobioelectronics,Bio inspired materials and drug delivery

Pharmaceutical technology:

We can detect diseases at much earlier stages usingNano pharmaceuticals.Usingnanoparticles we can also design thediagnostic applicationsconventionally.This includesNanoliposome,Drug Targeting,Challenges and advances in NanoPharmaceuticals

Bioimaging:

Bioimagingare methods that non-invasively visualizebiological processesin real time.This includesImage-guided drug delivery,Imaging,Optical sensors

Imaging probe:

Molecular imaging probeis an agent used tovisualize, characterize and quantify biological processes in living systems .This includesOptical sensors,Smart Polymer Nanoparticles,NanomaterialsforImaging

Pharmaceutical compound:

The particular pharmaceutical product to fit the unique need of a patient can be made byPharmaceutical compounding.This includesChallenges and advances in Nano Pharmaceuticals,Nano Pharmaceuticalsfrom thebench to Scale up

Pulmonary delivery:

Pulmonary deliveryofdrughas become an attractive target and of tremendous scientific andbiomedical interestin thehealth care research.This includes Transmucosal Drug Delivery Systems, Sonophoresis Drug Delivery System, Hydrogel in Drug Delivery

Vascular disease:

Diseases of theblood Vessels can be related toVascular diseases.This includesovarian, breast cancer,kidney disease,fungal infections.

Tissue engineering:

The use of a tissue, engineering and materials methods, and suitablebiochemicalandphysicochemical factorsto improve or replacebiological tissues.This includesNeuro Regenerations,Organ fabrication,Cell-based therapies

Regenerative medicine:

Regenerative medicineis a broad field that includes tissue engineering but also incorporates onself-healing

Regenerative medicine- self healing:

Body uses its own systems, sometimes with help foreignbiological materialtorecreate cellsandrebuild tissuesand organs.This includeBiologic scaffolds,Bone Marrow Tissue Engineering,Mechanical properties of engineered tissues

Quantitative Imaging:

Quantitative imagingprovides clinicians with a more accurate picture of a disease state.This includesImage-guided drug delivery,Imaging,Optical sensors.

Tissue Sciences:

The internal organs and connective structures ofvertebrates, andcambium,xylem, andphloemin plants are made up of different types of tissue.This includesNeuro Regenerations,Bioreactor design,Bone Marrow Tissue Engineering.

Rational drug design:

Drug design, is simply the inventive process of findingnew medicationsbased on the knowledge of abiological targetThis includesNanodrugs for Cancer Therapy,Nanodrugs for Medical applications,Nano Sized Drugs

Drug target:

Biological targetcan be described as thenative proteinin the body , with modified activity by a drug resulting in a specific effect. The biological target is often referred to as a drug target.This includeDrug targeting,Image-guided drug delivery,target site

Drug resistance mechanism:

InDrug resistancethe effectiveness of amedicationis reduced such as anantimicrobialor anantineoplasticin curing a disease or condition.This includeschemotherapy,tumor-targeted drug delivery

Single molecule imaging:

Single-molecule studies may be contrasted with measurements on the bulk collection of molecules. In this individual behavior ofmoleculescannot be distinguished, and only average characteristics can be measured.This includeDrug targeting,Image-guided drug delivery,Imaging

Medicine:

Medicine can be explained as the science and practice of thediagnosis,treatment, andprevention of disease.This include Controledradical polymerization,Nanodrugs for Herbal medicinesandCosmetics,Nanomedicine for Gastrointestinal Tract (GI) Diseases.

Computer-Aided Diagnosis:

Computer-aided detection(CADe), are systems that help doctors in the interpretation ofmedical images.This includesImage-guided drug delivery,Optical sensors,BiosensorsandNanobioelectronics

Pharmacology:

Pharmacology is the study ofdrug action, where a drug can be broadly defined as any man-made, natural, or endogenousThis includesNanoliposome,Drug Targeting,Applied biopharmaceutics

Drug delivery industries:

Demand fordrug deliveryproducts in the US will rise 6.1 percent yearly to $251 billion in 2019. Parenteral products will grow the fastest, driven bymonoclonal antibodiesandpolymer-encapsulated medicines.Hormonesand central nervous system agents will lead gains by application.Pen injectorsand retractable prefillable syringes will pace devices.This includesBio Pharmaceutical Industry,Focus on Nanopharmaceuticals,Industrial Applications of Nano medicine.

Drug delivery market:

The drug delivery market is thelargest contributing applicationsegment, whereasbiomaterialsis the fastest growing application area in this market. Nanomedicine accounts for 77Marketed ProductsWorldwide, representing an Industry with an estimated market $130.9 Billion by 2016.This includesBio Pharmaceutical Industry,Focus on Nanopharmaceuticals,Industrial Applications of Nano medicine.

Nanomedicine Market Size:

Theglobal nanomedicine marketis anticipated to reach USD 350.8 billion by 2025, according to a new report by Grand View Research, Inc. Development ofnovel nanotechnology-based drugsandtherapiesis driven by the need to develop therapies that have fewer side effects and that are morecost-effectivethantraditional therapies, in particular for cancer.This includespharmaceutical industry,Up Coming Market for Nanotechnology,Focus on Nanopharmaceuticals.

Biodegradable implants:

Biodegradable implants offer a number of financial,psychological, andclinical advantagesoverpermanent metal implants.They provide the appropriate amount of mechanical strength when necessary, and degrade at a rate similar tonew tissue formation, thereby transferring the load safely to thehealed boneand eliminating the need for an additional revision and removal operation.This includesBiologic scaffolds,Biomaterials,Bone Marrow Tissue Engineering.

Nanomedicine industry:

Expecteddevelopments in nanoroboticsowing to therise in fundingfrom thegovernment organizationsis expected to induce potential to the market.Nanorobotics engineering projectsthat are attempting totarget the cancer cellswithout affecting the surrounding tissues is anticipated to drive progress through to 2025.This includesIndustrial Applications of Nano medicine,Nanotechnology tools in Pharmaceutical R&D,Bio Pharmaceutical Industry,Focus on Nanopharmaceuticals

Nanomedicine Market Drivers:

The major drivers of the nanomedicine market include its application in varioustherapeutic areas, increasingR&D studiesabout nanorobots in this segment, andsignificant investmentsinclinical trialsby the government as well as private sector. TheOncology segmentis the majortherapeutic areafornanomedicine application, which comprised more than 35% of the total market share in 2016.This includesAn Up and Coming Market for Nanotechnology,Nanomedicine: Prospects, Risks and Regulatory Issues,Current , Future Applications and Regulatory challenges.

Nanomedicine Market trends:

Thetherapeutic areas for nanomedicineapplication areOncology,is includesCurrent , Future Applications and Regulatory challenges,Regulatory Policies.

Visit link:
Nanomedicine and Drug Delivery

Read More...

Nanomedicine Research Journal

Thursday, September 7th, 2017

Nanomedicine Research Journal (Abbreviation: Nanomed Res J)

is an international, open access, peer-reviewed, electronic and print quarterly publication released by the Iranian Society of Nanomedicine (ISNM). Nanomedicine Research Journal publishes original research articles, review papers, mini review papers, case reports and short communications covering a wide range of field-specific and interdisciplinary theoretical and experimental results related to applications of nanoscience and nanotechnology in medicine including, but not limited to, diagnosis, treatment, monitoring, prediction and prevention of diseases, tissue engineering, nano bio-sensors, functionalized carriers and targeted drug delivery systems.

* Publication process of manuscripts submitted to Nanomed Res J is free of charge.

To see Acceptance timeline Please follow the link below:

Acceptance Timeline Diagram

About the publisher

Founded in 2011 by the leading ofSchool of Advanced Technologies in medicine (SATiM),Tehran University of Medical Sciences (TUMS) and Iran Nanotechnology Initiative Council, the Iranian Society of Nanomedicine (ISNM) attempts to promote and develop medical nanotechnology in Iran. For more information about the publisher, please visit us at http://isnm.ir/en/.

Go here to read the rest:
Nanomedicine Research Journal

Read More...

Nanomedicine – Overview

Wednesday, September 6th, 2017

The program began in 2005 with a national network ofeight Nanomedicine Development Centers. Now, in the second half of this 10-year program, the four centers best positioned to effectively apply their findings to translational studies were selected to continue receiving support.

Nanomedicine, an offshoot of nanotechnology, refers to highly specific medical intervention at the molecular scale for curing disease or repairing damaged tissues, such as bone, muscle, or nerve. A nanometer is one-billionth of a meter, too small to be seen with a conventional lab microscope. It is at this size scale about 100 nanometers or less that biological molecules and structures operate in living cells.

The NIH vision for Nanomedicine is built upon the strengths of NIH funded researchers in probing and understanding the biological, biochemical and biophysical mechanisms of living tissues. Since the cellular machinery operates at the nanoscale, the primary goal of the program - characterizing the molecular components inside cells at a level of precision that leads to re-engineering intracellular complexes - is a monumental challenge.

The teams selected to carry out this initiative consist of researchers with deep knowledge of biology and physiology, physics, chemistry, math and computation, engineering, and clinical medicine. The choice and design of experimental approaches are directed by the need to solve clinical problems (e.g., treatment of sickle cell disease, blindness, cancer, and Huntingtons disease). These are very challenging problems, and great breakthroughs are needed to achieve the goals within the projected 10 year timeframe. The initiative was selected for the NIH Roadmap (now Common Fund) precisely because of the challenging, high risk goals, and the NIH team is working closely with the funded investigators to use the funds and the intellectual resources of the network of investigators to meet those challenges.

10 Year Program Design High Risk, High Reward

The Centers were funded with the expectation that the first half of the initiative would be more heavily focused on basic science with increased emphasis on application of this knowledge in the second five years. This was a novel, experimental approach to translational medicine that began by funding basic scientists interested in gaining a deep understanding of an intracellular nanoscale system and necessitated collaboration with clinicians from the outset in order to properly position work at the centers so that during the second half of the initiative, studies would be applied directly to medical applications. The program began witheight Nanomedicine Development Centers(NDCs), and four centers remain in the second half of the program.

Clinical Consulting Boards (CCBs)

The program has establishedClinical Consulting Boards (CCBs)for each of the continuing centers. These boards consist of at least three disease-specific clinician-scientists who are experts in the target disease(s). The intent is for CCBs to provide advice and insight into the needs and barriers regarding resource and personnel allocations as well as scientific advice as needed to help the centers reach their translational goals. Each CCB reports directly to the NIH project team.

Translational Path

In 2011, the PIs of the NDCs worked with their CCBs to precisely define their translational goals and the translational research path needed to reach those goals by the end of the initiative in 2015. To facilitate this, the NIH project team asked them to developcritical decision pointsalong their path. These critical decision points differ from distinct milestones because they may be adjusted based on successes, challenges, barriers, and progress. Similarly, the timing of these decision points may be revised as the centers progress. Research progress and critical decision points are revisited several times a year by the CCB and the NIH team, and when a decision point is reached, next steps are re-examined for relevance, feasibility and timing.

Transition plan

Throughout the program, various projects have been spun off of work at all the centers and most have received funding from other sources. This was by design as work at each center has been shifting from basic science to translational studies. Centers will not be supported by the common fund after 10 years. It is expected that work at the centers will be more appropriately funded by other sources. Pre-clinical targets will likely be developed, and the work at each center will be focused on a specific disease so the work will need to transition out of the experimental space of the common fund.

Support for the NIH Nanomedicine Initiative is provided by the NIH Common Fund, and a team of staff members from across the NIH oversees the program. You may direct questions or comments on the NIH Nanomedicine Initiative to Dr. Richard S. Fisher, Nanomedicine Project Team Leader (nano@nih.gov).

Read this article:
Nanomedicine - Overview

Read More...

Global Nanomedicine Industry 2017 Market Growth, Trends and Demands Research Report – MENAFN.COM

Wednesday, September 6th, 2017

(MENAFN Editorial) iCrowdNewswire - Sep 4, 2017

The Global Nanomedicine Market 2017 Industry Research Report' report provides a basic overview of the industry including its definition, applications and manufacturing technology. Then, the report explores the Global major industry players in detail.

The Global Nanomedicine Market Research Report 2017 renders deep perception of the key regional market status of the Nanomedicine Industry on a global level that primarily aims the core regions which comprises of continents like Europe, North America, and Asia and the key countries such as United States, Germany, #China and Japan.

Complete report on Nanomedicine market report spread across 116 pages, profiling 12 companies and supported with tables and figuresavailable @

The report on 'Global Nanomedicine Market is a professional report which provides thorough knowledge along with complete information pertaining to the Nanomedicine industry propos classifications, definitions, applications, industry chain summary, industry policies in addition to plans, product specifications, manufacturing processes, cost structures, etc.

The potential of this industry segment has been rigorously investigated in conjunction with primary market challenges. The present market condition and future prospects of the segment has also been examined. Moreover, key strategies in the market that includes product developments, partnerships, mergers and acquisitions, etc., are discussed. Besides, upstream raw materials and equipment and downstream demand analysis is also conducted.

Report Includes:-

The report cloaks the market analysis and projection of 'Nanomedicine Market on a regional as well as global level. The report constitutes qualitative and quantitative valuation by industry analysts, first-hand data, assistance from industry experts along with their most recent verbatim and each industry manufacturers via the market value chain. The research experts have additionally assessed the in general sales and revenue generation of this particular market. In addition, this report also delivers widespread analysis of root market trends, several governing elements and macro-economic indicators, coupled with market improvements as per every segment.

For any Inquire before buying @

Global Nanomedicine market competition by top manufacturers/players, with Nanomedicine sales volume, Price (USD/MT), revenue (Million USD) and market share for each manufacturer/player; the top players including: GE Healthcare, Johnson & Johnson, Mallinckrodt plc, Merck & Co. Inc., Nanosphere Inc., Pfizer Inc., SigmaTau Pharmaceuticals Inc., Smith & Nephew PLC, Stryker Corp, Teva Pharmaceutical Industries Ltd., UCB (Union chimique belge) S.A

The report is generically segmented into six parts and every part aims on the overview of the Nanomedicine industry, present condition of the market, feasibleness of the investment along with several strategies and policies. Apart from the definition and classification, the report also discusses the analysis of import and export and describes a comparison of the market that is focused on the trends and development. Along with entire framework in addition to in-depth details, one can prepare and stay ahead of the competitors across the targeted locations. The fact that this market report renders details about the major market players along with their product development and current trends proves to be very beneficial for fresh entrants to comprehend and recognize the industry in an improved manner. The report also enlightens the productions, sales, supply, market condition, demand, growth, and forecast of the Nanomedicine industry in the global markets.

Buy a copy of this report @

Every region's market has been studied thoroughly in this report which deals with the precise information pertaining to the Marketing Channels and novel project investments so that the new entrants as well as the established market players conduct intricate research of trends and analysis in these regional markets. Acknowledging the status of the environment and products' up gradation, the market report foretells each and every detail.So as to fabricate this report, complete key details, strategies and variables are examined so that entire useful information is amalgamated together for the understanding and studying the key facts pertaining the global Nanomedicine Industry. The production value and market share in conjunction with the SWOT analysis everything is integrated in this report.

Table of Contents

1 Nanomedicine Market Overview 2 Global Nanomedicine Market Competition by Manufacturers 3 Global Nanomedicine Capacity, Production, Revenue (Value) by Region (2011-2016) 4 Global Nanomedicine Supply (Production), Consumption, Export, Import by Regions (2011-2016) 5 Global Nanomedicine Production, Revenue (Value), Price Trend by Type 6 Global Nanomedicine Market Analysis by Application 7 Global Nanomedicine Manufacturers Profiles/Analysis

8 Nanomedicine Manufacturing Cost Analysis 9 Industrial Chain, Sourcing Strategy and Downstream Buyers 10 Marketing Strategy Analysis, Distributors/Traders 11 Market Effect Factors Analysis 12 Global Nanomedicine Market Forecast (2016-2021) 13 Research Findings and Conclusion

About Us

Deep Research Reportsis digital database of syndicated market reports for global and #China industries. These reports offer competitive intelligence data for companies in varied market segments and for decision makers at multiple levels in these organizations. We provide 24/7 online and offline support to our customers.

Connect us

Hrishikesh Patwardhan

Corporate Headquarters

2nd floor, metropole,

Next to inox theatre,

Bund garden road,Pune-411001.

1 888 391 5441

MENAFN0509201700703403ID1095819074

Excerpt from:
Global Nanomedicine Industry 2017 Market Growth, Trends and Demands Research Report - MENAFN.COM

Read More...

Innovation in cancer treatment multimodality therapy – eHealth Magazine | Elets

Wednesday, August 30th, 2017

eHealth Magazine | Elets
Innovation in cancer treatment multimodality therapy
eHealth Magazine | Elets
Nano medicine as a multimodality treatment of cancer is the latest evolution in this field. The advantage of nano delivery system is that it simultaneously delivers different agents to the active site, causing a special interaction between the agents ...

and more »

View original post here:
Innovation in cancer treatment multimodality therapy - eHealth Magazine | Elets

Read More...

Deadly Venom Can Be Turned Into Disease Treatments | WLRN – WLRN

Wednesday, August 30th, 2017

You probably know the Nietzsche quote: That which does not kill us makes us stronger.

One University of South Florida researcher is studying that adage in nature.

University Beat report on USF Health research into venom peptides.

Craig Doupnik looks at how components of venom the toxic secretions of dozens of animals like spiders and snakes can actually be bio-engineered to treat diseases.

Venom peptides have been recognized as potential therapeutics for a variety of different disorders in fact, several have made their way into clinical trials of currently FDA-approved drugs, saidDoupnik, an associate professor in the USF Morsani College of Medicines Department of Molecular Pharmacology and Physiology.

He explained that venom peptides are strings of amino acids that can be manipulated by scientists so they can be used to target ion channels. Those are proteins that help control things like how your heart beats and how neurons fire within your brain.

As a result, a lot of the FDA-approved venom peptides are used to treat problems with those systems.

Captopril, which is a drug that was originally derived from a viper venom, is used to treat hypertension and congestive heart failure," Doupnik said. "There's a peptide thats released from the venom of a cone snail thats used for treating chronic pain.

Other venom peptides target seizure-related disorders and other cardiac arrhythmias.

Doupniks research focuses on peptides from the venom of honeybees. He re-engineers those peptides so they can interact with different ion channels. His work doesnt create specific treatments but instead turns the venom into something a chemist can create a treatment from.

This kind of work on bee venom has been going on for more than thirty years but has really been advanced as technology approves.

Whats really kind of transformed the field for myself is how structural biology, in terms of how we can see these peptides and ion channels at atomic level resolution and some of the computational tools that are now available allow us to do the type of peptide engineering that otherwise wouldnt have been possible 10 years ago," Doupnik said.

Doupnik also studies nano-medicines, which treat diseases at the atomic level.

What it does is it provides computational engineers an opportunity to redesign molecules like peptides or even small molecules that can target these areas and either enhance their activity or reduce their activity, whatever the beneficial or therapeutic direction would be, and it can go in either direction, so thats part of the trick of the trade," he said.

"It gives us whats often referred to as rational drug design or rational peptide design," he added. "At least we have some rational understanding of what were trying to target versus just throwing a soup of chemicals onto a preparation and seeing what happens and then trying to sift through that soup to find out what the magic bullet might be or what the active ingredient might be.

Of course, there are ethical concerns when talking about bio-engineering. Doupnik believes sharing information with the public about this kind of work helps allay some of their fears.

There clearly are areas of concern and I think its important for scientists to effectively communicate to the lay public what the goals and intentions of this type of research are," he said.

And what about perhaps the most obvious question, one that comes back to the Nietzsche quote we started with: how in the world would someone think that deadly venom could be used to actually save lives?

Basic science is a crazy business!" Doupniksaid, laughing. "It takes you down a lot of different paths and a lot of those paths are dead ends. But it never the less is where a lot of our fundamental discoveries come from and when they do lead down paths towards therapeutics and helping us better understand human disease, we see the value in it obviously.

See more here:
Deadly Venom Can Be Turned Into Disease Treatments | WLRN - WLRN

Read More...

Nanomedicine Market Growth Opportunities for Distributers 2017 – Equity Insider (press release)

Wednesday, August 30th, 2017

Global Nanomedicine Market Research Report 2017 to 2022 provides a unique tool for evaluating the market, highlighting opportunities, and supporting strategic and tactical decision-making. This report recognizes that in this rapidly-evolving and competitive environment, up-to-date marketing information is essential to monitor performance and make critical decisions for growth and profitability. It provides information on trends and developments, and focuses on markets and materials, capacities and technologies, and on the changing structure of the Nanomedicine Market.

Companies Mentioned are GE Healthcare, Johnson & Johnson, Mallinckrodt plc, Merck & Co. Inc., Nanosphere Inc., Pfizer Inc., Sigma-Tau Pharmaceuticals Inc., Smith & Nephew PLC, Stryker Corp, Teva Pharmaceutical Industries Ltd., UCB (Union chimique belge) S.A.

Primary sources are mainly industry experts from core and related industries, and suppliers, manufacturers, distributors, service providers, and organizations related to all segments of the industrys supply chain. The bottom-up approach was used to estimate the global market size of Nanomedicine based on end-use industry and region, in terms of value. With the data triangulation procedure and validation of data through primary interviews, the exact values of the overall parent market, and individual market sizes were determined and confirmed in this study.

Sample/Inquire at: https://www.marketinsightsreports.com/reports/08308548/global-nanomedicine-market-research-report-2017/inquiry

This report segments the global Nanomedicine market on the basis of types Regenerative Medicine, In-vitro & In-vivo Diagnostics, Vaccines, Drug Delivery. On the basis of application Clinical Cardiology, Urology, Genetics, Orthopedics, Ophthalmology.

Essential points covered in Global Nanomedicine Market 2017 Research are:-

This independent 116 page report guarantees you will remain better informed than your competition. With over 170 tables and figures examining the Nanomedicine market, the report gives you a visual, one-stop breakdown of the leading products, submarkets and market leaders market revenue forecasts as well as analysis to 2022.

The global Nanomedicine market consists of different international, regional, and local vendors. The market competition is foreseen to grow higher with the rise in technological innovation and M&A activities in the future. Moreover, many local and regional vendors are offering specific application products for varied end-users. The new vendor entrants in the market are finding it hard to compete with the international vendors based on quality, reliability, and innovations in technology.

Browse Full Report at: https://www.marketinsightsreports.com/reports/08308548/global-nanomedicine-market-research-report-2017

Geographically, this report is segmented into several key Regions, with production, consumption, revenue (million USD), and market share and growth rate of Storage Area Network Switch in these regions, from 2012 to 2022 (forecast), covering

by Regions

The report provides a basic overview of the Nanomedicine industry including definitions, classifications, applications and industry chain structure. And development policies and plans are discussed as well as manufacturing processes and cost structures.

Then, the report focuses on global major leading industry players with information such as company profiles, product picture and specifications, sales, market share and contact information. Whats more, the Nanomedicine industry development trends and marketing channels are analyzed.

The research includes historic data from 2012 to 2016 and forecasts until 2022 which makes the reports an invaluable resource for industry executives, marketing, sales and product managers, consultants, analysts, and other people looking for key industry data in readily accessible documents with clearly presented tables and graphs. The report will make detailed analysis mainly on above questions and in-depth research on the development environment, market size, development trend, operation situation and future development trend of Nanomedicine on the basis of stating current situation of the industry in 2017 so as to make comprehensive organization and judgment on the competition situation and development trend of Nanomedicine Market and assist manufacturers and investment organization to better grasp the development course of Nanomedicine Market.

The study was conducted using an objective combination of primary and secondary information including inputs from key participants in the industry. The report contains a comprehensive market and vendor landscape in addition to a SWOT analysis of the key vendors.

There are 15 Chapters to deeply display the global Nanomedicine market.

Chapter 1, to describe Nanomedicine Introduction, product scope, market overview, market opportunities, market risk, market driving force;

Chapter 2, to analyze the top manufacturers of Nanomedicine, with sales, revenue, and price of Nanomedicine, in 2016and 2017;

Chapter 3, to display the competitive situation among the top manufacturers, with sales, revenue and market share in 2016and 2017;

Chapter 4, to show the global market by regions, with sales, revenue and market share of Nanomedicine, for each region, from 2012to 2017;

Chapter 5, 6, 7,8and 9, to analyze the key regions, with sales, revenue and market share by key countries in these regions;

Chapter 10and 11, to show the market by type and application, with sales market share and growth rate by type, application, from 2012 to 2017;

Chapter 12, Nanomedicine market forecast, by regions, type and application, with sales and revenue, from 2017to 2022;

Chapter 13, 14 and 15, to describe Nanomedicine sales channel, distributors, traders, dealers, Research Findings and Conclusion, appendix and data source.

Read the original:
Nanomedicine Market Growth Opportunities for Distributers 2017 - Equity Insider (press release)

Read More...

Impact of Existing and Emerging Europe Nanomedicine Market … – MilTech

Tuesday, August 29th, 2017

The global Nanomedicine Market size was estimated at USD XX billion in 2017. Technological advancements coupled with relevant applications in early disease diagnosis, preventive intervention, and prophylaxis of chronic as well as acute disorders is expected to bolster growth in this market.

Download Sample Pages @http://www.kminsights.com/request-sample-33081

Nanotechnology involves the miniaturization of larger structures and chemicals at nanometric scale which has significantly revolutionized drug administration, thus influencing adoption of the technology through to 2022.

Expected developments in nanorobotics owing to the rise in funding from the government organizations is expected to induce potential to the market. Nanorobotics engineering projects that are attempting to target the cancer cells without affecting the surrounding tissues is anticipated to drive progress through to 2022.

Ability of the nanotechnology to serve in diagnostics as well as the therapeutic sector at the same time as a consequence of its characteristic principle to is anticipated to augment research in this sector. Furthermore, utilization of DNA origami for healthcare applications is attributive for the projected growth.

The global nanomedicine market is segmented based on modality, application, indication, and region. Based on application, it is classified into drug delivery, diagnostic imaging, vaccines, regenerative medicine, implants, and others.

On the basis of indication, it is categorized into oncological diseases, neurological diseases, urological diseases, infectious diseases, ophthalmological diseases, orthopedic disorders, immunological diseases, cardiovascular diseases, and others. Based on modality, it is bifurcated into treatments and diagnostics.

The global market is driven by emerging technologies for drug delivery, increase in adoption of nanomedicine across varied applications, rise in government support & funding, growth in need for therapies with fewer side effects, and cost-effectiveness of therapies. However, long approval process and risks associated with nanomedicine (environmental impacts) restrain the market growth.

Download Sample Pages @http://www.kminsights.com/request-sample-33081

Contact:

Mr.Mannansales@kminsights.com+1 (888) 278-7681

About Us:Key Market Insights is a stand-alone organization with a solid history of advancing and exchanging market research reports and logical surveys delivered by our numerous transnational accomplices, which incorporate both huge multinationals and littler, more expert concerns.

Read more here:
Impact of Existing and Emerging Europe Nanomedicine Market ... - MilTech

Read More...

Expert Radiologist and Clinician Scientist, Michelle S. Bradbury, MD, PhD, is to be Recognized as a 2017 Top Doctor … – PR NewsChannel (press…

Tuesday, August 29th, 2017

Michelle Bradbury MD, PhD, who is a Professor of Radiology, Director of Intraoperative Imaging, and Co-Director of an National Cancer Institute awarded Nanomedicine Center (MSK-Cornell Center for Translation of Cancer Nanomedicines), has been named a 2017 Top Doctor in New York City, New York. Top Doctor Awards is dedicated to selecting and honoring those healthcare practitioners who have demonstrated clinical excellence while delivering the highest standards of patient care.

Dr. Michelle S. Bradbury is a highly experienced physician who has been in practice for over two decades. Her career in medicine started in 1997, when she graduated from the George Washington University School of Medicine and Health Sciences in Washington, D.C. An internship, residency and then fellowship followed, all completed at Wake Forest University in Winston-Salem, North Carolina. Dr. Bradbury also holds a Doctor of Philosophy Degree from the Massachusetts Institute of Technology.

Dr. Bradbury is certified by the American Board of Radiology in both Diagnostic Radiology and Neuroradiology. She is particularly renowned, however, as a leading expert in nanomedicine and in neuroradiology, using CT and MRI imaging of the brain, neck and spine to diagnose conditions of the nervous system. Alongside her work in this field she has been at the forefront of nanomedicine research and clinical trials.

Dr. Bradbury keeps up to date with the latest advances in her field through her active membership of professional organizations including the American College of Radiology, the World Molecular Imaging Congress, and the American Society of Nanomedicine. Her expertise and dedication makes Dr. Michelle S. Bradbury a very deserving winner of a 2017 Top Doctor Award.

About Top Doctor Awards

Top Doctor Awards specializes in recognizing and commemorating the achievements of todays most influential and respected doctors in medicine. Our selection process considers education, research contributions, patient reviews, and other quality measures to identify top doctors

See more here:
Expert Radiologist and Clinician Scientist, Michelle S. Bradbury, MD, PhD, is to be Recognized as a 2017 Top Doctor ... - PR NewsChannel (press...

Read More...

New report shares details about Europe’s nanomedicine market – WhaTech

Monday, August 28th, 2017

The global nanomedicine market size was estimated at USD XX billion in 2017. Technological advancements coupled with relevant applications in early disease diagnosis, preventive intervention, and prophylaxis of chronic as well as acute disorders is expected to bolster growth in this market.

Nanotechnology involves the miniaturization of larger structures and chemicals at nanometric scale which has significantly revolutionized drug administration, thus influencing adoption of the technology through to 2022.

Download Sample Pages @www.kminsights.com/request-sample-33081

Expected developments in nanorobotics owing to the rise in funding from the government organizations is expected to induce potential to the market. Nanorobotics engineering projects that are attempting to target the cancer cells without affecting the surrounding tissues is anticipated to drive progress through to 2022.

Ability of the nanotechnology to serve in diagnostics as well as the therapeutic sector at the same time as a consequence of its characteristic principle to is anticipated to augment research in this sector. Furthermore, utilization of DNA origami for healthcare applications is attributive for the projected growth.

The global nanomedicine market is segmented based on modality, application, indication, and region. Based on application, it is classified into drug delivery, diagnostic imaging, vaccines, regenerative medicine, implants, and others.

On the basis of indication, it is categorized into oncological diseases, neurological diseases, urological diseases, infectious diseases, ophthalmological diseases, orthopedic disorders, immunological diseases, cardiovascular diseases, and others. Based on modality, it is bifurcated into treatments and diagnostics.

This report studies sales (consumption) of Nanomedicine in Europe market, especially in Germany, UK, France, Russia, Italy, Benelux and Spain, focuses on top players in these countries, with sales, price, revenue and market share for each player in these Countries, the top player coveringAffilogicLTFNBergmannstrostGrupo PraxisBiotechrabbitBraccoMaterials Research?CentreCarlina technologiesChemConnectionCIC biomaGUNECIBER-BBNContiproCristal TherapeuticsDTIEndomagneticsFraunhofer ICT-IMMTecnaliaTeknikerGIMACIMDEAIstec CNRSwedNanoTechVicomtechVITO NV

The global market is driven by emerging technologies for drug delivery, increase in adoption of nanomedicine across varied applications, rise in government support & funding, growth in need for therapies with fewer side effects, and cost-effectiveness of therapies. However, long approval process and risks associated with nanomedicine (environmental impacts) restrain the market growth.

In addition, increase in out-licensing of nanodrugs and growth of healthcare facilities in emerging economies are anticipated to provide numerous opportunities for the market growth.

Download Sample Pages @www.kminsights.com/request-sample-33081

Read the rest here:
New report shares details about Europe's nanomedicine market - WhaTech

Read More...

Lungs in Space – Texas Medical Center (press release)

Tuesday, August 22nd, 2017

Space travel can cause a lot of stress on the human body as the change in gravity, radiation and other factors creates a hostile environment. While much is known about how different parts of the body react in space, how lungs are affected by spaceflight has received little attention until now, say researchers at The University of Texas Medical Branch at Galveston and Houston Methodist Research Institute.

That will change, though, once their research project, which aims to grow lungs in space, reaches the International Space Station. UTMB and HMRI researchers say what they learn from the study could have real implications for astronauts, as well as those still on Earth, and could lead to future therapeutics.

We know a lot about what happens in space to bones, muscle, the heart and the immune system, but nobody knows much about what happens to the lungs, said Joan Nichols, a professor of Internal Medicine and Microbiology and Immunology, and associate director for research and operations for the Galveston National Laboratory at UTMB. We know that there are some problems with lungs in space flight, but that hasnt been closely looked into. We hope to find out how lung cells react to the change in gravity and the extreme space environment, and then that can help us protect astronauts in space, as well as the lungs of regular people here on Earth.

This investigation represents the third of four collaborative projects currently active at the HMRIs Center for Space Nanomedicine. The center, directed by Alessandro Grattoni, chairman and associate professor of the Department of Nanomedicine at HMRI, focuses on the investigation of nanotechnology-based strategies for medicine on Earth and in space. The research is supported by the Center for the Advancement of Science in Space, NASA and HMRI.

Scientists from UTMB and HMRI prepared bioreactor pouches that include lung progenitor and stem cells and pieces of lung scaffolding. The scaffolding is the collagen and elastin frame on which lung cells grow. Space X successfully launched the payload containing these pouches Aug. 14 on its 12th Commercial Resupply Services mission (CRS-12) from NASAs Kennedy Space Center in Florida and arrived at the International Space Station Aug. 16. On the ISS, the cells are expected to grow on the scaffold in a retrofitted bioreactor.

Once the lung cells have returned to Earth, researchers will look for the development of fibrosis, the structure of the tissues and the response of immune cells, among other changes and damage that could occur to the lung cells. Lung injuries have been found to accelerate in space, and it is through close study of those cells that therapeutics hopefully could be developed.

Nichols and Dr. Joaquin Cortiella, a professor and director of the Lab of Tissue Engineering and Organ Regeneration at UTMB, have successfully grown lungs in their lab in Galveston, but now they will see if astronauts can do the same in zero gravity. Jason Sakamoto, affiliate professor and former co-chair of the Department of Nanomedicine at HMRI, has applied his novel organ decellularization process and nanotechnology-based delivery systems to support this overall lung regeneration effort.

We have experience working with the Center for the Advancement of Science in Space to study our nanotechnologies in action on the International Space Station, Grattoni said. However, we are extremely excited to be a part of this clinical study, since it may play a pivotal role in how we approach future space travel in terms of preserving astronaut health. What we learn during this fundamental experiment could lead to science-fiction-like medical advancements, where organ regeneration becomes a reality in both deep space and here on Earth.

Researchers at HMRI will take the results from UTMB and work on developing therapeutics that could help astronauts, as well as people on Earth.

This exploration will provide fundamental insight for the collaborative development of cell-based therapies for autoimmune diseases, hormone deficiencies and other issues, Grattoni said.

Excerpt from:
Lungs in Space - Texas Medical Center (press release)

Read More...

siRNA Treatment for Brain Cancer Stops Tumor Growth in Mouse Model – Technology Networks

Friday, August 11th, 2017

Early phase Northwestern Medicine research published in the journal Proceedings of the National Academy of Sciences has demonstrated a potential new therapeutic strategy for treating deadly glioblastoma brain tumors.

The strategy involves using lipid polymer-based nanoparticles to deliver molecules to the tumors, where the molecules shut down key cancer drivers called brain tumor-initiating cells (BTICs).

BTICs are malignant brain tumor populations that underlie the therapy resistance, recurrence and unstoppable invasion commonly encountered by glioblastoma patients after the standard treatment regimen of surgical resection, radiation and chemotherapy, explained the studys first author, Dou Yu, MD, PhD, research assistant professor of Neurological Surgery.

Using mouse models of brain tumors implanted with BTICs derived from human patients, the scientists injected nanoparticles containing small interfering RNA (siRNA) short sequences of RNA molecules that reduce the expression of specific cancer-promoting proteins directly into the tumor. In the new study, the strategy stopped tumor growth and extended survival when the therapy was administered continuously through an implanted drug infusion pump.

This major progress, although still at a conceptual stage, underscores a new direction in the pursuit of a cure for one of the most devastating medical conditions known to mankind, said Yu, who collaborated on the research with principal investigator Maciej Lesniak, MD, Michael J. Marchese Professor of Neurosurgery and chair of the Department of Neurological Surgery.

Glioblastoma is particularly difficult to treat because its genetic makeup varies from patient to patient. This new therapeutic approach would make it possible to deliver siRNAs to target multiple cancer-causing gene products simultaneously in a particular patients tumor.

In this study, the scientists tested siRNAs that target four transcription factors highly expressed in many glioblastoma tissues but not all. The therapy worked against classes of glioblastoma BTICs with high levels of those transcription factors, while other classes of the cancer did not respond.

This paints a picture for personalized glioblastoma therapy regimens based on tumor profiling, Yu said. Customized nanomedicine could target the unique genetic signatures in any specific patient and potentially lead to greater therapeutic benefits.

The strategy could also apply to other medical conditions related to the central nervous system not just brain tumors.

Degenerative neurological diseases or even psychiatric conditions could potentially be the therapeutic candidates for this multiplexed delivery platform, Yu said.

Before scientists can translate this proof-of-concept research to humans, they will need to continue refining the nanomedicine platform and evaluating its long-term safety. Still, the findings from this new research provide insight for further investigation.

Nanomedicine provides a unique opportunity to advance a therapeutic strategy for a disease without a cure. By effectively targeting brain tumor-initiating stem cells responsible for cancer recurrence, this approach opens up novel translational approaches to malignant brain cancer, Lesniak summed up.

This article has been republished frommaterialsprovided by Northwestern University. Note: material may have been edited for length and content. For further information, please contact the cited source.

Reference

Dou Yu, Omar F. Khan, Mario L. Suv, Biqin Dong, Wojciech K. Panek, Ting Xiao, Meijing Wu, Yu Han, Atique U. Ahmed, Irina V. Balyasnikova, Hao F. Zhang, Cheng Sun, Robert Langer, Daniel G. Anderson, Maciej S. Lesniak. Multiplexed RNAi therapy against brain tumor-initiating cells via lipopolymeric nanoparticle infusion delays glioblastoma progression. Proceedings of the National Academy of Sciences, 2017; 201701911 DOI: 10.1073/pnas.1701911114

Originally posted here:
siRNA Treatment for Brain Cancer Stops Tumor Growth in Mouse Model - Technology Networks

Read More...

Targeting tumours: IBBME researchers investigate biological barriers to nanomedicine delivery – U of T Engineering News

Tuesday, August 8th, 2017

For cancer patients, understanding the odds of a treatments success can be bewildering. The same drug, applied to the same type of cancer, might be fully successful on one persons tumour and do nothing for another one. Physicians are often unable to explain why.

Now, U of T Engineering researchers are beginning to understand one of the reasons.Abdullah Syed and Shrey Sindhwani, both PhD candidates,and their colleagues at the Institute of Biomaterials & Biomedical Engineering (IBBME) have created a technology to watch nanoparticles traveling into tumours revealing barriers that prevent their delivery to targets and the variability between cancers.

The biggest thing weve noticed is that nanoparticles face multiple challenges posed by the tumour itself on their way to cancer cells, says Sindhwani, an MD-PhD student in the Integrated Nanotechnology & Biomedical Sciences Laboratory of Professor Warren Chan (IBBME). Syed and Sindhwani co-published their findings online June 22, and on the cover of the Journal of the American Chemical Society. So the treatment might work for a while or worse, theres just enough of the drug for the cancer to develop resistance. This could be prevented if we can figure out the ways in which these barriers stop delivery and distribution of the drug throughout the cancer.

Tiny nanoparticles offer great hope for the treatment of cancer and other disease because of their potential to deliver drugs to targeted areas in the body, allowing more precise treatments with fewer side effects. But so far the technology hasnt lived up to its promise, due to delivery and penetration problems.

To dismantle this roadblock, the two graduate students searched for a way to better view the particles journey inside tumours. They discovered that the tough-to-see particles could be illuminated by scattering light off their surfaces.

The sensitivity of our imaging is about 1.4 millionfold higher, says Syed. First, we make the tissue transparent, then we use the signal coming from the particles to locate them. We shine a light on the particles and it scatters the light. We capture this scattering light to learn the precise location of the nanoparticles.

It was already understood that nanoparticles were failing to accumulate in tumours, thanks to a meta-analysis of the field done by Chans group. But the researchers have developed technologies to look at nanoparticle distribution in 3D, which provides a much fuller picture of how the particles are interacting with the rest of the tumour biology. The goal is to use this technology to gather knowledge for developing mathematical principles of nanoparticle distribution in cancer, similar to the way principles exist for understanding the function of the heart, says Syed.

And because each tumour is unique, this technology and knowledge base should help future scientists to understand the barriers to drug delivery on a personalized basis, and to develop custom treatments.

The next step is to understand what in cancers biology stops particles from fully penetrating tumours and then to develop ways to bypass cancers defences.

But the technology is also useful for diseases other than cancer. With the help of Professor Jennifer Gommerman, an researcher in the Department of Immunology who studies multiple sclerosis (MS), Syed and Sindhwani captured 3D images of lesions in a mouse model mimicking MS using nanoparticles.

This is going to be very valuable to anyone trying to understand disease or the organ system more deeply, says Sindhwani. And once we understand barriers that dont allow drugs to reach their disease site, we can start knocking them down and improving patient health adds Syed.

More here:
Targeting tumours: IBBME researchers investigate biological barriers to nanomedicine delivery - U of T Engineering News

Read More...

Medication for the unborn baby – Medical Xpress

Tuesday, August 8th, 2017

Empas multicellular model, which is mimicking the placental barrier: a core of connective tissue cells, surrounded by trophoblast cells. Credit: Empa

An Empa team has succeeded in developing a new three-dimensional cell model of the human placental barrier. The "model organ" can quickly and reliably deliver new information on the intake of substances, such as nano-particles, by the placental barrier and on any possible toxic effects for the unborn child. This knowledge can also be used in the future for the development of new approaches to therapy during pregnancy.

During its development, the foetus is extremely susceptible to toxic substances. Even the tiniest doses can cause serious damage. In order to protect the unborn child,one of the tasks of the placenta is to act as a barrier to "filter out" harmful substances, while at the same time providing the foetus with the nutrients it needs. In recent years, however, evidence has increasingly suggested that the placental barrier is not 100 percent effective and that nano-particles are actually able to penetrate it.

Nano-particles are being used in ever more varied areas of our lives. They are used, for example, in sun creams to protect against sunburn; they are used in condiments to stop them getting lumpy; they are used to make outdoor clothing waterproof and they are likely to be used in the future to transport medicines to their rightful destinations in the body . "At the moment, pregnant women are not being exposed to problematic amounts of nano-particles, but in the future that could well happen due to the ever increasing use of these tiny particles," suggests Tina Buerki of the "Department of Particles-Biology Interactions."

In order to ensure the safe development of nano-particles in the most diverse areas of application, their absorption mechanism at the placental barrier and their effect on the mother, foetus and placenta itself must be looked at more closely. It is the size, charge, chemical composition and shape of the nano-particles that could have an influence on whether they actually penetrate the placental barrier and, if so, in what way they are able to do so. At the moment, however, this research is only in its infancy. Since the function and structure of the human placenta is unique, studies undertaken on pregnant mammals are problematic and often inconclusive. Traditional models of the human placental barrier are either very time consuming to construct, or are extremely simplified.

A 3-D model of the human placental barrier

Tests of this nature are best carried out on donated placentas that become available after childbirth by Caesarean section. The organs are connected as quickly as possible to a perfusion system and this ensures the tissue is provided with nutrients and oxygen. This model is, indeed, the most accurate, i.e. the most clinically relevant. It is, however, very technically demanding and, moreover,restricted to a perfusion time window of six to eight hours. Against that, such placentas can be used to reliably test the ability of any given nano-particle to penetrate the placental barrier. The model does not, however, yield any information on the mechanism used by the particle to penetrate this complex organ.

Researchers are therefore tending to fall back on the use of simple cell cultures and other modelling systems. An individual cell, possibly taken from the epithelium and subsequently cultivated and propagated in a petri dish, is perfectly suited to a whole range of different experiments. However, researchers cannot be certain that the cells in the petri dish will ultimately behave like those in the human body. The new model that the Empa team under Tina Buerki described in the scientific journal Nanoscale at the end of last year is, by contrast, three-dimensional and consists of more than one cell type. The cells exist in a tissue-like environment analogous to the placenta and can be experimented on for a longer period of time.

Golden test candidate

In order to create the model, the research team used the "hanging drop" technology developed by Insphero AG. This technology allows models to be created without "scaffolding," which can hinder free access of the nano-particles to the cells in the subsequent transport tests. Rather than introducing the cells in a flat petri dish, a special device, in which the cells in the hanging drops combine to form spherical micro-tissue, is used. The resulting micro-tissue mimics the human placenta much more closely than cells cultivated on a "rigid" culture dish. Experiments can be carried out much more quickly using the 3-D model than with the real placenta and, significantly, on the most widely differing types of nano-particle. In this way, those nano-particles that show potentially toxic effects or demonstrate desirable transport behaviour can be efficiently pre-selected and the results verified using a real placenta.

The model has already proved itself in a second study, which the team has just published in the scientific journal Nanomedicine. Buerki's team has come up with an absorption mechanism for gold particles that could be used in a range of medicinal applications. The Empa team looked at gold particles of various sizes and different surface modifications. In accordance with the results of other studies, the researchers discovered that small gold particles were able to penetrate the placental barrier more easily. In addition, fewer particles passed through the barrier if they were carrying polyethylene glycol (PEG) on their surfaces. These are chain-forming molecules that almost completely envelope the particles. PEG is often used in medicine to allow particles and other small structures to travel "incognito" in the body, thus preventing them being identified and removed by the immune system. "It therefore appears possible to control the movement of nano-particles through the placenta by means of their properties," Buerki explains.

Medicines for pregnant women that do not harm the child

Empa's research team is keen to further develop this 3-D model in the future. The team is hoping to augment the model using a dynamic component. This would, for example, mean introducing the micro-tissue in a micro-fluid system able to simulate blood circulation in the mother and child. Another approach would be to combine the model of the placenta with other models. "With the model of a foetus, for example," Buerki suggests. In this way, complex organ interactions could also be incorporated and it would be possible, for example, to discover whether the placenta releases foetus-damaging substances as a reaction to certain nano-particles.

"With these studies, we are hoping to lay the foundations for the safe but nevertheless effective use of nano-medicines during pregnancy," Buerki continued. If we understand the transport mechanisms of nano-materials through the placental barrier well enough, we believe we can develop new carrier systems for therapeutic agents that can be safely given to pregnant women. This is because many women are forced to take medicines even during pregnancy patients suffering from epilepsy or diabetes, for example, or patients that have contracted life-threatening infections. Nano-carriers must be chosen which are unable to penetrate the placental barrier. It is also possible, for example, to provide such carriers with "address labels," which ensure that the medicine shuttle is transported to the correct organ i.e. to the diseased organ and is unable to penetrate the placenta. This would allow the medicine to be released first and foremost into the mother. Consequently, the amounts absorbed by the foetus or embryoand therefore the risk to the unborn child are significantly reduced.

Explore further: New placenta model could reveal how birth defect-causing infections cross from mom to baby

Continued here:
Medication for the unborn baby - Medical Xpress

Read More...

‘Nanomedicine’: Potentially revolutionary class of drugs are made-in … – CTV News

Saturday, August 5th, 2017

It's rare for researchers to discover a new class of drugs, but a University of Calgary microbiology professor recently did so -- by accident and now hopes to revolutionize autoimmune disease treatment.

In 2004, Dr. Pere Santamaria and his research lab team at the Cumming School of Medicine conducted an experiment to image a mouse pancreas, using nanoparticles coated in pancreatic proteins.

The work didnt go as planned.

Our experiment was a complete failure, he recently told CTV Calgary. We were actually quite depressed, frustrated about the outcome of that.

But the team was surprised to discover the nanoparticles had a major effect on the mice: resetting their immune systems.

The team realized that, by using nanoparticles, they can deliver disease-specific proteins to white blood cells, which will then go on to reprogram the cells to actively suppress the disease.

Whats more, the nanoparticles stop the disease without compromising the immune system, as current treatments often do.

Santamarias team believes nanomedicine drugs can be modified to treat all kinds of autoimmune and inflammatory diseases, including Type 1 diabetes, multiple sclerosis and rheumatoid arthritis.

Convinced that nanomedicine has the potential to disrupt the pharmaceutical industry, Santamaria founded a company to explore the possibilities, called Parvus Therapeutics Inc.

This past spring, Novartis, one of the worlds largest pharmaceutical companies, entered into a license and collaboration agreement with Parvus to fund the process of developing nanomedicine.

Under the terms of the agreement, Parvus will receive research funding to support its clinical activities, while Novartis receives worldwide rights to use Parvus technology to develop and commercialize products for the treatment of type 1 diabetes.

Its a good partnership, Santamaria said in a University of Calgary announcement. Bringing a drug to market requires science as well as money.

Santamaria cant say how long it might be before nanomedicine can be used to create human therapies, but he says everyone involved is working aggressively to make it happen.

With a report from CTV Calgarys Kevin Fleming

Here is the original post:
'Nanomedicine': Potentially revolutionary class of drugs are made-in ... - CTV News

Read More...

UCalgary researcher signs deal to develop nanomedicines for … – UCalgary News

Saturday, August 5th, 2017

When Dr. Pere Santamaria arrived in Calgary in 1992 to join the Cumming School of Medicine, he never could have imagined he would make a groundbreaking discovery that would lead to a spinoff company. When I arrived, I found out that the grant money I was expecting hadnt come through, says Santamaria, a professor in the Department of Microbiology, Immunology and Infectious Diseases and member of the Snyder Institute for Chronic Diseases. So I had an empty lab with no research assistants and no salary. I had to beg my supervisor to give me $10,000 to start my research.

Despite the rocky start, Santamaria has achieved something many scientists dream of making a discovery that has practical applications for health care. Santamarias discovery revolves around the use of nanoparticles coated in proteins to treat autoimmune and inflammatory disorders.

They can be modified for different diseases, such as Type 1 diabetes, multiple sclerosis and rheumatoid arthritis without compromising the entire immune system, Santamaria explains. Instead, they basically work to reset the immune system.

Nanomedicines unique mechanism has the potential to disrupt the pharmaceutical industry entirely. Developing a new class of drugs is rare. With the assistance of Innovate Calgary, Santamaria started a company, Parvus Therapeutics Inc., to represent the technology and explore ways of bringing it to market. Announced in April 2017, Parvus entered into an exclusive deal with the Swiss pharma giant Novartis, hopefully leading to the development and commercialization of Parvuss nanomedicine to treat Type 1 diabetes.

Its a good partnership, Santamaria says. Bringing a drug to market requires science as well as money.

Supporting commercialization should be a top priority for all research, he continues. Our biggest responsibility is to the patients and making sure they have access to the medicine they need. With that in mind, Santamaria shares his insight for other researchers who may be interested in bringing their discoveries from the lab bench to the market.

If youre interested in investigating spin-out opportunities, get in touch with Innovate Calgary, which offers mentors, coaching, business skill development programs, intellectual property services and other back-office support.

Throughout the years, Santamarias work has been funded by numerous organizations, including Diabetes Canada, the Juvenile Diabetes Research Foundation, the Canadian Institutes of Health Research (CIHR) and the Diabetes Association, Foothills.He is a member of the Snyder Institute and associate member of the Hotchkiss Brain Institute.Santamaria named his company Parvus from the Greek word meaning small.

Here is the original post:
UCalgary researcher signs deal to develop nanomedicines for ... - UCalgary News

Read More...

International Conference and Exhibition on Nanomedicine and Nanotechnology – Technology Networks

Tuesday, August 1st, 2017

Short Name: Nanomed Meeting 2017

Theme: Challenges and Innovations in next generation medicine

Website: http://www.meetingsint.com/pharma-conferences/nanomedicine-nanotechnology

Registration Link: http://www.meetingsint.com/pharma-conferences/nanomedicine-nanotechnology/registration

Nanomed Meeting 2017 Organizing Committee invites you to attend the largest assemblage of Nanomedicine and Nanotechnology researchers from around the globe during November 23-24, 2017 at Dubai, UAE.

Nanomed Meeting 2017 is a global annual event. This International Conference and Exhibition on Nanomedicine and Nanotechnology brings together scientists, researchers, business development managers, CEOs, directors, IP Attorneys, Regulatory Officials and CROs from around the world. The passage of Nanomed Meeting 2017 through a decade at Asia finds much requirement for discussion also focusing the latest developments in the field of Nanomedicine and Nanotechnology.

Why attend?

Join your peers around the world focused on learning about Nanomedicine and Nanotechnology related advances, which is your single best opportunity to reach the largest assemblage of participants from the Nanomedicine and Nanotechnology community, conduct demonstrations, distribute information, meet with current and potential professionals, make a splash with a new research works, and receive name recognition at this 2-day event. World-renowned speakers, the most recent research, advances, and the newest updates in Nanomedicine and Nanotechnology are hallmarks of this conference.

Like what you just read? You can find similar content on the communities below.

To personalize the content you see on Technology Networks homepage, Log In or Subscribe for Free

More here:
International Conference and Exhibition on Nanomedicine and Nanotechnology - Technology Networks

Read More...

Cancer survivor becomes a cancer fighter at a Philly start-up – Philly.com

Tuesday, August 1st, 2017

What Debra Travers really wanted to be was a marine biologist, until I found out Jacques Cousteau wasnt hiring.

How she wound up as chief executive of PolyAurum LLC, a Philadelphia start-up developing biodegradable gold nanoparticles for treating cancerous tumors, involved a professional journey of more than 30 years in pharmaceutical and diagnostics industries, and a personal battle with the disease shes now in business to defeat.

After determining that studying sea creatures was not a viable career choice, Travers a military kid from all over switched her major at Cedar Crest College in Allentown to medical technology. She graduated in 1979, then worked for three years in a hospital laboratory until she concluded she didnt like shift work and could do more.

What followed was an impressive career progression: Travers started as a chemistry technician at DuPont Biomedical Products Division, advancing to executive positions in marketing and product development at Centocor, GlaxoSmithKline, Endo Pharmaceuticals, and IMS Health.

Much of that work involved bringing new products through the long development and regulation-heavy process from concept to launch, with experience in therapeutic areas including oncology, urology, pain medicine, cardiology, and rheumatology. In an industry of specialty silos, Travers developed a uniquely blended expertise in marketing and R&D.

It was on March 23, 2006, that her health-care vocation turned personal: Travers, then a 50-year-old mother of two, was diagnosed with breast cancer.

An oncologist recommended a double mastectomy, removal of both ovaries, and chemotherapy. The tearful pleadings of her daughter, Kelly, then 18 I need you here when I graduate college, when I get married, when I have kids persuaded Travers to follow that recommendation.

She returned to work at Endo for seven more years, as a director in project management, before being laid off in June 2013, one month before her daughters wedding. The break gave Travers time to concentrate on the big event and to start to think what Id like to do when I grow up.

That process would lead her in late 2015 to PolyAurum, a start-up spun out of the University of Pennsylvania.

I became a CEO and a grandmother in the same year, said Travers, now 61, chuckling during a recent interview at the Pennovation Center incubator in West Philadelphia. From there, her home in Delaware, and the sites of pitch opportunities with investors, she is working to raise $1.3 million in seed funding by early in the fourth quarter, to help get PolyAurum closer to clinical trials on humans.

So far, research and testing funded through $4 million in grants to the university has been limited to mice with tumors. It has shown that gold nanocrystals greatly enhance the effectiveness of radiation on tumors without increasing harm to healthy surrounding tissue, said Jay Dorsey, an associate professor and radiation oncologist at Penn and one of four university faculty who developed the technology.

The effectiveness of metals in improving a tumors ability to absorb radiation has long been known, Dorsey said. But one of the stumbling blocks to incorporating gold nanoparticles in such therapeutics is that the metal is not eliminated from the body well, posing serious problems to vital organs such as the liver and spleen.

Penns David Cormode, a professor of radiology, and Andrew Tsourkas, a professor of bioengineering, have worked to make gold more biocompatible, resulting in PolyAurums current technology, Dorsey said. The gold nanocrystals are contained in a biodegradable polymer that allows enough metal to collect in a tumor. The polymer then breaks down, releasing the gold for excretion from the body so that it does not build up in key organs.

The companys name is a combination of those two essential ingredients: Poly, derived from polymer, and Aurum, the Latin word for gold.

Explaining all that, and the potential that PolyAurums founders see for extending and saving lives, is the message Travers now is in charge of disseminating the part of the critical path to commercialization that is not the strength of most researchers toiling in laboratories.

She knows what the founders dont know it just makes a perfect match, said Michael Dishowitz, portfolio manager at PCI Ventures, an arm of Penn that helps university start-ups find investors, recruit management, and get to market.

Since its formation about eight years ago, PCI has helped more than 150 companies secure more than $100 million in funding, said Dishowitz, who has a doctoratein bioengineering from Penn and spent several years studying the impact of cell-signaling pathways on orthopedic injury.

While calling PolyAurums technology cool and very transformative for treatment, Dishowitz also delivered a dose of reality about the rigors ahead, as health-care start-ups must navigate a course with no guarantees their products will lead to actual clinical implementation.

PolyAurum is one of 13 companies that entered Philadelphia Media Networks second annual Stellar StartUps competition in the health-care/life sciences category. A total of nine categories drew 88 applicants. The winners will be announced Sept. 12 at an event at the Franklin Institutes Fels Planetarium. (Details at http://www.philly.com/stellarstartups.)

A lot has to go right, all the planets and stars have to align for this to hit the market, Dishowitz said of PolyAurums commercial prospects.

Which is why the team behind any start-up is so essential to investors, he said, calling Travers interest in joining a company that has yet been unable to pay her (she has equity in PolyAurum) incredibly lucky.

Margo Reed

At the Nanomedicine and Molecular Imaging Lab at Penn Medicine are (front row, from left) Jay Dorsey, a radiation oncologist and a founder of PolyAurum; Debra Travers, CEO; and Andrew Tsourkas, another founder of PolyAurum; and (back row, from left) Michael Dishowitz, portfolio manager, PCI Ventures at Penn; and David Cormode, lab director and PolyAurum founder. (MARGO REED / Staff Photographer)

The only thing Travers corporate-heavy background lacked, he said, was raising money for a start-up. It doesnt worry him, Dishowitz said, citing Travers perseverance, no-quit attitude.

When youre out there raising money, youre going to hear no about 100, 150 times before you hear yes, Dishowitz said.

When it comes to pitching for PolyAurum, Travers has extra incentive.

I am working on a cancer therapeutic, which is very important to the 11-year cancer survivor in me, she said.

As for handling nos, shes had plenty of professional experience with that.

After spending 30-plus years in the drug and diagnostic industries, where it is hard to find women CEOs or board members, Travers said, Ive learned to ignore the negative voices.

When: 5:30-8:30 p.m. Tuesday, Sept. 12.

Where: Fels Planetarium, Franklin Institute, 222 N. 20th St., Philadelphia 19103

For more information: http://www.philly.com/stellarstartups

Published: July 28, 2017 3:01 AM EDT

We recently asked you to support our journalism. The response, in a word, is heartening. You have encouraged us in our mission to provide quality news and watchdog journalism. Some of you have even followed through with subscriptions, which is especially gratifying. Our role as an independent, fact-based news organization has never been clearer. And our promise to you is that we will always strive to provide indispensable journalism to our community. Subscriptions are available for home delivery of the print edition and for a digital replica viewable on your mobile device or computer. Subscriptions start as low as 25 per day.We're thankful for your support in every way.

Read the original here:
Cancer survivor becomes a cancer fighter at a Philly start-up - Philly.com

Read More...

Application of Nanomaterials in the Field of Medicine – Medical News Bulletin

Tuesday, August 1st, 2017

There has been a growing interest in the different applications of nanomaterials in the field of medicine. An article published in Nanomedicine: Nanotechnology, Biology, and Medicine showed the ways in which Laponite, a synthetic clay made of nanomaterials, can be of use in clinical practice.

Current advances in technology have provided many opportunities to develop new devices that improve the practice of medicine. There has been a growing interest in the different applications of nanomaterials in the field of medicine.

An article published in Nanomedicine: Nanotechnology, Biology, and Medicine reviewed Laponite, a non-toxic synthetic clay composed of nanomaterials which has different uses in the field of medicine. Laponite can be used in drug delivery systems, as the synthetic clay protects substances from degradation in physiologic environments. Different experiments show that Laponite is effective not only in protecting drugs from degradation, but also in transporting and releasing drugs into the body. The degradation of Laponite in the physiologic environment also releases products which have biological roles, especially in bone formation.

Laponite has been shown to induce osteogenic differentiation of cells in the absence of other factors which are known to promote differentiation and cell growth. The application of nanomaterials in bioimaging has also been studied. In one experiment, Laponite was incorporated with gadolinum, a dye used in magnetic resonance imaging (MRI), resulting in brighter images and prolonged contrast enhancement for 1 hour post-injection. Laponite has also proven to be of use in the field of regenerative medicine and tissue engineering. This synthetic clay can elicit specific biologic responses, act as a carrier for biochemical factors, and improve the mechanical properties of scaffolds used for tissue growth.

In summary, nanomaterials and synthetic clays such as Laponite have many applications in the field of medicine. Although current published literature state no toxic effects on the human body, further studies are needed to assess safety before it can be applied to clinical practice.

Written By:Karla Sevilla

Add to Flipboard Magazine.

See the article here:
Application of Nanomaterials in the Field of Medicine - Medical News Bulletin

Read More...

Koch Institute’s Marble Center for Cancer Nanomedicine Brings Together Renowned Faculty to Combat Cancer – AZoNano

Wednesday, July 12th, 2017

Written by AZoNanoJul 10 2017

The Koch Institute for Integrative Cancer Research at MIT will soon be reaching the first anniversary of the launch of the Marble Center for Cancer Nanomedicine, founded through a generous gift from Kathy and Curt Marble 63.

The Marble Center for Cancer Nanomedicines faculty is made up of Koch Institute members who are committed to fighting cancer with nanomedicine through research, education, and collaboration. Top row (l-r) Sangeeta Bhatia, director; Daniel Anderson; and Angela Belcher. Bottom row: Paula Hammond; Darrell Irvine; and Robert Langer. (Photo: Koch Institute Marble Center for Cancer Nanomedicine)

Bringing together leading Koch Institute faculty members and their teams, the Marble Center for Cancer Nanomedicine focuses on huge challenges in cancer detection, treatment and monitoring that can profit from the latest physics and biology of the nanoscale.

These challenges include spotting cancer earlier than present techniques allow, harnessing the immune system to combat cancer even as it progresses, using therapeutic insights from cancer biology to design therapies for formerly undruggable targets, integrating current drugs for synergistic action, and developing tools for more accurate diagnosis and improved surgical intervention.

Koch Institute member Sangeeta N. Bhatia, the John J. and Dorothy Wilson, Professor of Health Sciences and Technology and Electrical Engineering and Computer Science, serves as the Inaugural Director of the center.

A major goal for research at the Marble Center is to leverage the collaborative culture at the Koch Institute to use nanotechnology to improve cancer diagnosis and care in patients around the world.

Sangeeta N. Bhatia, Koch Institute Member

Transforming nanomedicine

The Marble Center joins MITs larger efforts at the forefront of discovery and advancement to solve the critical global challenge that is cancer. The concept of convergence the combination of the life and physical sciences with engineering is a trademark of MIT, the founding principle of the Koch Institute, and at the heart of the Marble Centers mission.

The center galvanizes the MIT cancer research community in efforts to use nanomedicine as a translational platform for cancer care. Its transformative by applying these emerging technologies to push the boundaries of cancer detection, treatment, and monitoring and translational by promoting their development and application in the clinic.

Tyler Jacks, Director of the Koch Institute and a David H. Koch Professor of Biology

The centers faculty six renowned MIT Professors and Koch Institute Members are committed to combating cancer with nanomedicine through research, education and partnership. They are, Sangeeta Bhatia (director), the John J. and Dorothy Wilson Professor of Health Sciences and Technology and Electrical Engineering and Computer Science; Daniel G. Anderson, the Samuel A. Goldblith Professor of Applied Biology in the Department of Chemical Engineering and the Institute for Medical Engineering and Science; Angela M. Belcher, the James Mason Crafts Professor in the departments of Biological Engineering and Materials Science and Engineering; Paula T. Hammond, the David H. Koch Professor of Engineering and head of the Department of Chemical Engineering; Darrell J. Irvine, Professor in the departments of Biological Engineering and Materials Science and Engineering; and Robert S. Langer, the David H. Koch Institute Professor.

Extending their partnership within the walls of the Institute, members of the Marble Center profit greatly from the support of the Peterson (1957) Nanotechnology Materials Core Facility in the Koch Institutes Robert A. Swanson (1969) Biotechnology Center. The Peterson Facilitys array of technological resources and know-how is unparalleled in the United States, and gives members of the center and of the Koch Institute, a distinctive advantage in the development and application of materials and technologies at the nanoscale.

Looking ahead

The Marble Center made the most of its first year, and has provided backing for advanced research projects including theranostic nanoparticles that can both detect and treat cancers, real-time imaging of interactions between cancer and immune cells to properly understand reaction to cancer immunotherapies, and delivery technologies for a number of powerful RNA-based therapeutics capable of engaging specific cancer targets with precision.

As part of its efforts to help adopt a multifaceted science and engineering research force, the center has offered fellowship support for trainees as well as valuable opportunities for scientific exchange, mentorship and professional development.

Promoting wider engagement, the Marble Center serves as a bridge to a broad network of nanomedicine resources, linking its members to MIT.nano, other Nanotechnology Researchers, and Clinical Partners across Boston and beyond. The center has also set up a scientific advisory board, whose members come from leading clinical and academic centers around the country, and will assist in shaping the centers future programs and continued development.

As the Marble Center enters another year of partnerships and innovation, there is a new landmark in sight for 2018. Nanomedicine has been chosen as the main theme for the Koch Institutes 17th Annual Cancer Research Symposium. The event is scheduled for June 15th, 2018, and will bring together national domain experts, providing a perfect forum for Marble Center members to share the discoveries and progresses made during its sophomore year.

Having next years KI Annual Symposium dedicated to nanomedicine will be a wonderful way to further expose the cancer research community to the power of doing science at the nanoscale. The interdisciplinary approach has the power to accelerate new ideas at this exciting interface of nanotechnology and medicine.

Sangeeta N. Bhatia, Koch Institute Member

Visit link:
Koch Institute's Marble Center for Cancer Nanomedicine Brings Together Renowned Faculty to Combat Cancer - AZoNano

Read More...

Page 15«..10..14151617..»


2024 © StemCell Therapy is proudly powered by WordPress
Entries (RSS) Comments (RSS) | Violinesth by Patrick